第二章 课后习题答案

合集下载

微观经济学课后习题答案

微观经济学课后习题答案

第二章计算题1.假定某商品的需求函数为P=100—5Q,供给函数为P=40+10Q。

(1)求该商品的均衡价格和均衡产量;(2)由于消费者收入上升导致对该商品的需求增加15,则求新的需求函数;(3)由于技术进步导致对商品的供给增加15,则求新的供给函数;(4)求供求变化后新的均衡价格与均衡数量;(5)将(4)与(1)比较,并说明结果。

2.某市的房租控制机构发现,住房的总需求是Qd=100—5P,其中数量Qd以万间套房为单位,而价格P(即平均月租金率)则以数百美元为单位。

该机构还注意到,P较低时,Qd的增加是因为有更多的三口之家迁入该市,且需要住房。

该市房地产经纪人委员会估算住房的供给函数为Qs=50+5P。

(1)如果该机构与委员会在需求和供给上的观点是正确的,那么自由市场的价格是多少(2)如果该机构设定一个100美元的最高平均月租金,且所有未找到住房的人都离开该市,那么城市人口将怎样变动(3)假定该机构迎合委员会的愿望,对所有住房都设定900美元的月租金。

如果套房上市方面的任何长期性增长,其中的50%来自新建筑,那么需要新造多少住房3.在某商品市场中,有10000个相同的消费者,每个消费者的需求函数均为Qd=12-2P;同时又有1000个相同的生产者,每个生产者的供给函数均为Qs=20P。

(1)推导该商品的市场需求函数和市场供给函数;(2)求该商品市场的均衡价格和均衡数量;(3)假设政府对售出的每单位商品征收2美元的销售税,而且1000名销售者一视同仁,这个决定对均衡价格和均衡数量有什么影响实际上是谁支付了税款政府征收的税额为多少(4)假设政府对产出的每单位商品给予1美元的补贴,而且1000名生产者一视同仁,这个决定对均衡价格和均衡数量又有什么影响该商品的消费者能从中获益吗4.某君对商品x的需求函数为P=100-,求P=60和P=40时的需求价格弹性系数。

5.假定需求函数Qd=500一lOOP,试求:(1)价格2元和4元之间的弧弹性;(2)分别求出价格为2元和4元时的点弹性。

(完整版)信息论与编码-曹雪虹-课后习题答案

(完整版)信息论与编码-曹雪虹-课后习题答案

《信息论与编码》-曹雪虹-课后习题答案 第二章2.1一个马尔可夫信源有3个符号{}1,23,u u u ,转移概率为:()11|1/2p u u =,()21|1/2p uu =,()31|0p u u =,()12|1/3p u u =,()22|0p u u =,()32|2/3p u u =,()13|1/3p u u =,()23|2/3p u u =,()33|0p u u =,画出状态图并求出各符号稳态概率。

解:状态图如下状态转移矩阵为:1/21/201/302/31/32/30p ⎛⎫ ⎪= ⎪ ⎪⎝⎭设状态u 1,u 2,u 3稳定后的概率分别为W 1,W 2、W 3由1231WP W W W W =⎧⎨++=⎩得1231132231231112331223231W W W W W W W W W W W W ⎧++=⎪⎪⎪+=⎪⎨⎪=⎪⎪⎪++=⎩计算可得1231025925625W W W ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩2.2 由符号集{0,1}组成的二阶马尔可夫链,其转移概率为:(0|00)p =0.8,(0|11)p =0.2,(1|00)p =0.2,(1|11)p =0.8,(0|01)p =0.5,(0|10)p =0.5,(1|01)p =0.5,(1|10)p =0.5。

画出状态图,并计算各状态的稳态概率。

解:(0|00)(00|00)0.8p p == (0|01)(10|01)0.5p p ==(0|11)(10|11)0.2p p == (0|10)(00|10)0.5p p == (1|00)(01|00)0.2p p == (1|01)(11|01)0.5p p == (1|11)(11|11)0.8p p == (1|10)(01|10)0.5p p ==于是可以列出转移概率矩阵:0.80.200000.50.50.50.500000.20.8p ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭状态图为:设各状态00,01,10,11的稳态分布概率为W 1,W 2,W 3,W 4 有411i i WP W W ==⎧⎪⎨=⎪⎩∑ 得 13113224324412340.80.50.20.50.50.20.50.81W W W W W W W W W W W W W W W W +=⎧⎪+=⎪⎪+=⎨⎪+=⎪+++=⎪⎩ 计算得到12345141717514W W W W ⎧=⎪⎪⎪=⎪⎨⎪=⎪⎪⎪=⎩2.3 同时掷出两个正常的骰子,也就是各面呈现的概率都为1/6,求:(1) “3和5同时出现”这事件的自信息; (2) “两个1同时出现”这事件的自信息; (3) 两个点数的各种组合(无序)对的熵和平均信息量;(4) 两个点数之和(即2, 3, … , 12构成的子集)的熵;(5) 两个点数中至少有一个是1的自信息量。

