解析几何第四版吕林根课后习题答案第二章

合集下载

解析几何第四版吕林根 期末复习 课后习题(重点)详解

解析几何第四版吕林根 期末复习 课后习题(重点)详解

第一章 矢量与坐标§1.3 数量乘矢量4、 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.6、 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM ,可 以构成一个三角形.证明: )(21AC AB AL +=)(21+=)(21CB CA CN +=0)(21=+++++=++∴7.、设L 、M 、N 是△ABC 的三边的中点,O 是任意一点,证明 ++=OL +OM +ON .[证明] += MB OM OB += NC ON OC +=)(OM +++++=++∴ =)(CN BM AL ON OM OL ++-++ 由上题结论知:0=++CN BM AL ON OM OL OC OB OA ++=++∴ 从而三中线矢量BM ,,构成一个三角形。

8.、如图1-5,设M 是平行四边形ABCD 的中心,O 是任意一点,证明OA +OB ++OD =4OM .[证明]:因为OM =21(OA +), OM =21(OB +), 所以 2OM =21(OA +OB +OC +) 所以OA +OB ++OD =4OM .10、 用矢量法证明梯形两腰中点连续平行于上、下两底边且等于它们长度和的一半.图1-5证明 已知梯形ABCD ,两腰中点分别为M 、N ,连接AN 、BN . →→→→→→++=+=DN AD MA AN MA MN ,→→→→→→++=+=CN BC MB BN MB MN ,∴ →→→+=BC AD MN ,即§1.4 矢量的线性关系与矢量的分解3.、设一直线上三点A , B , P 满足AP =λ(λ≠-1),O 是空间任意一点,求证:OP =λλ++1[证明]:如图1-7,因为=-OA ,PB =OB -,所以 -OA =λ (OB -),(1+λ)OP =+λ,从而 OP =λλ++1OB.4.、在ABC ∆中,设,1e =2e =.(1) 设E D 、是边BC 三等分点,将矢量,分解为21,e e 的线性组合; (2)设AT 是角A 的平分线(它与BC 交于T 点),将分解为21,e e 的线性组合解:(1)()12123131,e e e e -==-=-= , 2111231323131e e e e e BD AB AD +=-+=+=,同理123132e e AE +=(2)因为||||TC =||11e e ,且 BT 与方向相同, 所以 BT ||21e e .由上题结论有AT ||||1||212211e e e e e +||||212112e e e e e e +.5.在四面体OABC 中,设点G 是ABC ∆的重心(三中线之交点),求矢量对于矢量,,,的分解式。

《解释几何 第四版》讲解与习题 第二章 轨迹与方程

《解释几何 第四版》讲解与习题  第二章   轨迹与方程

x (tx b) 1 2 2 a b
2 2
在第二式中取t=0,得x=0,所以舍去第一式,取 从而
b(b 2 a 2t 2 ) y 2 b a 2t 2
在法二中,若令u=-t,则得椭圆的另一种表示式为
2a2bu x 2 b a 2u 2 ( u ) 2 2 2 y b(b a u ) 2 2 2 b a u
(x x0)2 + (y y0)2 + (z z0)2 = R2 (1) 称方程(1)为球面的标准方程. 特别: 当球心在原点O(0, 0, 0)时,
M0
M
R
球面方程: x2 + y2 + z2 = R2
例 4 求与原点O 及 M 0 ( 2,3,4)的距离之比为1 : 2的点的全 体所组成的曲面方程.

根据题意有 z 1
用平面z c 去截图形得圆:
z
( x 1)2 ( y 2)2 1 c (c 1)
当平面z c 上下移动时, 得到一系列圆
c
o
x
y
圆心在(1,2, c ),半径为 1 c
半径随c 的增大而增大. 图形上不封顶,下封底.
二、曲面的参数方程 1、双参数向量函数 在两个变数u,v的变动区域内定义的函数 r=r(u,v) 或 r(u,v)=x(u,v)e1+y(u,v)e2+z(u,v)e3 (2) 称为双参数向量函数,其中x(u,v),y(u,v),z(u,v)是变 向量r(u,v)的分量,它们都是变数u,v的函数。 当u,v取遍变动区域的一切 值时,径矢
a b r (a b) cos b cos i b a b (a b) sin b cos j b 特殊地,当 a 4b 应用公式

