5. 高聚物的力学性能

合集下载

药用高分子材料各章知识点总结

药用高分子材料各章知识点总结

药用高分子材料各章知识点总结第一章一、 高分子材料的基本概念1、什么是高分子:高分子是指由多种原子以相同的、多次重复的结构单元并主要由共价键连接起来的、通常是相对分子量为104~106的化合物;2、单 体:能够进行聚合反应,并构成高分子基本结构组成单元的小分子;即合成聚合物的起始原料;3、结构单元:在大分子链中出现的以单体结构为基础的原子团;即构成大分子链的基本结构单元;4、单体单元:聚合物中具有与单体相同化学组成而不同电子结构的单元;5、重复单元 Repeating unit ,又称链节:聚合物中化学组成和结构均可重复出现的最小基本单元;重复单元连接成的线型大分子,类似一条长链,因此重复单元又称为链节;高分子的三种组成情况1.由一种结构单元组成的高分子此时:结构单元=单体单元=重复单元说明:n 表示重复单元数,也称为链节数, 在此等于聚合度;由聚合度可计算出高分子的分子量:M=n. M0 式中:M 是高分子的分子量 M0 是重复单元的分子量2.另一种情况:结构单元=重复单元 单体单元结构单元比其单体少了些原子氢原子和氧原子,因为聚合时有小分子生成,所以此时的结构单元不等于单体单元;注意:对于聚烯烃类采用加成聚合的高分子结构单元与单体的结构是一致的,仅电子排布不同对于缩聚,开环聚合或者在聚合中存在异构化反应的高分子结构单元与单体的结构不一致3.由两种结构单元组成的高分子合成尼龙-66的特征:其重复单元由两种结构单元组成,且结构单元与单体的组成不尽相同,所以,不能称为单体单元;注意:1对于均聚物,即使用一种单体聚合所得的高分子,其结构单元与重复单元是相同的; 聚CH 2 CH CH 2-CH n CH 2 CH n单体体 n H 2N-(--CH 2-)-COOH --NH-(--CH 2-)-CO--n n H 2O +552对于共聚物,即使用两种或者两种以上的单体共同聚合所得的高分子,其结构单元与重复单元是不同的;二、高 分 子 的 命 名1、 习 惯 命 名 法天然高分子:一般有与其来源、化学性能与作用、主要用途相关的专用名称;如纤维素来源、核酸来源与化学性能、酶化学作用;合成高分子:1由一种单体合成的高分子:“聚”+ 单体名称;如乙烯:聚乙烯; 丙烯:聚丙烯; 氯乙烯:聚氯乙烯2以高分子结构特征来命名. 如聚酰胺、聚酯、聚醚、聚砜、聚氨酯、聚碳酸酯等;尼龙-66:聚己二酰己二胺;尼龙-610:聚癸二酰己二胺;尼龙-6:聚己内酰胺或聚ω-氨基己酸2.商品名称:1树脂类未加工成型的原料都称为树脂2橡胶类 3纤维如丁苯橡胶---丁二烯、苯乙烯聚合物 氯纶 PVC 聚氯乙烯乙丙橡胶---乙烯、丙烯共聚物 丙纶 PP 聚丙烯腈纶 PANC 聚丙烯腈3. IUPAC 系统命名法1 确定重复结构单元;2给重复结构单元命名:按小分子有机化合物的IUPAC 命名规则给重复结构单元命名;3给重复结构单元的命名加括弧括弧必不可少,并冠以前缀“聚”;例: COOCH 3CH 3n C CH 2 重复结构单元为: 聚1-甲氧基羰基-1-甲基乙烯 聚1-氯乙烯三、高 分 子 链 结 构1.聚合物的结构:一级结构近程结构:结构单元的化学组成、连接顺序、立体构型,以及支化、交联等;是反映高分子各种特性的最主要结构层次;二级结构远程结构:通常包括高分子链的形态构象以及高分子的大小分子量;与高分子链的柔性和刚性有直接关系;三级结构聚集态结构:聚集态结构也称三级结构,或超分子结构,它是指单位体积内许多大分子链之间的的排列与堆砌方式;包括晶态、非晶态、取向态、液晶态及织态等;2.高分子链的近程结构:高分子链的构型 :构型:是对分子中的最近邻原子间的相对位置的表征,也可以说,是指分子中由化学键所固定的原子在空间的几何排列;1.旋光异构:若高分子中含有手性C 原子,则其立体构型可有D 型和L 型,据其连接方式可分为如下三种:以聚丙烯为例:1 全同立构高分子:主链上的C 的立体构型全部为D 型或L 型, 即DDDDDDDDDD 或C H H C Cl H C H H C Cl H C H H C Cl H C H H CC l HLLLLLLLLLLL;2 间同立构高分子:主链上的C的立体构型各不相同, 即D型与L型相间连接,LDLDLDLDLDLD;立构规整性高分子tactic polymer: C的立体构型有规则连接,简称等规高分子;3 无规立构高分子:主链上的C的立体构型紊乱无规则连接;3、高分子链的远程结构:包括分子量及分子量分布和高分子形态构象;书P8分子量:1.数均分子量:按聚合物中含有的分子数目统计平均的分子量;根据聚合物溶液的依数性测得的,通过依数性方法和端基滴定法测定;2重均分子量:是按照聚合物的重量进行统计平均的分子量;根据聚合物溶液对光的散射性质、扩散性质测得的;通过光散射法测定;分子量分布:分子量分布越窄,聚合物排布越好;4.高分子聚集态结构的特点.1.聚合物晶态总是包含一定量的非晶相,100%结晶的情况是很罕见的;2.聚合物聚集态结构不但与大分子链本身的结构有关,而且强烈地依赖于外界条件;四、聚合与高分子化学反应1.