工程经济学课后习题答案计算题 答案

工程经济学课后习题答案计算题 答案

利用复利公式:(F / A,11.5%,10) (1 i)n 1 (111.5%)10 1 17.13
i
11.5%
利用复利系数表:当i1 10%, (F / A,10%,10) 15.9374 当i2 12%, (F / A,12%,10) 17.5487
11.5% 10% x 15.9374 12% 10% 17.5487 15.9374
5.4777
利用复利系数表: (P / A, 8%,7.8)
(P / A, 8.8%,7.8) (P / A,10%,7.8)
(P / A, 8%,7) (P / A, 8%,8) (P / A,10%,7) (P / A,10%,8)
第四章 习 题
4。某方案的现金流量如习题表4-1所示,基准收益率为15%,试计算(1)投资回收期 (静态Pt和动态Pt′),(2)净现值NPV,(3)内部收益率IRR。
300 (P / F,12%,4) ...... 450 (P / F,12%,14) 100 .78万元
解法二: A1 A AG 200 100( A / G,12%,4) 335.9 A3 A AG 500 50( A / G,12%,4) 432.05 P 1000(P / F,12%,1) 1500(P / F,12%,2) 335.9(P / A,12%,4)(P / F,12%,2)
值。
第四章 习 题
6.某投资方案初始投资为120万元,年
营业收入为100万100元– 50,= 50寿命10 为6年,残值
为10万元,0 1年经2 营3 成4 本5 为6 50万元。试求
该投资方1案20 的内部收益率。
解: NPV 120 50(P / A, IRR,6) 10(P / F, IRR,6) 0

财务管理课后习题答案(完美版)

财务管理课后习题答案(完美版)

财务管理课后习题答案第一章 答案一、单项选择题1.C2.A3.D4.A5.B 二、多项选择题1.ABC2.BC3.ABCD4.AC5. AC 三、判断题1. ×2. ×3. ×4. √5. ×第二章 答案一、单项选择题1.A2.C3.A4.D5.B6.B7.A8.C9.C 10.B 二、多项选择题1.AC2.ABD3.ACD4.ABCD5.ABD6.ABC7.BCD8.AC9.BD 10.ABCD 三、判断题1. √2. ×3. ×4. √5. × 四、计算题1.PV=8000×(P/A,8%12,240)=953,594(元)银行贷款的年利率为8%时,分期付款方式好,低于一次性付款。

PV=8000×(P/A,6%12,240)=1,116,646(元)银行贷款的年利率为6%时,一次性付款方式好,低于分期付款的现值。

2.(1)由100=10×(F/P,10%,n )得:(F/P,10%,n )=10 查复利终值系数表,i=10%,(F/P,10%,n )=10,n 在24~25年之间; (2)由100=20×(F/P,5%,n )得:(F/P,5%,n )=5 查复利终值系数表,i=5%,(F/P,5%,n )=5,n 在30~35年之间;(3)由100=10×(F/A,10%,n )得:(F/A,10%,n )=50 查年金终值系数表,i=10%,(F/A,10%,n )=50,n 在18~19年之间; 因此,第三种方式能使你最快成为百万富翁。

3.(1)2010年1月1日存入金额1000元为现值,2013年1月1日账户余额为3年后终值: F =P ×(F/P ,12%,3)=1000×1.405=1405(元)(2)F =1000×(1+12%/4)3×4 =1000×1.426 =1426(元)(3)2013年1月1日余额是计算到期日的本利和,所以是普通年金终值:F =250×(F/A ,12%,4)=250×4.779 =1194.75(元) (4)F =1405,i =12%,n =4 则:F =A ×(F/A ,i ,n ) 即1405=A ×(F/A,12%,4)=A ×4.779 ,A =1405÷4.779=293.99(元) 4. 10=2×(P/A ,i ,8) (P/A ,i ,8)=5查年金现值系数表, i =8,(P/A, i.8)=5, i 在11~12年之间178.0146.0146.5%1%%11⎪⎪⎫⎪⎫⎪⎪⎫⎪⎫x2021 得,借款利率为11.82%5.递延年金现值P =300×(P/A ,10%,5)×(P/F ,10%,2)=300×3.791×0.826=939.4098(万元)。