解析几何_吕林根_许子道_第四版_课后习题解答

解析几何_吕林根_许子道_第四版_课后习题解答

解析几何_吕林根 许子道_第四版_课后习题解答第一章 矢量与坐标§1.1 矢量的概念1.下列情形中的矢量终点各构成什么图形?(1)把空间中一切单位矢量归结到共同的始点;(2)把平行于某一平面的一切单位矢量归结到共同的始点; (3)把平行于某一直线的一切矢量归结到共同的始点;(4)把平行于某一直线的一切单位矢量归结到共同的始点. [解]:(1)单位球面; (2)单位圆(3)直线; (4)相距为2的两点2. 设点O 是正六边形ABCDEF 的中心,在矢量OA 、OB 、 OC 、OD 、OE 、 OF 、AB 、BC 、CD 、 DE 、EF 和FA 中,哪些矢量是相等的?[解]:如图1-1,在正六边形ABCDEF 中,相等的矢量对是: 图1-1 .DE OF CD OE AB OC FA OB EF OA 和;和;和;和;和3. 设在平面上给了一个四边形ABCD ,点K 、L 、M 、N 分别是边AB、BC、CD、DA的中点,求证:KL =NM . 当ABCD 是空间四边形时,这等式是否也成立?[证明]:如图1-2,连结AC , 则在∆BAC 中,21AC. KL 与AC 方向相同;在∆DAC 中,21AC . NM 与AC 方向相同,从而KL =NM 且KL 与NM 方向相同,所以KL =NM .4. 如图1-3,设ABCD -EFGH 是一个平行六面体,在下列各对矢量中,找出相等的矢量和互为相反矢量的矢量:(1) AB 、CD ; (2) AE 、CG ; (3) AC 、EG ;(4) AD 、GF ; (5) BE、CH . [解]:相等的矢量对是(2)、(3)和(5); 互为反矢量的矢量对是(1)和(4)。

§1.2 矢量的加法1.要使下列各式成立,矢量b a ,应满足什么条件?E(1=+ (2+=+ (3-=+ (4+=- (5=[解]:(1)b a ,-=+(2)b a ,+=+(3≥且b a ,-=+ (4)b a ,+=(5)b a ,≥-=-§1.3 数量乘矢量1 试解下列各题.⑴ 化简)()()()(→→→→-⋅+--⋅-b a y x b a y x .⑵ 已知→→→→-+=3212e e e a ,→→→→+-=321223e e e b ,求→→+b a ,→→-b a 和→→+b a 23.⑶ 从矢量方程组⎪⎩⎪⎨⎧=-=+→→→→→→by x ay x 3243,解出矢量→x ,→y .解 ⑴→→→→→→→→→→→→→→-=+-+---+=-⋅+--⋅-ay b x b y a y b x a x b y a y b x a x b a y x b a y x 22)()()()(⑵ →→→→→→→→→→+=+-+-+=+3132132142232e e e e e e e e b a ,→→→→→→→→→→→-+-=+---+=-321321321342)223(2e e e e e e e e e b a , →→→→→→→→→→→-+-=+---+=-3213213217103)223(2)2(323e e e e e e e e e b a . 2 已知四边形ABCD 中,→→→-=c a AB 2,→→→→-+=c b a CD 865,对角线→AC 、→BD 的中点分别为E 、F ,求→EF .解 →→→→→→→→→→→-+=-+-+=+=c b a c a c b a AB CD EF 533)2(21)865(212121.3 设→→→+=b a AB 5,→→→+-=b a BC 82,)(3→→→-=b a CD ,证明:A 、B 、D 三点共线. 证明 ∵→→→→→→→→→→=+=-++-=+=AB b a b a b a CD BC BD 5)(382∴→AB 与→BD 共线,又∵B 为公共点,从而A 、B 、D 三点共线.4 在四边形ABCD 中,→→→+=b a AB 2,→→→--=b a BC 4,→→→--=b a CD 35,证明ABCD 为梯形.证明∵→→→→→→→→→→→→→=--=-+--++=++=BC b a b a b a b a CD BC AB AD 2)4(2)35()4()2( ∴→AD ∥→BC ,∴ABCD 为梯形.6. 设L 、M 、N 分别是ΔABC 的三边BC 、CA 、AB 的中点,证明:三中线矢量AL , BM ,CN 可 以构成一个三角形.[证明]: )(21AC AB AL +=)(21BC BA BM +=)(21CB CA CN +=0)(21=+++++=++∴CB CA BC BA AC AB CN BM AL从而三中线矢量CN BM AL ,,构成一个三角形。

解析几何全册课件(吕林根版)精选全文完整版

解析几何全册课件(吕林根版)精选全文完整版
定理1.2.2 向量的加法满足下面的运算规律:
(1)交换律:
(2)结合律:
(3)
上一页
下一页
返回
O
A1
A2
A3
A4
An-1
An
这种求和的方法叫做多边形法则
上一页
下一页
返回
向量减法
上一页
下一页
返回
A
B
C
上一页
返回
例2 试用向量方法证明:对角线互相平分的四边形必是平行四边形.