自由基聚合特点:1可概括为慢引发、快增长、速终止;2聚合体系中只有单体和聚合物组成;3单体转化率随聚合时间的延长而逐渐增大;4小量阻聚剂足以使自由基聚合终止;2.本体聚合:只有单体本身在引发剂或热、光、辐射的作用下进行的聚合;3.溶液聚合:单体和引发剂溶于适当溶剂中进行的聚合方法;4.悬浮聚合:单体以小液滴状悬浮在水中的聚合;5.乳液聚合:单体在水介质中由乳化剂分散成乳液状进行的聚合;6.缩聚反应由含有两个或两个以上官能团的单体分子间逐步缩合聚合形成聚合物,同时析出低分子副产物的化学反应,是合成聚合物的重要反应之一;特点:1.每一高分子链增长速率较慢,增长的高分子链中的官能团和单体中的官能团活性相同,所以每一个单体可以与任何一个单体或高分子链反应,每一步反应的结果,都形成稳定的化合物,因此链逐步增长,反应时间长;2.由于分子链中官能团和单体中官能团反应能力相同,所以,在聚合反应初期,单体很快消失,生成了许多两个或两个以上的单体分子组成的二聚体、三聚体和四聚体等,即反应体系中存在分子量大小不等的缩聚物;四、药用高分子材料通论药用高分子材料:指的是药品生产与制造加工过程中使用的高分子材料,药用高分子材料包括作为药物制剂成分之一的药用辅料与高分子药物,以及与药物接触的包装储运高分子材料;第二章一、高分子的分子运动1.高分子运动特点:一运动单元的多重性:1.整链的运动:以高分子链为一个整体作质量中心的移动,即分子链间的相对位移;2.链段的运动:由于主链σ键的内旋转,使分子中一部分链段相对于另一部分链段而运动,但可以保持分子质量中心不变宏观上不发生塑性形变;高弹性:链段运动的结果拉伸—回复;流动性:链段协同运动,引起分子质心位移;3.链节的运动:指高分子主链上几个化学键相当于链节的协同运动,或杂链高分子的杂链节运动4.侧基、支链的运动:侧基、支链相对于主链的摆动、转动、自身的内旋转;二、分子运动的时间依赖性:物质从一种平衡状态在外场作用下,通过分子运动低分子是瞬变过程,高分子是速度过程需要时间达到与外界相适应的另一种平衡状态;三、分子运动的温度依赖性1.活化运动单元:温度升高,增加了分子热运动的能量,当达到某一运动单元运动所需的能量时,就激发这一运动单元的运动;2.增加分子间的自由空间:温度升高,高聚物发生体积膨胀,自由空间加大;当自由空间增加到某种运动单元所需的大小时,这一运动单元便可自由运动;2、高分子的玻璃化转变玻璃态、高弹态和粘流态称为聚合物的力学三态;温度低,聚合物在外力作用下的形变小,具有虎克弹性行为,形变在瞬间完成,当外力除去后,形变又立即恢复,表现为质硬而脆,这种力学状态与无机玻璃相似,称为玻璃态;随着温度的升高,形变逐渐增大,当温度升高到某一程度时,形变发生突变,进入区域II,这时即使在较小的外力作用下,也能迅速产生很大的形变,并且当外力除去后,形变又可逐渐恢复;这种受力能产生很大的形变,除去外力后能恢复原状的性能称高弹性,相应的力学状态称高弹态;由玻璃态向高弹态发生突变的区域叫玻璃化转变区,玻璃态开始向高弹态转变的温度称为玻璃化转变温度,以Tg表示;当温度升到足够高时,聚合物完全变为粘性流体,其形变不可逆,这种力学状称为粘流态;高弹态开始向粘流态转变的温度称为粘流温度,以T f表示,其间的形变突变区域称为粘弹态转变区;二、溶解与高分子溶液一、高聚物的溶解1.非晶态高聚物的溶解条件:足够量的溶剂、一定量的非晶态高聚物溶解过程:溶胀到无限溶胀;溶解过程的关键步骤是溶胀;其中无限溶胀就是溶解,而有限溶胀是不溶解;2.结晶晶态高聚物的溶解非极性结晶高聚物的溶解条件:足够量的溶剂,一定量的非极性结晶高聚物,并且加热到熔点附近;溶解过程:加热使结晶熔化,再溶胀、溶解;极性溶解高聚物的溶解条件:足够量的强极性溶剂,一定量的极性结晶高聚物,不用加热;溶解过程:通过溶剂化作用溶解;二、溶剂的选择1.极性相似原则2.溶剂化原则3.溶解度参数相近原则三、高聚物的力学性能1.应力:单位面积上的内力为应力,其值与外加的应力相等;2.应变:当材料受到外力作用而又不产生惯性移动时,其几何形状和尺寸会发生变化,这种变化称为应变或形变;3.弹性模量:是单位应变所需应力的大小,是材料刚度的表征;4.硬度:是衡量材料抵抗机械压力能力的一种指标;5.强度:是材料抵抗外力破坏的能力;6.高聚物力学性能的最大特点是高弹性和粘弹性:1.高弹性:处于高弹态的高聚物表现出的独特的力学性能;是由于高聚物极大的分子量使得高分子链有许多不同的构象,而构象的改变导致高分子链有其特有的柔顺性;链柔性在性能上的表现就是高聚物的高弹性;橡胶就是具有高弹性的材料;弹性形变的本质也就是高弹性变的本质;2).粘弹性:指高聚物材料不但具有弹性材料的一般特性,同时还具有粘性流体的一些特性; 力学松弛:高聚物的力学性能随时间的变化统称力学松弛;最基本的有:蠕变、应力松弛、滞后、力学损耗;蠕变:在一定的温度和恒定的外力作用下拉力,压力,扭力等,材料的形变随时间的增加而逐渐增大的现象;应力松弛:对于一个线性粘弹体来说,在应变保持不变的情况下,应力随时间的增加而逐渐衰减,这一现象叫应力松弛;滞后现象:高聚物在交变力作用下,形变落后于应力变化的现象;力学损耗:由于力学滞后而使机械功转换成热的现象;第三章一、凝胶与功能水凝胶1.