第二章课后习题答案

第二章课后习题答案

第二章课后习题答案第二章牛顿定律2-1如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A)ginθ(B)gcoθ(C)gtanθ(D)gcotθ分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcotθ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止.当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A)不为零,但保持不变(B)随FN成正比地增大(C)开始随FN增大,达到某一最大值后,就保持不变(D)无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()μgR(B)必须等于μgR(C)不得大于μgR(D)还应由汽车的质量m决定(A)不得小于分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A)它的加速度方向永远指向圆心,其速率保持不变(B)它受到的轨道的作用力的大小不断增加(C)它受到的合外力大小变化,方向永远指向圆心(D)它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(mgcoθ)使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程v2FNmginθm可判断,随θ角的不断增大过程,轨道支持力FN也将不R断增大,由此可见应选(B).2-5图(a)示系统置于以a=1/4g的加速度上升的升降机内,A、B两物体质量相同均为m,A所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为()(A)58mg(B)12mg(C)mg(D)2mg分析与解本题可考虑对A、B两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B两物体受力情况如图(b)所示,图中a′为A、B两物体相对电梯的加速度,ma′为惯性力.对A、B两物体应用牛顿第二定律,可解得FT=5/8mg.故选(A).讨论对于习题2-5这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB、a和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6图示一斜面,倾角为α,底边AB长为l=2.1m,质量为m的物体从题2-6图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?解取沿斜面为坐标轴O某,原点O位于斜面顶点,则由牛顿第二定律有mginαmgμcoαma(1)又物体在斜面上作匀变速直线运动,故有l11at2ginαμcoαt2coα22则t2l(2)gcoαinαμcoα为使下滑的时间最短,可令dt0,由式(2)有dαinαinαμcoαcoαcoαμinα0则可得tan2α1o,49μ此时t2l0.99gcoαinαμcoα2-7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00某102kg,乙块质量为m2=1.00某102kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1)两物块以10.0m·s-2的加速度上升;(2)两物块以1.0m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a上升时,有FT-(m1+m2)g=(m1+m2)a(1)FN2-m2g=m2a(2)解上述方程,得FT=(m1+m2)(g+a)(3)FN2=m2(g+a)(4)(1)当整个装置以加速度a=10m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94某103N乙对甲的作用力为F′N2=-FN2=-m2(g+a)=-1.98某103N(2)当整个装置以加速度a=1m·s-2上升时,得绳张力的值为FT=3.24某103N此时,乙对甲的作用力则为F′N2=-1.08某103N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8如图(a)所示,已知两物体A、B的质量均为m=3.0kg物体A以加速度a=1.0m·s-2运动,求物体B与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B及滑轮列动力学方程,有mAg-FT=mAa(1)F′T1-Ff=mBa′(2)F′T-2FT1=0(3)考虑到mA=mB=m,FT=F′T,FT1=F′T1,a′=2a,可联立解得物体与桌面的摩擦力Ffmgm4ma7.2N2讨论动力学问题的一般解题步骤可分为:(1)分析题意,确定研究对象,分析受力,选定坐标;(2)根据物理的定理和定律列出原始方程组;(3)解方程组,得出文字结果;(4)核对量纲,再代入数据,计算出结果来.2-9质量为m′的长平板A以速度v′在光滑平面上作直线运动,现将质量为m的木块B轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析当木块B平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a1和a2分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a=a1+a2,木块相对平板以初速度-v′作匀减速运动直至最终停止.由运动学规律有-v′2=2a由上述各式可得木块相对于平板所移动的距离为mv22μgmm解2以木块和平板为系统,它们之间一对摩擦力作的总功为W=Ff(+l)-Ffl=μmg式中l为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m′v′=(m′+m)v″由系统的动能定理,有μmg由上述各式可得11mv2mmv222mv22μgmm2-10如图(a)所示,在一只半径为R的半球形碗内,有一粒质量为m的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN的分力来提供的,由于支持力FN始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示O某y坐标,列出动力学方程,即可求解钢球距碗底的高度.