上一页
下一页
返回


为直线上的点,
6、线段的定比分点坐标
上一页
下一页
返回
由题意知:
上一页
下一页
返回
定理1.5.4 已知两个非零向量
7、其它相关定理

共线的充要条件是
定理1.5.6 已知三个非零向量
,则
共面的充要条件是
上一页
返回
空间一点在轴上的投影(Projection)
§1.6 向量在轴上的射影

根据题意有
所求方程为
上一页
下一页
返回
根据题意有
化简得所求方程

上一页
下一页
返回
例4 方程 的图形是怎样的?
根据题意有
图形上不封顶,下封底.

以上方法称为截痕法.
上一页
下一页
返回
以上几例表明研究空间曲面有两个基本问题:
线为
的连
的中点
对边
一组
设四面体

e
e
e
AP
e
AD
e
AC
e

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.1平面曲线的方程

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.1平面曲线的方程

[串点成面·握全局]
一、近代交通业发展的原因、特点及影响 1.原因 (1)先进的中国人为救国救民,积极兴办近代交通业,促 进中国社会发展。 (2)列强侵华的需要。为扩大在华利益,加强控制、镇压 中国人民的反抗,控制和操纵中国交通建设。 (3)工业革命的成果传入中国,为近代交通业的发展提供 了物质条件。
轮船正招式成商立局,标志着中国新式航运业的诞生。
(2)1900年前后,民间兴办的各种轮船航运公司近百家,几乎都是
在列强排挤中艰难求生。
2.航空
(1)起步:1918年,附设在福建马尾造船厂的海军飞机工程处开始
研制 。
(2)发展水:上1飞918机年,北洋政府在交通部下设“
”;此后十年间,航空事业获得较快发展。
曲线的参数方程与普通方程的互化
曲线的参数方程 ,是解析几何联系实际的 一个重 要工具.
(1)化参数方程为普通方程 时,关键在于消去参 数t.
此时,还应注意 ①同一条曲线可以有多种不 同形式的参数方程,如
x 1t,

y

2

t.

x 1 3t, y 2 3t.
在消去t后都表示同一直线 x y 3.
ct, c, t
(t 0)
则其上任意三点P, Q,
R的坐标可以分别取
y
Q

H R
P
o
x

c
c
c
P(ct1, t1 ), Q(ct2 , t2 ) R(ct3, t3 ),
历史ⅱ岳麓版第13课交通与通讯 的变化资料
精品课件欢迎使用
[自读教材·填要点]
一、铁路,更多的铁路 1.地位 铁路是 交通建运设输的重点,便于国计民生,成为国民经济 发展的动脉。 2.出现 1881年,中国自建的第一条铁路——唐山 至开胥平各庄铁 路建成通车。 1888年,宫廷专用铁路落成。

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.2曲面的方程

《解析几何》(第四版)吕林根 许子道 编第2章轨迹与方程2.2曲面的方程

故动点轨迹为
y 0,
z
0,
x
c.
这是x轴上的线段.
② 当a c时,令b2 a2 c2,则动点轨迹为
x2 a2
y2 b2
z2 b2
1,
(旋转椭球面 ).
例 3 建立球心在点 M0 ( x0 , y0 , z0 )、半径为R
的球面方程.
解 设M( x, y, z)是球面上任一点,
根据题意有 | MM0 | R
OM r(u,v), 的终点M (x(u, v), y(u, v), z(u, v))所画出的轨迹一般
为一张曲面.(图1) 定义2.2.2 对u, v (a u b, c v d ),若由(2.2 5)
表示的向径r(u, v)的终点M总在曲面上,同时,曲面
上的任意点M总对应着以它为终点的向径, 而这向径
面,如
x2 y2 z2 1 0,
又 三元方程F(x, y, z) 0有时代表一条曲线(包
括直线),如
x2 y2 0,
代表直线 x y 0,即z 轴.
有时代表一个点,如
x2 y2 z2 0, 即坐标原点 (0,0,0). 曲面与方程研究中的两个基本问题: 1) 给定作为点的几何轨迹 的曲面,建立其方程.
(讨论旋转曲面)
2) 给定坐标x, y, z间的方程, 研究这方程的曲面的
形状. (讨论柱面、二次曲面)
以下讨论问题 1)的实例.
例1 求两坐标面 xoz, yoz所成二面角的平分面方 程.
解 因所求平分面是与xoz, yoz面有等距离的点的
轨迹, 所以
点M(x, y, z)在平分面上 y x.
§2.2曲面的方程
1.曲面的方程
曲面的实例: 水桶的表面、台灯的罩子面等.