凝胶是指溶胀的三维网状结构高分子,即聚合物分子间相互连接,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质;影响胶凝作用的因素:浓度、温度、电解质;2.凝胶的性质1触变性 2溶胀性 3脱水收缩性 4透过性3.凝胶的分类1物理凝胶:由非共价键氢键或范德华力相互连接,形成网状结构;由于聚合物分子间的物理交联使其具有可逆性,只要温度等外界条件改变,物理链就会破坏,凝胶可重新形成链状分子溶解在溶剂中成为溶液,也称为可逆凝胶;2化学凝胶:是高分子链之间以化学键形成的交联结构的溶胀体,加热不能溶解也不能熔融,结构非常稳定,也称为不可逆凝胶;3冻胶:指液体含量很多的凝胶,通常在90%以上;多数由柔性大分子构成,具有一定的柔顺性,网络中充满的溶剂不能自由流动,所以表现出弹性的半固体状态,通常指的凝胶均为冻胶;4干凝胶:液体含量少的凝胶,其中大部分是固体成分;在吸收适宜液体膨胀后即可转变为冻胶;4.功能水凝胶:对温度或pH等环境因素的变化所给予的刺激有非常明确或显着的应答; 根据环境变化的类型不同,环境敏感水凝胶可分为:温敏水凝胶、pH敏水凝胶、盐敏水凝胶、光敏水凝胶、电场响应水凝胶、形状记忆水凝胶;二、粒子分散结构:有以下四种类型:1.药物粒子分散在高聚物基材中的复合结构,高聚物为连续相,如速释型固体分散制剂;2.药物粒子和高聚物粒子分散于同一或另一高聚物基材中的复合结构,如传统的淀粉基可崩解固体片剂3.药物粒子包裹在聚合物囊膜中,再分散在聚合物基材中4.药物粒子分散在高聚物凝胶网络中的复合结构,这类药物通常是疏水性的,如聚氧乙烯-聚氧丙烯共聚物的水凝胶制成的皮鲁卡品滴眼剂等缓释给药系统;三、缓控释性材料1.缓释制剂:指用药后能在较长时间内持续缓慢释放药物以达到延长药效目的的制剂;系指口服药物在规定释放介质中,按要求缓慢地非恒速释放;2.控释制剂:药物从制剂中按一定规律缓慢、恒速释放,使机体内药物浓度保持相对恒定,体内释药不受pH影响;系指口服药物在规定释放介质中,按要求缓慢地恒速或接近恒速释放;四、分散传质过程药物的扩散过程:1.药物溶出并进入周围的聚合物或孔隙;2.由于浓度梯度,药物分子扩散通过聚合物屏障;3.药物由聚合物解吸附;4.药物扩散进入体液或介质;第四章药用天然高分子材料一、淀粉1.来源淀粉starch广泛存在于绿色植物的须根和种子中,根据植物种类、部位、含量不同,各以特有形状的淀粉粒而存在;药用淀粉多以玉米淀粉为主;2.化学结构和组成淀粉是由许多葡萄糖分子脱水缩聚而成的高分子化合物;结构单元:D-吡喃环型葡萄糖淀粉组成可以分为两类,直链淀粉与支链淀粉;自然淀粉中直链,支链淀粉之比一般约为15-28%比72-85%,视植物种类、品种、生长时期的不同而异;1直链淀粉是以α-1,4苷键连接而成的线型聚合物;直链淀粉由于分子内氢键作用,链卷曲成螺旋形,每个螺旋圈大约有6个葡萄糖单元;2支链淀粉是由D-葡萄糖聚合而成的分支状淀粉,其直链部分也为α-1,4苷键,而分支处则为α-1,6苷键;在各种淀粉中,直链淀粉约占20%-25%,支链淀粉约占75%-85%3.性质1形态与物理常数玉米淀粉为白色结晶粉末,流动性不良,淀粉在干燥处且不受热时,性质稳定;2淀粉的溶解性、含水量与氢键作用力溶解性:呈微弱的亲水性并能分散与水,淀粉不溶于水、乙醇和乙醚等,但有一定的吸湿性; 含水量:在常温、常压下,淀粉有一定的平衡水分,但淀粉含有很高的水分却不显示潮湿而呈干燥的粉末状,这主要是淀粉中的葡萄糖单元存在的众多醇羟基与水分子相互作用形成氢键的缘故;不同淀粉的含水量存在差异,这是由于淀粉分子中羟基自行缔合及与水分子缔合程度不同所致;3淀粉的吸湿与解吸吸湿:淀粉中含水量受空气湿度和温度的影响,在一定的相对湿度和温度条件下,淀粉吸收水分与释放水分达到平衡,此时淀粉所含的水分称为平衡水分;用做稀释剂的淀粉和崩解剂的淀粉,宜用平衡水分下的玉米淀粉;解吸:淀粉中存在的水,分为自由水和结合水两种状态,自由水仍具有普通水的性质,随环境的变化而变化,它具有生理活性,可被微生物利用,而结合水则不能;4淀粉的水化、膨胀、糊化水化:淀粉颗粒中的淀粉分子有的处于有序态晶态,有的处于无序态非晶态它们构成淀粉颗粒的结晶相和无定性相,无定性相是亲水的,进入水中就吸水,先是有限的可以膨胀,而后是整个颗粒膨胀的现象;膨胀:淀粉在60-80℃热水中,能发生膨胀,直链淀粉分子从淀粉粒中向水中扩散,形成胶体溶液,而支链淀粉则仍以淀粉粒残余的形式保留在水中;糊化:若不实施直链淀粉与支链淀粉的分离,在过量水中,淀粉加热至60~80℃时,则颗粒可逆地吸水膨胀,至某一温度时,整个颗粒突然大量膨化、破裂,晶体结构消失,最终变成粘稠的糊,虽停止搅拌,也都下沉的现象;糊化的本质:水分子加入淀粉粒中,结晶相和无定性相的淀粉分子之间的氢键断裂,破坏了缔合状态,分散在水中成为亲水胶体;5淀粉的回升老化、凝沉回生或老化:淀粉糊或淀粉稀溶液再低温静置一段时间,会变成不透明的凝胶或析出沉淀的现象;形成的淀粉称为回生淀粉;4、反应1水解反应存在于淀粉分子中糖基之间的连接键——苷键,可以在酸或酶的催化下裂解,形成相应的水解产物,呈现多糖具备的水解性质;2显色反应淀粉与碘试液作用时形成有色包结物,螺旋结构长颜色深,所以直链淀粉与碘化钾、碘溶液作用呈蓝色,支链淀粉呈紫红色;5.