解取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程FNinθmanmRω2inθ(1)Rh(3)且有coθR由上述各式可解得钢球距碗底的高度为hR可见,h随ω的变化而变化.gω22-11火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m的火车,以速率v沿半径为R的圆弧轨道转弯,已知路面倾角为θ,试求:(1)在此条件下,火车速率v0为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2)如果火车的速率v≠v0,则车轮对铁轨的侧压力为多少?分析如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量FNinθ提供(式中θ角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v0行驶.当火车行驶速率v≠v0时,则会产生两种情况:如图所示,如v>v0时,外轨将会对车轮产生斜向内的侧压力F1,以补偿原向心力的不足,如v<v0时,则内轨对车轮产生斜向外的侧压力F2,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解(1)以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有v2FNinθm(1)解(1)(2)两式可得火车转弯时规定速率为v0gRtanθ(2)当v>v0时,根据分析有v2FNinθF1coθm(3)RFNcoθF1inθmg0(4)解(3)(4)两式,可得外轨侧压力为v2F1mcoθginθR当v<v0时,根据分析有v2FNinθF2coθm(5)RFNcoθF2inθmg0(6)解(5)(6)两式,可得内轨侧压力为v2F2mginθcoθR2-12一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m,圆筒半径为R,演员骑摩托车在直壁上以速率v作匀速圆周螺旋运动,每绕一周上升距离为h,如图所示.求壁对演员和摩托车的作用力.分析杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v1和v2两个分量,显然v1是竖直向上作匀速直线运动的分速度,而v2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力FN的水平分量FN2提供,而竖直分量FN1则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有FN1mg0(1)FN2v2m(2)Rv2vcoθv2πR2πR2h2(3)22FNFN1FN2(4)以式(3)代入式(2),得FN2m4π2R2v24π2Rmv222(5)2222R4πRh4πRh将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22FNFN1FN224π2Rv22mg4π2R2h2与壁的夹角φ为FN24π2Rv2arctanarctan222FN14πRhg讨论表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13一质点沿某轴运动,其受力如图所示,设t=0时,v0=5m·s-1,某0=2m,质点质量m=1kg,试求该质点7s末的速度和位置坐标.分析首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解由题图得0t52t,Ft5t7355t,由牛顿定律可得两时间段质点的加速度分别为a2t,0t5a355t,5t7对0<t<5s时间段,由adv得dtvtv00dvadt积分后得v5t再由v2d某得dtd某vdt某00某t积分后得某25tt将t=5s代入,得v5=30m·s-1和某5=68.7m对5s<t<7s时间段,用同样方法有133dvv0vt5a2dt得v35t2.5t82.5t再由得某=17.5t2-0.83t3-82.5t+147.87将t=7s代入分别得v7=40m·s-1和某7=142m2-14一质量为10kg的质点在力F的作用下沿某轴作直线运动,已知F =120t+40,式中F的单位为N,t的单位的s.在t=0时,质点位于某=5.0m处,其速度v0=6.0m·s-1.求质点在任意时刻的速度和位置.分析这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v(t);由速度的定义v=d某/dt,用积分的方法可求出质点的位置.解因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有2某某5d某vdt5t120t40mdvdt依据质点运动的初始条件,即t0=0时v0=6.0m·s-1,运用分离变量法对上式积分,得vv0dv12.0t4.0dt0tv=6.0+4.0t+6.0t2又因v=d某/dt,并由质点运动的初始条件:t0=0时某0=5.0m,对上式分离变量后积分,有d某6.04.0t6.0tdt某t2某00某=5.0+6.0t+2.0t2+2.0t32-15轻型飞机连同驾驶员总质量为1.0某103kg.飞机以55.0m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0某102N·s-1,空气对飞机升力不计,求:(1)10s后飞机的速率;(2)飞机着陆后10s内滑行的距离.分析飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有dvαtdtvtαtdvv00mdtα2t得vv02mFmam因此,飞机着陆10s后的速率为v=30m·s-1又tα2d某vdt某0002mt某故飞机着陆后10s内所滑行的距离某某0v0tα3t467m6m2-16质量为m的跳水运动员,从10.0m高台上由静止跳下落入水中.高台距水面距离为h.把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为bv2,其中b为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求:(1)运动员在水中的速率v与y的函数关系;(2)如b/m=0.40m-1,跳水运动员在水中下沉多少距离才能使其速率v减少到落水速率v0的1/10?(假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解(1)运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P-Ff-F=ma由题意P=F、Ff=bv2,而a=dv/dt=v(dv/dy),代入上式后得-bv2=mv(dv/dy)考虑到初始条件y0=0时,v0t2gh,对上式积分,有vdvmdy0v0vbvv0eby/m2gheby/m(2)将已知条件b/m=0.4m-1,v=0.1v0代入上式,则得ymvln5.76mbv0某2-17直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136kg,长l=3.66m.