《解析几何》(第四版)吕林根许子道编第2章轨迹与方程21平面曲线的方程

《解析几何》(第四版)吕林根许子道编第2章轨迹与方程21平面曲线的方程

线直一同示表都后t 去消在
与 .t � 2 � y � � ,t � 1 � x �
如,程方数参的式形同 不种多有以可线曲条一同① 意注应还,时此
参去消于在键关 , 时 程方通普为程方数参化)1(
.t 数
程方数参的圆椭则 , � � � � � � 且数参为� 取以所
�� nis b� � y �� soc a � x �� nis b � � y
迹轨的点一的上周圆
圆求�动滚地动滑
程方通普得可即) 能可若( t 去消中)5 � 1. 2 ( 从
.0 � ) y , x ( F
无上是线直一在圆个一 1例
)6-1.2( , j ) � soc � 1( a � i ) � nis � �( a � r � � � , j a � CA , i � a � AO 以所 � �
齿为用采被常上业工在 , 线曲种这 , 线展切或
)31 -1. 2(
为程方数

式标坐的迹轨该得可则 ,) y , x ( 为标坐的点 P 设
当适择选要仅不 ,时 .3 � y � x
.程方通普成化能都程方数参有所是不并②
. t3 � 2 � y , t3 � 1 � x
程方数参为程方通普化 ) 2 (
三意任上线曲双轴等是 R , Q , P 设 7 例
上线曲双轴等一同在必 H 心垂的 RQP �
参的线曲双轴等知已设 , 图如 证
,
2 1
tc � 0 x
tc � 0 x

c � 2 t0y c � 1t 0 y
得, ② ÷ ①

,) 2 tc � 0x ( 3 t 2 t1t � c � 2 t 0 y

解析几何第四版吕林根课后习题答案一至三章

解析几何第四版吕林根课后习题答案一至三章

PA1 PO PA2 PO PAn PO 0






PA1 PA2 PAn n PO
§1.4 向量的线性关系与向量的分解
1.在平行四边形 ABCD 中, (1)设对角线 AZ a, BD b, 求 AB, BC , CD, DA. 解: AB
解?a?b?b?a?b?a?b?a?b?a?b?a?b?a?????????????????yxyyxxyyxxyxyx22?e?e?e?e?e?e?e?e?b?a?????????3132132142232?e?e?e?e?e?e?e?e?e?b?a???????????3213213213422232?e?e?e?e?e?e?e?e?e?b?a???????????321321321710322322323
OA OB + OC = OL + OM + ON .
7. 设 L、M、N 是△ABC 的三边的中点,O 是任意一点,证明 [证明] OA OL LA
OB OM MB OC ON NC OA OB OC OL OM ON ( LA MB NC )
1 1 1 1 b a , BC b a , CD b a , DA b a .设边 BC 和 CD 的 2 2 2 2






(2)中点 M 和 N,且 AM P, AN q 求 BC , CD 。 解: AC
1 1 q P , BC 2MC 2 q P P q 3P 2 2








  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章 轨迹与方程 §2.1平面曲线的方程1.一动点M 到A )0,3(的距离恒等于它到点)0,6(-B 的距离一半,求此动点M 的轨迹方程,并指出此轨迹是什么图形?解:动点M 在轨迹上的充要条件是MB MA 21=。

设M 的坐标),(y x 有2222)6(21)3(y x y x ++=+- 化简得36)6(22=+-y x 故此动点M 的轨迹方程为36)6(22=+-y x此轨迹为椭圆2.有一长度为a 2a (>0)的线段,它的两端点分别在x 轴正半轴与y 轴的正半轴上移动,是求此线段中点的轨迹。