应用淀粉在药物制剂中主要用作片剂的稀释剂、崩解剂、粘合剂、助流剂,崩解剂;淀粉应用安全无毒,同时药典品不得检出大肠杆菌、活蛹,1g淀粉含霉菌应在100个以下,杂菌不得多于1000个;可灭菌玉米淀粉是玉米淀粉经化学及物理改性后的淀粉,遇水或蒸汽灭菌不糊化,是供某些医疗用途的改性淀粉;二、糊精1.来源与制法淀粉水解是大分子逐步降解为小分子的过程,这个过程的中间产物总称为糊精;糊精的制法是在干燥状态下将淀粉水解,其过程有四步:酸化、预干燥、糊精化及冷却;2.分类在药剂学中应用的糊精有白糊精和黄糊精;3.性质糊精为白色、淡黄色粉末;不溶于乙醇95℃、乙醚,缓缓溶于水,易溶于热水三、麦芽糖糊精1.来源与制法麦芽糖糊精是由食用淀粉在有水存在的条件下,将淀粉加热,经合适的酸或者酶部分水解而制得;制法:部分地将淀粉水解可得不同链长的葡萄糖单元的聚合物溶液,然后过滤、浓缩、干燥即得麦芽糖糊精;2.性质为无甜味、无臭的白色粉末或颗粒;易溶于水,微溶于乙醇;若其葡萄糖当量提高,则吸湿性、可压性、溶解度、甜度也随之提高,黏度下降;四、羧甲基淀粉钠1.结构为聚α-葡萄糖的羧甲基醚2.性质为白色至类白色自由流动的粉末,能分散于水,形成凝胶,醇中溶解度约2%,不溶于其它有机溶剂,有较大的吸湿性3.应用羧甲淀粉钠作为胶囊剂和片剂的崩解剂广泛应用于口服药物制剂中,在湿法制粒时,将羧甲淀粉钠加入颗粒内部,其润湿时起黏合剂的作用,而在颗粒干燥后又能起崩解剂的作用;是某些口崩片的理想辅料;也可用作助悬剂;五、纤维素1.来源纤维素存在于一切植物中,是构成植物细胞壁的基础物质;2.结构结构单元是D-吡喃葡萄糖基,相互间以-1,4-苷键连接,分子式为C6H10O5n;3.性质1化学反应性纤维素的氧化、酯化、醚化、分子间形成氢键、吸水、溶胀以及接枝共聚等都与纤维素分子中存在大量羟基有关;2氢键的作用纤维素结晶区和无定形区的羟基,基本上是以氢键形式存在3吸湿性纤维素吸水后,再干燥的失水量,与环境的相对湿度有关,纤维素在经历不同湿度的环境后,其平衡含水量的变化,存在滞后现象,即吸附时的吸着量低于解吸时的吸着量; 4溶胀性纤维素的有限溶胀可分为结晶区间溶胀和结晶区内溶胀;纤维素溶胀能力的大小取决于碱金属离子水化度,纤维素的溶胀是放热反应,温度降低,溶胀作用增加;对同一种碱液并在同一温度下,纤维素的溶胀随其浓度而增加,至某一浓度,溶胀程度达最高值;5机械降解特性机械降解后的纤维素比氧化、水解或热降解的纤维素具有更大的反应能力;6可水解性纤维素大分子的背键对酸的稳定性很低,在酸碱度、温度适合的条件下,能产生水解降解,酸是催化剂,可降低贰键破裂的活化能,增加水解速度;纤维素对碱在一般情况下是比较稳定的,但在高温下,纤维素也产生碱性水解;六、粉状纤维素1.制法将植物纤维材料纤维浆,用%NaOH溶液在20℃处理,不溶解的部分中包括纤维浆中的纤维素和抗碱的半纤维素,用转鼓式干燥器制成片状,再经机械粉碎即得粉状纤维素;2.性质呈白色,无臭,无味,具有纤维素的通性,不同细度的粉末的流动性和堆密度不一,具有一定的可压性,流动性较差;3.应用可用于片剂的稀释剂,硬胶囊或散剂的填充剂;在软胶囊中可用于降低油性悬浮性内容物的稳定剂,以减轻其沉降作用,也可作口服混悬剂的助悬剂;用作片剂干性粘合剂的浓度为5%;-20%,崩解剂浓度为5%-15%,助流剂浓度为1%-2%,不得用作注射剂或吸入剂辅料;在食品工业中可作为无热量食品的添加剂;七、微晶纤维素1.制法将结晶度高的纤维经强酸水解除去其中的无定形部分,所得聚合度约为220,相对分子质量约为36000的结晶性纤维即为微晶纤维素;胶态微晶纤维素:纤维素+亲水性分散剂2.性质白色、无臭、无味,多孔、易流动粉末,不溶于水、稀酸、氢氧化钠液和一般有机溶剂;可压性:具有高度变形性,极具可压性;吸附性:为多孔性微细粉末,可以吸附其他物质如水、油和药物等;分散性:微晶纤维素在水中经匀质器作用,易于分散生成妈油般的凝胶体;反应性能:在稀碱液中少部分溶解,大部分膨化,表现出较高的反应性能;3.应用微晶纤维素PH型广泛用作口服片剂及胶囊剂的稀释剂、吸附剂、崩解剂、抗粘附剂;此外也可作为倍散的稀释剂和丸剂的赋形剂;微晶纤维素RC型作为胶体分散系主要用于干糖浆、混悬剂,有时也作为水包油乳剂和乳膏的稳定剂;微晶纤维素球形颗粒,为具有高圆度和机械强度的球形细粒剂,可作为包衣型缓释制剂、苦味掩盖制剂的核芯,微晶纤维素AvicelPH-300系列具有快速崩解性、较好的流动性、可减小片重差异等优点;Avice KG-801可以提高片剂硬度、降低磨损性、少量添加适于在低压力下压片等优点;纤维素衍生物具有以下性质:具有玻璃化转变温度、溶度参数和表面能、物理配伍相容性、溶胀性、吸湿性、黏度、生物黏附性、热凝胶化和昙点、液晶的形成;八、醋酸纤维素。