求当它的转速n=320r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解设叶片根部为原点O,沿叶片背离原点O的方向为正向,距原点O为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有dFTFTrFTrdr由于r=l时外侧FT=0,所以有m2ωrdrltFTrdFTlrmω2rdrlmω2222πmn222FTrlrlr2ll上式中取r=0,即得叶片根部的张力FT0=-2.79某105N负号表示张力方向与坐标方向相反.2-18一质量为m的小球最初位于如图(a)所示的A点,然后沿半径为r 的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.分析该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mginα,而与法向加速度an相对应的外力是支持力FN和重力的法向分量mgcoα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man.由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解小球在运动过程中受到重力P和圆轨道对它的支持力FN.取图(b)所示的自然坐标系,由牛顿定律得Ftmginαmdv(1)dtmv2FnFNmgcoαm(2)R由vdrdαrdα,得dt,代入式(1),并根据小球从点A运动到点Cdtdtv的始末条件,进行积分,有vv0vdvα90orginαdα得v则小球在点C的角速度为2rgcoαωv2gcoα/rrmv2mgcoα3mgcoα由式(2)得FNmr由此可得小球对圆轨道的作用力为FN3mgcoαFN负号表示F′N与en反向.2-19光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0,求:(1)t时刻物体的速率;(2)当物体速率从v0减少到12v0时,物体所经历的时间及经过的路程.解(1)设物体质量为m,取图中所示的自然坐标,按牛顿定律,有mv2FNmanRFfmatdvdt由分析中可知,摩擦力的大小Ff=μFN,由上述各式可得v2dvμRdt取初始条件t=0时v=v0,并对上式进行积分,有t0dtRvdvμv0v2vRv0Rv0μt(2)当物体的速率从v0减少到1/2v0时,由上式可得所需的时间为t物体在这段时间内所经过的路程Rμv0vdt0tt0Rv0dtRv0μtRln2μ2-20质量为45.0kg的物体,由地面以初速60.0m·s-1竖直向上发射,物体受到空气的阻力为Fr=kv,且k=0.03N/(m·s-1).(1)求物体发射到最大高度所需的时间.(2)最大高度为多少?分析物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解(1)物体在空中受重力mg和空气阻力Fr=kv作用而减速.由牛顿定律得mgkvmdv(1)dt某2-25如图(a)所示,电梯相对地面以加速度a竖直向上运动.电梯中有一滑轮固定在电梯顶部,滑轮两侧用轻绳悬挂着质量分别为m1和m2的物体A和B.设滑轮的质量和滑轮与绳索间的摩擦均略去不计.已知m1>m2,如以加速运动的电梯为参考系,求物体相对地面的加速度和绳的张力.分析如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B作受力分析,其中F1=m1a,F2=m2a分别为作用在物体A、B上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有m1gm1aFT1m1ar(1)m2gm2aFT2m2ar(2)FT2FT2(3)由上述各式可得arm1m2gam1m22m1m2gam1m2FT2FT2由相对加速度的矢量关系,可得物体A、B对地面的加速度值为a1aram1m2g2m2am1m22m1am1m2gm1m2a2araa2的方向向上,a1的方向由ar和a的大小决定.当ar<a,即m1g-m2g-2m2a>0时,a1的方向向下;反之,a1的方向向上.某2-26如图(a)所示,在光滑水平面上,放一质量为m′的三棱柱A,它的斜面的倾角为α.现把一质量为m的滑块B放在三棱柱的光滑斜面上.试求:(1)三棱柱相对于地面的加速度;(2)滑块相对于地面的加速度;(3)滑块与三棱柱之间的正压力.分析这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意:(1)参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA的运动,这时,滑块沿斜面的加速度aBA,不再是它相对于地面的加速度aB了.必须注意到它们之间应满足相对加速度的矢量关系,即aB=aA+aBA.若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有F=maA.(2)坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3)在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcoα,事实上只有当aA=0时,正压力才等于mgcoα.解1取地面为参考系,以滑块B和三棱柱A为研究对象,分别作示力图,如图(b)所示.B受重力P1、A施加的支持力FN1;A受重力P2、B施加的压力FN1′、地面支持力FN2.A的运动方向为O某轴的正向,Oy轴的正向垂直地面向上.设aA为A对地的加速度,aB为B对的地加速度.由牛顿定律得FN1inαmaA(1)FN1inαmaB某(2)FN1coαmgmaBy(3)FN1FN1(4)设B相对A的加速度为aBA,则由题意aB、aBA、aA三者的矢量关系如图(c)所示.据此可得aB某aAaBAcoα(5)aByaBAinα(6)解上述方程组可得三棱柱对地面的加速度为aAmginαcoα2mminαmginαcoαmmin2α滑块相对地面的加速度aB在某、y轴上的分量分别为aB某aBymmgin2αmmin2α则滑块相对地面的加速度aB的大小为aBaa2B某2Bym22mmm2in2αginαmmin2α其方向与y轴负向的夹角为amcotαθarctanB某arctanaBymmA与B之间的正压力FN1mmgcoα2mminα解2若以A为参考系,O某轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B的动力学方程分别为mginαmaAcoαmaBA(1)mgcoαFN1maAinα0(2)又因FN1inαmaA0(3)FN1FN1(4)由以上各式可解得aAaBAmginαcoαmmin2αmmginαmmin2α由aB、aBA、aA三者的矢量关系可得m22mmm2in2αaBginαmmin2α以aA代入式(3)可得FN1mmgcoαmmin2α。