A ,B 为两端点,M 为此线段的中点。

解:如图所示 设(,),A x o (,)B o y .则(,)22x y M .在Rt AOB 中有 222()(2)x y a +=.把M 点的坐标代入此式得:222()x y a +=(0,0)x y ≥≥.∴此线段中点的轨迹为222()x y a +=.3. 一动点到两定点的距离的乘积等于定值2m ,求此动点的轨迹.解:设两定点的距离为2a ,并取两定点的连线为x 轴, 两定点所连线段的中垂线为y 轴.现有:2AM BM m ⋅=.设(,)M x y 在Rt BNM 中222()a x y AM ++=. (1) 在Rt BNM 中 222()a x y BM -+=. (2) 由(1)(2)两式得:22222244()2()x y a x y m a +--=-.4.设,,P Q R 是等轴双曲线上任意三点,求证PQR 的重心H 必在同一等轴双曲线上.证明:设等轴双曲线的参数方程为x ct c y t =⎧⎪⎨=⎪⎩11(,)P x y ,22(,)Q x y ,33(,)R x y .重心H123123(,)33x x x y y y ++++5.任何一圆交等轴双曲线2xy c =于四点11(,)c P ct t ,22(,)c Q ct t ,33(,)c R ct t 及44(,)cS ct t .那么一定有12341t t t t =.证明:设圆的方程22220x y Dx Ey F ++++=.圆与等轴双曲线交点(,)cct t,则代入得2222220.c Ec c t Dct F t t++++=整理得: 24322220.c t Dct Ft Ect c ++++=可知(1,2,3,4)i =是它的四个根,则有韦达定理1234t t t t ⋅⋅⋅=242(1)1c c-=.8. 把下面的平面曲线的普通方程化为参数方程.⑴32x y =; ⑵ ()0,212121>=+a a yx ; ⑶()0,0333>=-+a axy y x .解:⑴⎪⎩⎪⎨⎧==ty t x 32令θ4cos a x =,代入方程212121a yx =+得θθθ42212212121sin ,sin cos a y a a a y==-=∴参数方程为⎪⎩⎪⎨⎧==θθ44sin cos a y a x .⑶令,tx y =代入方程0333=-+axy y x得()031233=-+atx x t()[]03132=-+⇒at x t x当0=x 时,;0=y 当313t atx +=时,3213t at y +=3130t at x x +==⇒或故参数方程为⎪⎪⎩⎪⎪⎨⎧+=+=3231313t at y t at x .§2.2 曲面的方程1、 一动点移动时,与)0,0,4(A 及xoy 平面等距离,求该动点的轨迹方程。

解:设在给定的坐标系下,动点),,(z y x M ,所求的轨迹为C ,则z Cz y x M =⇔∈),,(亦即z z y x =++-222)4(0)4(22=+-∴y x由于上述变形为同解变形,从而所求的轨迹方程为0)4(22=+-y x2、在空间,选取适当的坐标系,求下列点的轨迹方程:(1)到两定点距离之比为常数的点的轨迹; (2)到两定点的距离之和为常数的点的轨迹; (3)到两定点的距离之差为常数的点的轨迹;(4)到一定点和一定平面距离之比等于常数的点的轨迹。

解:(1)取二定点的连线为x 轴,二定点连接线段的中点作为坐标原点,且令两距离之比的常数为m ,二定点的距离为a 2,则二定点的坐标为)0,0,(),0,0,(a a -,设动点),,(z y x M ,所求的轨迹为C ,则222222)()(),,(z y a x m z y a x C z y x M +++=++-⇔∈亦即])[()(2222222z y a x m z y a x +++=++-经同解变形得:0)1()1(2))(1(2222222=-++-++-a m x m a z y x m 上式即为所要求的动点的轨迹方程。

(2)建立坐标系如(1),但设两定点的距离为c 2,距离之和常数为a 2。

设动点),,(z y x M ,要求的轨迹为C , 则a z y c x z y c x Cz y x M 2)()(),,(222222=++++++-⇔∈亦即222222)(2)(z y c x a z y c x +++-=++-两边平方且整理后,得:)()(2222222222c a a z a y a x c a -=++- (1)222c a b c a -=∴>令从而(1)为22222222b a z a y a x b =++ 即:22222222b a z a y a x b =++由于上述过程为同解变形,所以(3)即为所求的轨迹方程。

(3)建立如(2)的坐标系,设动点),,(z y x M ,所求的轨迹为C , 则a z y c x z y c x Cz y x M 2)()(),,(222222±=++++++-⇔∈类似于(2),上式经同解变形为:1222222=--cz b y a x其中 )(222a c ac b >-= (*)(*)即为所求的轨迹的方程。