高聚物的力学性能

高聚物的力学性能
Biblioteka u ( )T ,V 0 l
S f T ( )T ,V l
理想高弹体拉伸时,只引起熵变; 只有熵的变化对理想高弹体有贡献。
理想高弹体的高弹性即为熵弹性。
实际橡胶可看成理想高弹体,因此高弹性的本质为熵弹性。
江门职业技术学院材料系
f
2、 fu =?
f
fs fu

6
四、影响高弹性的结构因素 1、相对分子质量大,分子链长且柔性好。 2、具有无定形态(非晶态)结构。 3、大分子链间有适度的交联。
外力作用在橡胶上,一方面使橡胶的内能随伸长而变化, 另一方面使橡胶的熵随伸长而变化。 橡胶的内部张力是由于变形时内能发生变化和熵发生变化引起的。
江门职业技术学院材料系 5
三、橡胶弹性的热力学分析
由实验橡胶拉伸时f 、fu、fs与ε的关系曲线:
fu 0
3、理想高弹体及橡胶高弹性的本质 理想高弹体:等温等容形变过程中内能保持不变的弹性体。
江门职业技术学院材料系 2
一、橡胶的使用温度范围
2、改善低温易脆性,降低Tg ,减少结晶,提高橡胶的耐寒性 耐寒性:抵抗低温易脆性的能力。 Tg 低,低温下,σi↑,耐寒性好。 橡胶的结晶度低、提高增塑剂的含量、共聚上可使Tg 降低的组分,耐寒 性都可提高。
江门职业技术学院材料系
3
二、高弹性的特点
江门职业技术学院材料系
7
聚合物在高弹态表现的力学性质为高弹性。 1、弹性模量小,形变量大,为高弹形变 2、弹性模量E与温度有关 模量其实是抵抗形变的能力, 高弹态大分子链段易活动,大分子链趋于卷曲,对橡胶施加外力时,橡胶 大分子有回缩力, 温度升高,链段活动能力↑,大分子链卷曲程度↑ ,回缩力↑, E↑。 3、形变需要时间,即高弹形变与时间有关 高弹形变是由链段的运动来实现的,而链段运动是松弛过程,因此高弹形 变需要时间,或者说形变落后于外力。 4、形变时有热效应 橡胶伸长变形时,①分子链排列规整性提高,熵值减小; ②分子间的内摩擦产生热量; ③由于分子链排列规整性提高,结晶,放热。 因此,橡胶被拉伸时放热,回缩时就会吸热。 金属材料被拉伸时吸热:金属为结晶材料,拉伸时结晶被破坏,吸热。

高聚物的力学性能

高聚物的力学性能
ψ(t) 是延迟蠕变发展的时间函数,称为蠕变函数,可由 实验确定或理论推出。
• 线型非晶聚合物的流动 Newtonian flow
假定高聚物服从牛顿流动定律,则有:
e III = s 0
• 全部蠕变为三部分应变之和
t
h
æ tö et = e I + e II + e III = s 0 ç J0 + Jey ( t ) + ÷ = s 0 Jt hø è
1 B
泊松比 Poisson's ratio
• 材料受拉伸或压缩力时,材料会发生变形,而其横向变形
量与纵向变形量的比值,就是泊松比 • 在均匀各向同性材料中,剪切模量G、杨氏模量E 和泊松比 ν三个量中只有两个是独立的,它们之间存在以下关系:
E G= 2 (1 + u )
不同材料的泊松比
材料名称 锌 钢 泊松比 0.21 0.25~0.35 材料名称 玻璃 石料 泊松比 0.25 0.16~0.34
*
G1 (w ) =
J1 (w ) J
* 2
G2 (w ) =
J 2 (w ) J
J(t)是恒定应力下 的蠕变柔量
• 聚合物的蠕变柔量范围达几个数量级,蠕变实验时间也由
数十到数百小时,一般采用双对数作图。恒定温度下高聚 物蠕变柔量J(t)随时间t变化的双对数图有如下图所示形状:
η:推迟时间,高聚物玻璃化转变的表征参数
• 上图可以看出,随着推迟时间η与加载时间相对尺度的不同,
高聚物或像一块弹性固体(加载时间远小于η),或是一个 黏弹固体(加载时间与η同数量级)。或像一块橡胶甚至液 体(加载时间大于η和远大于η)。 • 高聚物的推迟时间强烈依赖于温度,η随温度的升高而减小, 时间和温度对高聚物力学性能的影响存在着等当性。

第七章粘弹性课后习题

第七章粘弹性课后习题

第七章粘弹性一、思考题1. 何谓高聚物的力学性能?从承载速度区分,力学性能可分为哪几类?2. 何谓粘弹性?何谓Boltzmann 叠加原理?何谓时温等效原理?3. 粘弹性实验一般有哪些?何谓应力松弛和蠕变?什么是松弛模量和蠕变柔量?松弛时间与推迟时间有何异同?4. 什么是高聚物的力学滞后和内耗?表征高聚物动态粘弹性的参量有哪些?用什么参量描述其内耗大小?5. 如何由不同温度下测得的E-t 曲线得到某一参考温度下的叠合曲线?当参考温度分别取为玻璃化温度和玻璃化温度以上约50C时,WLF方程中的C2应分别取何值?哪一组数据普适性更好?6. 粘弹性力学模型中的基本元件和基本连接方式有哪些?它们有何基本关系式?写出Maxwell 模型和Voigt 模型的基本微分方程。