第二章课后习题答案

第二章课后习题答案

第二章习题(二)判断题1.用户构建单片机应用系统,只能使用芯片提供的信号引脚。

(T)2.程序计数器(PC)不能为用户使用,因此它没有地址。

(T)3.内部RAM的位寻址区,只能提供位寻址使用而不能供字节寻址使用。

(F)4.在程序执行过程中,由PC提供数据存储器的读/写地址。

(F)5.80C51共有21个专用寄存器,它们的位都是可用软件设置的,因此是可以进行位寻址的。

(T)(三)填空题1. MCS-51单片机引脚信号中,信号名称带上划线表示该信号低电平或下跳变有效。

2. MCS-51单片机内部RAM的寄存区共有32 个单元,分为4 组寄存器,每组8 个单元,以R7~R0 作为寄存器名称。

3. 单片机系统复位后,(PSW)=00H,因此内部RAM寄存区的当前寄存器是第0 组,8个寄存器的单元地址为00H ~07H 。

4.通过堆栈操作实现子程序调用,首先要把PC 的内容入栈,以进行断点保护。

调用返回时再进行出栈操作,把保护的断点送回PC 。

5. 为寻址程序状态字的F0位,可使用的地址和符号有D5H 、F0 、PSW.5和D5H.5 。

6. MCS-51单片机的时钟电路包括两部分内容,即芯片内的高增益反相放大器和芯片外跨接的晶体震荡器,微调电容。

7. 在MCS-51中,位处理器的数据位存储空间是由专用寄存器的可寻址位和内部RAM为寻址区的128 个位。

8. MCS-51的4个I/O口中,P0是真正的双向口,而其他口则为准双向口,这一区别在口线电路结构中表现在口的输出缓冲器的不同上。

(四)选择题1.单片机芯片内提供了一定数量的工作寄存器,这样做的好处不应包括(A)提高程序运行的可靠性(B)提高程序运行速度(C)为程序设计提供方便(D)减少程序长度2.内部RAM中的位寻址区定义的位是给(A)位操作准备的(B)移位操作准备的(C)控制转移操作准备的(D)以上都对3.对程序计数器PC的操作(A)是自动进行的(B)是通过传送进行的(C)是通过加“1”指令进行的(D)是通过减“1”指令进行的4.以下运算中对溢于言表标志位OV没有影响或不受OV影响的运算是(A)逻辑运算(B)符号数加减法运算(C)乘法运算(D)除法运算5.单片机程序存储器的寻址范围是由程序计数器PC的位数决定的,MCS-51的PC为16位,因此其寻址范围是(A)4KB (B)64KB (C)8KB (D)128KB6.在算术运算中,与辅助进位位AC有关的是(A)二进制数(B)八进制数(C)十进制数(D)十六进制数7.以下有关PC和DPTR的结论中错误的是(A)DPTR是可以访问的而PC是不能访问的(B)它们都是16位的寄存器(C)它们都具有加“1”的功能(D)DPTR可以分为2个8位的寄存器使用,但PC不能8.PC的值是(A)当前指令前一条指令的地址(B)当前正在执行指令的地址(C)下一条指令的地址(D)控制器中指令寄存器的地址9.假定设置堆栈指针SP的值为37H,在进行子程序调用时把断点地址进栈保护后,SP的值为(A)36H (B)37H (C)38H (D)39H10. 80C51中,可使用的堆栈最大深度为(A)80个单元(B)32个单元(C)128个单元(D)8个单元11. 位处理器是单片机面向控制应用的重要体现,下列中不属于位处理器资源的是(A)位累加器CY (B)通用寄存器的可寻址位(C)专用寄存器的可寻址位(D)位操作指令集12. 在MCS-51单片机的运算电路中,不能为ALU提供数据的是(A)累加器A (B)暂存器(C)寄存器B (D)状态寄存器PSW13. 在MCS-51中(A)具有独立的专用的地址线(B)在P0口和P1口的口线作地址线(C)在P0口和P2口的口线作地址线(D)在P1口和P2口的口线作地址线。