(4)取定平面为xoy 面,并让定点在z 轴上,从而定点的坐标为),0,0(c ,再令距离之比为m 。

设动点),,(z y x M ,所求的轨迹为C ,则z m z y x C z y x M =++⇔∈222),,(将上述方程经同解化简为:02)1(22222=+--++c cz z m y x (*) (*)即为所要求的轨迹方程。

3. 求下列各球面的方程:(1)中心)3,1,2(-,半径为;6=R (2)中心在原点,且经过点)3,2,6(-; (3)一条直径的两端点是)3,1,4()5,32(--与 (4)通过原点与)4,0,0(),0,3,1(),0,0,4(- 解:(1)由本节例5 知,所求的球面方程为:36)3()1()2(222=-+++-z y x(2)由已知,球面半径73)2(6222=+-+=R所以类似上题,得球面方程为49222=++z y x(3)由已知,球面的球心坐标1235,1213,3242=-=-=+-==+=c b a ,球的半径21)35()31()24(21222=++++-=R ,所以球面方程为: 21)1()1()3(222=-+++-z y x(4)设所求的球面方程为:0222222=++++++l kz hy gx z y x 因该球面经过点)4,0,0(),0,3,1(),0,0,4(),0,0,0(-,所以⎪⎪⎩⎪⎪⎨⎧=-=++=+=08160621008160k h g g l (1) 解(1)有⎪⎪⎩⎪⎪⎨⎧=-=-==2210k g h l ∴所求的球面方程为0424222=+--++z y x z y x§2.3 母线平行于坐标轴的柱面方程1、画出下列方程所表示的曲面的图形。

(1)369422=+y x 解:各题的图形如下: (1)369422=+y x§2.4 空间曲线的方程1、平面c x =与0222=-+x y x 的公共点组成怎样的轨迹。

解:上述二图形的公共点的坐标满足⎩⎨⎧=-=⇒⎩⎨⎧==-+cx c c y c x x y x )2(02222 从而:(Ⅰ)当20<<c 时,公共点的轨迹为:⎪⎩⎪⎨⎧=-=cx c c y )2( 及 ⎪⎩⎪⎨⎧=--=cx c c y )2( 即为两条平行轴的直线;(Ⅱ)当0=c 时,公共点的轨迹为:⎩⎨⎧==0x y 即为z 轴; (Ⅲ)当2=c 时,公共点的轨迹为:⎩⎨⎧==2x y 即过)0,0,2(且平行于z 轴的直线; (Ⅳ)当2>c 或0<c 时,两图形无公共点。

2、指出下列曲面与三个坐标面的交线分别是什么曲线?(1)6416222=++z y x ; (2)64164222=-+z y x ; (3)64164222=--z y x ; (4)z y x 10922=+ 解:(1)曲面与xoy 面的交线为:⎩⎨⎧==+⇒⎩⎨⎧==++0640641622222z y x z z y x 此曲线是圆心在原点,半径8=R 且处在xoy 面上的圆。

同理可求出曲面6416222=++z y x 与yoz 面)0(=x 及zox 面)0(=y 的交线分别为:⎩⎨⎧==+0641622x z y , ⎩⎨⎧==+0641622y z x它们分别是中心在原点,长轴在y 轴上,且处在yoz 面上的椭圆,以及中心在原点,长轴在x 轴上,且处在zox 面上的椭圆;(2)由面64164222=-+z y x 与xoy 面)0(=z ,yoz 面)0(=x ,zox 面)0(=y 的交线分别为:⎩⎨⎧==-+064164222z z y x ,⎩⎨⎧==-+064164222x z y x ,⎩⎨⎧==-+064164222y z y x 亦即:⎩⎨⎧==+064422z y x ,⎩⎨⎧==-016422x z y ,⎩⎨⎧==-0641622y z x即为中心在原点,长轴在x 轴上,且处在xoy 面上的椭圆;中心在原点,实轴在y 轴,且处在yoz 面上的双曲线,以及中心在原点,实轴在x 轴,且处在zox 面上的双曲线。

(3)曲面64164222=--z y x 与xoy 面)0(=z ,yoz 面)0(=x ,zox 面)0(=y 的交线分别为:⎩⎨⎧==--064164222z z y x ,⎩⎨⎧==--064164222x z y x ,⎩⎨⎧==--064164222y z y x 亦即⎩⎨⎧==-064422z y x ,⎩⎨⎧==--06416422x z y ,⎩⎨⎧==-0641622y z x即为中心在原点,实轴在x 轴,且处在xoy 面上的双曲线;无轨迹以及中心在原点,实轴在x 轴上,且处在zox 面上的双曲线。

相关文档
最新文档