广义Maxwell 模型和广义Voigt 模型分别适用于描述高聚物在什么情况下的性质?二、选择题1.高聚物的蠕变与应力松弛的速度( ) CD与温度无关②随着温度增大而减小③随着温度增大而增大2 •用T g为参考温度进行E t曲线时温转换叠加时,温度低于T g的曲线,其lg a值为( )C1 正,曲线向右移动C2 负,曲线向左移动C3 负,曲线向右移动C4 正,曲线向左移动3.高聚物发生滞后现象的原因是( )C1 高聚物的弹性太大C2 运动单元运动时受到内摩擦力的作用C3 高聚物的惰性大4.Voigt 模型可用于定性模拟( )C1 线性高聚物的蠕变C2 交联高聚物的蠕变C3 线型高聚物的应力松弛C4 交联高聚物的应力松弛5.Maxwell 模型可用于定性模拟( )C1 线型高聚物的蠕变C2 交联高聚物的蠕变③线型高聚物的应力松弛(④交联高聚物的应力松弛6 •高聚物黏弹性表现最为明显的温度是()①v T g ②高于T g附近③T f附近7. 高聚物的蠕变适宜用()的模型来描述。

①理想弹簧和理想黏壶串联(②理想弹簧和理想黏壶并联③四元件模型8. 高聚物的应力松弛适宜用哪种模型来描述?()①广义Maxwell模型②广义Voigt模型③四元件模型9. 对于交联高聚物,以下关于其力学松弛行为哪一条正确?()③蠕变能回复到零③应力松弛时应力能衰减到零③可用四元件模型模拟三、判断题(正确的划“V”,错误的划“X”)1. 交联聚合物的应力松弛现象,就是随时间的延长,应力逐渐衰减到零的现象。

高聚物的力学性能

高聚物的力学性能

●相对分子质量及分布对强度的影响
规律:强度随相对分子质量的增大而增加,分布宽窄影响不大,但低聚物部分增加时,因低分子部分发生分子间断裂而使强度下降。

●低分子掺合物对强度的影响
规律:低分子物质的加入降低强度。

▓实例增塑剂的加入能降低强度,但对脆性高聚物而言,少量加入低分子物质,能增加强度。

●交联对强度的影响
规律:适度交联增加强度,但过度交联,在受外力时,会使应力集中而降低强度。

▓实例橡胶的适度交联。

●结晶对强度的影响
规律:结晶度增大,强度增加,但材料变硬而脆;大球晶增加断裂伸长率,小球晶增加韧性、强度、模量等;纤维状晶体强度大于折叠晶体强度。

▓实例缓慢降温有利形成大球晶,淬火有利形成小球晶。

●取向对强度的影响
规律:取向能增加取向方向上材料的强度。

§5高聚物的力学性能
特例:以橡胶为改性剂,提高高聚物材料抗冲击性能。

对橡胶的要求:玻璃化温度必须远低于使用温度;橡胶不溶于刚性高聚物而形成二相;两种高聚物溶解行为上相似,有利于相互黏着。

若三条件达不到,加入第三组分。

效果:原脆性高聚物的冲击强度提高5~10倍。

高聚物的力学性能

高聚物的力学性能

●相对分子质量及分布对强度的影响
规律:强度随相对分子质量的增大而增加,分布宽窄影响不大,但低聚物部分增加时,因低分子部分发生分子间断裂而使强度下降。

●低分子掺合物对强度的影响
规律:低分子物质的加入降低强度。

▓实例增塑剂的加入能降低强度,但对脆性高聚物而言,少量加入低分子物质,能增加强度。

●交联对强度的影响
规律:适度交联增加强度,但过度交联,在受外力时,会使应力集中而降低强度。

▓实例橡胶的适度交联。

●结晶对强度的影响
规律:结晶度增大,强度增加,但材料变硬而脆;大球晶增加断裂伸长率,小球晶增加韧性、强度、模量等;纤维状晶体强度大于折叠晶体强度。

▓实例缓慢降温有利形成大球晶,淬火有利形成小球晶。

●取向对强度的影响
规律:取向能增加取向方向上材料的强度。

§5高聚物的力学性能
特例:以橡胶为改性剂,提高高聚物材料抗冲击性能。

对橡胶的要求:玻璃化温度必须远低于使用温度;橡胶不溶于刚性高聚物而形成二相;两种高聚物溶解行为上相似,有利于相互黏着。

若三条件达不到,加入第三组分。

效果:原脆性高聚物的冲击强度提高5~10倍。

06 1 第六章 力学性能 高弹性 TPE 11918

06 1 第六章 力学性能 高弹性 TPE 11918

第六章高聚物的力学性能(1)6.1 概述6.1.1 高聚物力学性能的特点(形变性能、断裂性能)高弹形变:平衡高弹形变:瞬时、平衡、可逆的高弹形变;非平衡高弹形变:瞬时粘弹性,与时间有关高弹性:准平衡态高弹形变,由高分子构象熵的改变引起,处于链段无规自由热运动橡胶(弹性体)→外力作用(拉伸力)→ 链段运动对外响应→可逆的弹性形变(伸长数倍)普弹性:内能的改变引起粘弹性:呈粘性流体的性质、弹性和粘性同时出现。