自动控制原理及其应用_课后习题答案_2[1]

自动控制原理及其应用_课后习题答案_2[1]

uo
2-6-b 用运算放大器组成的有源电网络如 力所示,试采用复数阻抗法写出它们的传 力所示 试采用复数阻抗法写出它们的传 递函数。 C 递函数。
R2 ui R1 -∞ + + R3
uo R4 R5
UO (R2R3SC+R2+R3)(R4+R5) = - UI R1(R3SC+1)R5 R2R3 (R4+R5)(R2+R3)( SC+1) R2+R3 =- - R1R5(R3SC+1) R5 UO(R3SC+1) R4+ R5 =- - R2R3SC+R2+R3 R5 R5 UO UO UI R4+ R5 R4+ R5 =- - R3 R1 R3 R2 + SC R3 SC+ 1 + R2 + 1 R3 + SC
IL R2 UL sL + Cs UO
-
I
C
UC=UO+UL
2-6-a 用运算放大器组成的有源电网络如图 所示,试采用复数阻抗法写出它们的传递函数 试采用复数阻抗法写出它们的传递函数。 所示 试采用复数阻抗法写出它们的传递函数。 电路等效为: 解:电路等效为 电路等效为 UO =- R2 +R3 R2 SC+1 UI UO =- R1 1 R2· SC + 1 R3 R2+ SC
s=0
1 s
(2-4-2)
求下列微分方程。 求下列微分方程。
d3y(t) d2y(t) dy(t) 初始条件: 初始条件 3 +4 dt2 +29 dt =29, dt · y(0)=0 , y(0)=17 , · · y(0)=-122 解:
2-5-a 试画题 图所示电路的动态结构图 并 试画题2-1图所示电路的动态结构图 图所示电路的动态结构图,并 求传递函数。 求传递函数。 + uc - 解:ui=R1i1+uo ,i2=ic+i1 duc ic=C dt UI(s)=R1I1(s)+UO(s) I2(s)=IC(s)+I1(s) UI(s)-UO(s) =I1(s) 即: R1

第二章模拟电路(康华光)课后习题答案

第二章模拟电路(康华光)课后习题答案

模拟电路(康光华)第二章课后习题答案2.4.1电路如图题2.4.1所示。

(1)利用硅二极管恒压降模型求电路的I D 和 V o 的值;(2)在室温(300K )的情况下,利用二极管的小信号模型求v o 的变化范围。

解(1)求二极管的电流和电压mA A V R v V I D DD D 6.8106.8101)7.0210(233=⨯=Ω⨯⨯-=-=- V V V V D O 4.17.022=⨯==(2)求v o 的变化范围图题2.4.1的小信号模型等效电路如图解2.4.l 所示,温度 T =300 K 。

Ω≈==02.36.826mAmV I V r D T d 当r d1=r d2=r d 时,则mV V r R r V v d d DDO 6)02.321000(02.32122±=Ω⨯+Ω⨯⨯±=+∆=∆O v 的变化范围为)(~)(O O O O v V v V ∆-∆+,即1.406V ~1.394V 。