表现在力学松弛现象(蠕变、应力松弛)及动态力学行为。

高聚物的力学行为:依赖于时间、温度。

必须同时考虑应力、应变、时间和温度来描述。

研究目的:(1)力学性能宏观描述和测试合理化;(2)宏观力学性能与微观各个层次的结构因素的关系。

6.1.2 形变类型和描述力学行为的基本物理量(1)简单剪切(形状改变,体积不变)剪切应力:σ = F/A,剪切应变:γ= tgθ,剪切模量(刚度):G = σ/γ,剪切柔量:J = 1/G = γ/σ(2)本体(体积)压缩(形状不变,体积改变)本体应变:Δ= ΔV / V,本体模量:K = P/Δ = P / (- ΔV / V),本体柔量(可压缩度):B = 1 / K(3)单向拉伸(形状和体积同时改变)拉伸应力:σ = F/A0(张应力,工程应力),拉伸应变:ε1 = (l-10)/10=Δl/10(张应力,工程应变,习用应变),杨氏模量:E = σ / ε1 (高聚物 E = 0.1MPa~500MPa),拉伸柔量:D = 1 / E横向应变:ε2 =(b - b0)/ b0,ε3 =(d - d0)/ d0)泊松比:γ = -ε2 / ε1= -ε3 / ε1 (拉伸试验中横向应变与纵向应变的比值的负数)对于大多数高聚物:橡胶,γ = 0.5,体积几乎不变,没有横向收缩。

塑料,γ = 0.2~0.4。

对各向同性的理想材料:G = E /(1+γ),K = E(1 - 2γ),E = 9KG /(3K + G),若体积几乎不变,即γ = 1/2, 则 E = 3G;对于各向异性材料情况比较复杂,不止有两个的独立弹性模量,通常至少有5或6个。

高聚物的力学性能

高聚物的力学性能

2
)应变落后于应力
2
对polymer——粘弹材料的力学响应介于弹性与粘性之间, 应变落后于应力一个相位角。 0
2
频率相关性能
载荷随时间而交替变化,材料性能由于黏滞效应 而频率相关,存在能量耗散
弹性固体,应变与应力同相作正弦 波的变化,没有能量损耗
理想黏性流体,应变滞后相位 / 2
滞后时间为 / 2
材料受外力作用时的形变行为: 理想的弹性固体服从虎克定律——形变与时间无关
瞬间形变,瞬间恢复 理想的粘性液体服从牛顿定律——形变与时间成线性关系 高聚物:
分子运动 强烈地依赖于温度和外力作用时间
宏观力学性能
粘弹性的力学模型:
如一个符合虎 克定律的弹簧 能很好的描述 理想弹性体:
一个具有一块平板浸没在一个充 满粘度为,符合牛顿流动定律的 流体的小壶组成的粘壶,可以用 来描述理想流体的力学行为.
形变性能 Deformation
弹性 Elasticity
普弹性 高弹性 High elasticity
粘性 Viscosity
线性粘弹性
静态 Static
粘弹性
Linear viscoelasticity
viscoelasticity
动态 Dynamic
非线性粘弹性
Non-Linear viscoelasticity
弹性材料
t1 t 2 t1 t 2
黏弹性材料
t1 t2
=const.
应力松弛 等时应力~应变曲线
蠕变
• 蠕变——在恒定载荷(或应力)作用下,
应变随时间而逐渐增加的过程或现象图1 理想弹性体(瞬时蠕变)普弹形变
从分子运动的角度解释: 材料受到外力的作用,链内的键长和 键角立刻发生变化,产生的形变很小, 我们称它普弹形变.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

L
L
N
H
(1)温度
(1)
(3)
应力
(2)
(4)
应变
(2)应变速率
(1)
(3)
应力
(2)
(4)
应变
强迫高弹形变的定义
处于玻璃态的非晶聚合物在拉伸过程中屈服点后产生
的较大应变,移去外力后形变不能回复。若将试样温度
升到其 Tg 附近,该形变则可完全回复,因此它在本质上 仍属高弹形变,并非粘流形变,是由高分子的链段运动 所引起的。 这种形变称为强迫高弹形变。
Stress
Yield stress
(4)断裂强度 (5)断裂伸长率 (6)断裂韧性
Strain
以应力应变曲线测定的韧性


d
量纲=Pam/m=N/m2 m/m= J/m3
材料在屈服点之前发生的断裂称为脆性断裂 brittle fracture ; 在屈服点后发生的断裂称为韧性断裂 ductile fracture 。
5.1.2细颈
1)细颈的形成原因
本质:剪切力作用下发生塑性流动 A0 F F
F
F
Fn F α F 正应力 0 A0 切向力 A Fs
A0 斜截面面积 A sin
F
法向力 Fn=F·sinα
Fs=F·cosα
A
法应力: n Fn 0 sin 2 切应力: S FS 0 sin cos 1 0 sin 2
A
plastic deformation 塑性形变
Strain hardening 应变硬化
A E A
O
A y
B
图 非晶态聚合物在玻璃态的应力-应变曲线
14
12 10 8 , 1000 psi
1psi = 6890Pa
6
4 2 0 0 1 2 3 , inch 4 5
~200
~80
银纹与裂纹的关系
Craze: narrow zones of highly deformed and voided polymer
裂缝
稳定银纹是聚合物屈服的机理,
不稳定银纹会引发裂缝,导致断裂
Optimists concentrate on plastic deformation in crazes as a source of toughness or stress relief in polymers, while pessimists focus on crazing as the beginning of brittle fracture
1 应变 柔量= = 模量 应力
——反映材料抵抗形变的能力
主要受力方式:
简单拉伸
简单剪切 均匀压缩
简单拉伸: 受大小相等、方向相反、在一条直线上的力作用。 拉伸应力 = F/A0
l l0 l 拉伸应变 l l 0 0
拉伸比
l l0
杨氏模量 E = / 拉伸柔量 D = 1/E = /
简单剪切: 受大小相等、方向相反、不在一条直线上的力作用。
剪应力 = F/A0
s 剪应变 tg d
剪切模量 G = / 剪切柔量 J = 1/G = /
均匀压缩:受流体静压力作用
压缩应力 静压力 P V0
V0 V V 压缩应变 V0 V0
P
V
压缩模量 压缩柔量
施力:y≥ b当应力增加到 一定值(屈服应力)时,相 应链段运动的松弛时间降到 与外力的作用时间相当,被 冻结的高分子链段即能响应 产生大的形变,可见增加应 力与升高温度对松弛时间的 影响是相同的。
27
Tb
图 产生屈服的条件
Tg
Ⅱ、结晶聚合物
晶态聚合物在单向拉伸时典型的应力-应变曲线如下图:
B N
在不同条件下聚合物表现出的力学行为: 高弹性、粘弹性和流动性
极限力学行为(屈服、破坏与强度):玻璃态和结晶态聚合物
5.1.0力学性质的基本物理量
强度 :材料所能承受的最大载荷,表征了材料的受力极
限,在实际应用中具有重要的意义。包括抗张强度、冲击 强度、弯曲强度、压缩强度、硬度、疲劳等。
应力 模量= 应变
5.1聚合物的屈服和断裂
聚合物的力学性质
• • • • 掌握聚合物的应力-应变曲线; 熟悉屈服现象与机理; 熟悉聚合物的强度、韧性和疲劳等概念; 掌握聚合物强度的影响因素 、增强方法和 机理; • 掌握聚合物韧性的影响因素 、增强方法和 机理。
聚合物的力学性能是其受力后的响应,如形变大小、形变的可 逆性及抗破损性能等。
韧性断裂 (Ⅱ) 出现屈服 σ-ε关系是非线性的 粗糙 断裂伸长较大
断裂能较小
由张应力分量引起
断裂能较大
由切应力分量引起
脆性断裂与韧性断裂依赖于温度和应变速率:
温度或降低应变速率对断裂应力影响不大,对屈服应力 的影响显著。
断裂强度
当T<Tb时,应力下形变的后果是 脆性断裂 T>Tb时先发生屈服。
主要区别 形 变
剪切屈服 形变大几十~几百% 有明显的屈服点 体积不变 剪 切 力
银纹屈服 形变小 <10% 无明显的屈服点 体积增加 张 应 力 裂 缝
曲线特征 体 力 结 果 积


一般情况下,材料既有银纹屈服又有剪切屈服
44
聚丙烯:曲线几乎为零,纯粹剪切屈服 ASA:斜率为1,100%银纹化
从分子运动解释非结晶聚合物应力-应变曲线
(Molecular motion during tensile test 拉伸过程中高分子链的运动)
普弹形变 小尺寸运动单元的运动引起键 长键角变化。
强迫高弹形变 在大外力作用下冻结的链 段沿外力方向取向 粘流形变 在分子链伸展后继续拉伸整 链取向排列,使材料的强度 进一步提高。形变不可回复
提高应变速率,会使Tb升高 缺口的存在,会使Tb大幅升高
2)断裂强度
Stress
(1)拉伸强度
P t bd
Strain
P:断开前试样承受的最大载荷; b:试样宽度; d:试样厚度
(2)拉伸模量
Et P / bd l / l 0
△P:形变较小时的载荷。 l0:试样长度
(3)抗弯强度
注意细颈 现象
应力-应变过程的不同阶段
五个阶段:
I:弹性形变 II:屈服 III:应变软化 IV:冷拉 V:应变硬化
I II III IV V
非晶态聚合物典型应力-应变曲线
重要参数:
Elongation at break
Elongation at yield
(1)杨氏模量 (2)屈服强度
Ultimate (3)屈服应变 strength
泊松比 = -y/x = -z/x
如果拉伸过程体积不变, 即V=0, 则 = 0.5
证明:
V=abl lnV = lna + lnb + lnl
d (ln V ) d (ln a) d (ln b) 1 d (ln l ) d (ln l ) d (ln l )
体积不变
3)银纹
2)剪切带
拉伸过程中,沿45°或135 °方向在材料内部或 表面出现剪切滑移变形带。
PS 60C,compressive strain of ~4%.
polycarbonate
3)银纹
在一定条件下,材料由应力集中而产生局部的
塑性形变和取向。
TEM of a craze in PS
银纹的结构
Pl0 f 1.5 2 bd
弯曲模量
Ef
3 Pl 0
P
P 2
l0
P 2
bd 3
δ:挠度,试样着力处的位移
5.1.5影响强度的因素
从分子水平上看,聚合物的断裂要破坏分子内的化 学键和分子间的范德华力与氢键。
内部结构的破坏可归结为以下三种情况:
20
图 非晶态聚合物的应力-应变曲线 (玻璃态)
聚合物应力-应变曲线的类型
(1)
(3)
应力
(2) (4)
(5)
应变
聚合物材料
模量 屈服 L L N
强度 L
伸长率 断裂 韧性
弹性体
PE,PTFE PCTFE,PP N66,PC,POM,ABS
HH
H
M M
L
M
L
M
M
H
H
M L L
H
H
H
H
H
H
PMMA,PS,PVC H 热固性塑料 HH
PV0 B V P
1 B
5.1.1应力-应变曲线
(a)
(b)
非晶态聚合物典型应力-应变曲线
Point of elastic limit 弹 性极限点
Yielding point 屈服点 Strain softening 应变软化
Y N D B
Breaking point 断裂点
B Y A
四个阶段。
被拉伸后材料都出现各向异性,且产生大的形变,室温不 能回复,产生强迫形变-“冷拉”
不同点:冷拉的温度范围:
非晶态Tb~Tg 结晶态Tg~Tm
对晶态聚合物拉伸过程,伴随着凝聚态结构的变化
30
冷拉 Cold drawing
★ 脆性聚合物在断裂前试样并没有明显
变化,断裂面一般与拉伸方向垂直,而 且很光洁
非晶和晶态聚合物的拉伸过 程本质上都属高弹形变,但其 产生高弹形变的温度范围不同, 而且在玻璃态聚合物中拉伸只 使分子链发生取向。 而晶态聚合物在拉伸伴随着 凝聚态结构的变化,包含晶 面滑移、晶粒的取向及再结 晶等相态的变化。
相关文档
最新文档