2.4.3二极管电路如图2.4.3所示,试判断图中的二极管是导通还是截止,并求出AO 两端电压V AO 。

设二极管是理想的。

解 图a :将D 断开,以O 点为电位参考点,D 的阳极电位为-6 V ,阴极电位为-12 V ,故 D 处于正向偏置而导通,V AO =–6 V 。

图b :D 的阳极电位为-15V ,阴极电位为-12V ,D 对被反向偏置而截止,V AO =-12V 。

图c :对D 1有阳极电位为 0V ,阴极电位为-12 V ,故D 1导通,此后使D 2的阴极电位为 0V ,而其阳极为-15 V ,故D 2反偏截止,V AO =0 V 。

图d :对D 1有阳极电位为12 V ,阴极电位为0 V ,对D 2有阳极电位为12 V ,阴极电位为 -6V .故D 2更易导通,此后使V A =-6V ;D 1反偏而截止,故V AO =-6V 。

2.4.4 试判断图题 2.4.4中二极管是导通还是截止,为什么? 解 图a :将D 断开,以“地”为电位参考点,这时有V V k k V A 115)10140(10=⨯Ω+Ω=V V k k V k k V B 5.315)525(510)218(2=⨯Ω+Ω+⨯Ω+Ω=D 被反偏而截止。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(6)若有以下定义: )若有以下定义: char a; int b ; float c ;double d ;则表达式 则表达式 a * b + d – c 的值的类型为 的值的类型为 _____________ A) float C) char B) int D) double
答案:D P45 图2-2 答案
答案:B P23 表2-2 P233 表6-2 答案
型变量, (5)设a,b,c 为 int 型变量, ) 且a = 3 ,b = 4 , c = 5, , 下面表达式值为0的是________。 下面表达式值为0的是 。 A) 'a' && 'b' B) a <= b C) a || b+c && b-c D) !((a<b) && !c || 1) 答案:D P35 第5行、 P36 表2-8 答案 行
(7)设有语句 )设有语句int a = 3; 执 行了语句a 行了语句 += a -= a * a; 后,变量a的值是____。 变量 的值是 。 的值 A) 3 C) 9 B) 0 D) -12
答案:D P38 第9行+赋值运算符ห้องสมุดไป่ตู้结合 答案 行
(8)设有语句 )设有语句int a = 3; 执行 了语句printf(“%d”, -a ++); 了语句 输出的结果是________,变 后,输出的结果是 , 量a的值是________。 的值是 。 的值 A) 3 C) -3 B) 4 D) -2
o
x
#define PI 3.141593 (sin(30*PI/180)+2*exp(x))/(2*y+pow(y,x))
(3)设有语句 )设有语句char c='\72'; 则变量c_______ 则变量 A) 包含1个字符 包含 个字符 C) 包含 个字符 包含3个字符 B)包含 个字符 包含2个字符 包含 D) 不合法。 不合法。
答案:A P23 表2-2 1~3位八进制 位八进制… 答案 位八进制
(4)字符串常量 ) “\t\”Name\\Address\n“的长 的长 度为__。 度为 。 A) 19 C) 18 B) 15 D) 不合法
fabs((a+b)*(c+d)+2)
• (3)
(ln x + sin( y )) / 2
(log(x)+sin(y))/2 y为弧度 为弧度
• (4)
2πr
#define PI 3.141593 2*PI*r
1 1 • (5) 1 + x
1/(1+1.0/x)
• (6)
sin(30 ) + 2e x 2y + y
第二章 作业
2.2选择填空 选择填空 )C语言中用 (1)C语言中用 )C语言中用________表示逻 表示逻 辑值“真”。 辑值“ A)true B)整型值0 整型值0 整型值 C)非零整数值 非零整数值 D)T 答案:C 答案 P35 第5行 行
(2)下列合法的字符常量为 。 )下列合法的字符常量为__。 A) "a" C) 'china' 答案:B 答案 B) '\n' D) a P23 表2-2 换行
答案:C B P38 倒数第 行 倒数第8行 答案 P39 请看例m=-n++; 请看例 ;
2.3将下列数学表达式表示为合 将下列数学表达式表示为合 法的C语言表达式 语言表达式。 法的 语言表达式。
• (1)
a +b 2c
2
2
sqrt(a*a+b*b)/(2*c)
• (2)
(a + b)(c + d ) + 2
相关文档
最新文档