专题三基础计算

合集下载

专题三基础计算

专题三基础计算

专题三基础计算Ⅰ.有关物质的量的计算一、选择题1.质量相等的两份气体样品,一份是CO,另一份是CO2,这两份气体样品中,CO与CO2所含氧原子的原子个数之比是( )A.1:2 B.1:4 C.11:14 D.1l:282.下列各组中两种气体的分子数一定相等的是( )A.温度相同、体积相同的O2和N2 B.质量相等、密度不等的N2和C2H4C.体积相同、密度相等的CO和C2H4 D.压强相同、体积相同的O2和H23.由钾和氧组成的某种离子晶体含钾的质量分数是78/126,其阴离子只有过氧离子(O22-)和超氧离子(O2-)两种。

在此晶体中,过氧离子和超氧离子的物质的量之比为( )A.2:l B.1:l C.1:2 D.1:34.由CO2、H2和CO组成的混合气在同温同压下与氮气的密度相同。

则该混合气体中CO2、H2和CO的体积比为( )A.29:8:13 B.22:l:14 C.13:8:29 D.26:16:575.由X、Y两元素组成的气态化合物XY4,在一定条件下完全分解为A、B两种气体物质,己知标准状况下20mLXY4分解可产生标准状况下30mL A气体(化学式为Y2)和10mL B气体,则B的化学式为()A.X2B.Y2X2C.XY2D.X2Y46.将N02、NH3、O2混合气22.4L通过稀硫酸后,溶液质量增加了26.7g,气体体积缩小为4.48L.(气体体积均在标况下测定)剩余气体能使带火星的木条着火,则混合气体的平均分子量为( )A.28.1 B.30.2 C.33.1 D.34.07.为方便某些化学计算,有人将98%浓硫酸表示成下列形式,其中合理的是( )A.H2SO4·19B.H2SO4 ·H2O C.H2SO4·SO3D.SO3·109H2O8.两种气态烃组成的混合气体0.1mol,完全燃烧得O.16molCO2 T3.6g水。

下列说法正确的是:混合气体中( )A.一定有甲烷B.一定是甲烷和乙烯C.一定没有乙烷D.一定有乙炔9.用惰性电极电解M(NO3)x的水溶液,当阴极上增重ag时,在阳极上同时生b L氧气(标准状况),从而可知M的原子量为( )lO.b g某金属与足量的稀硫酸反应,生成该金属的三价正盐和a g氢气。

2023年中考数学考点讲练专题3 实数的运算

2023年中考数学考点讲练专题3 实数的运算

专题3 实数的运算考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14-,-3,3-π-中,最小的数是( ) A . 3.14-B .-3C .3D .π-2.(2022·湖南益阳·21,2,13中,比0小的数是( )A 2B .1C .2D .133.(2022·吉林长春·中考真题)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( ) A .0a > B .a b <C .10b -<D .0ab >4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是( ) A .3B .32-C .23-D .235.(2022·天津红桥·中考三模)估计17- ). A .5-和4-之间 B .4-和3-之间 C .3-和2-之间D .2-和1-之间6.(2022·山东临沂·23“>”或“<”或“=”).7.(2022·海南·310___________.考点二:实数的基本运算8.(2022·浙江·杭州中考模拟预测)下列计算结果是正数的是( ) A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|59.(2022·河北唐山·中考三模)运算后结果正确的是( ) A .12332=B 342 C 8220= D 2632=10.(2022·天津·中考模拟预测)计算sin30tan 45︒-︒( ) A 31- B .12-C 32D .3211.(2022·重庆中考二模)计算:1122-⎛⎫-+= ⎪⎝⎭( ) A .0 B .4 C .-2D .3212.(2022·广东深圳·01(1+的结果是( )A .1BC .2D .113.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.14.(2022·陕西·中考真题)计算:3=______.15.(2022·四川攀枝花·0(1)=-__________.16.(2022·辽宁阜新·中考真题)计算:22-=______.17.(2022·广东肇庆·______________.18.(2022·湖北黄石·中考真题)计算:20(2)(2022--=____________.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π----+的结果为( )A .3-B .3C .6D .920.(2022·山东威海·302(1)(1)2π-----的结果是( )A .74B .34C .14D .14-21.(2022·江苏南京·中考模拟)计算20212020的结果是( )A B .C .D 22.(2022·广东·东莞市中考三模)计算:10|2|3sin 302(2022)π--+---︒等于( )A .2-B .12-C .2D .023.(2022·广东惠州·中考二模)101tan60|(3)2π-︒⎛⎫---+-= ⎪⎝⎭__________.24.(2022·山东泰安·中考三模)()022112cos 45π--+-︒=________.25.(2022·重庆长寿·中考模拟)计算:20112160π1tan --+-︒+⋅=-()__________.26.(2022·内蒙古内蒙古·中考真题)计算:1012cos30(3π)2-︒⎛⎫-++- ⎪⎝⎭27.(2022·湖南·中考真题)计算:0112cos 45( 3.14)1()2π-︒+-+.28.(2022·湖南郴州·中考真题)计算:()12022112cos3013-⎛⎫--︒+ ⎪⎝⎭.29.(2022·广东北江实验学校三模)计算:()20120222sin 6023π-⎛⎫+-+︒ ⎪⎝⎭30.(2022·湖南·(032cos 60π+︒.31.(2022·四川德阳·()()023.143tan 6012π---︒+-.答案与解析考点一:实数的大小比较1.(2022·四川成都·中考模拟)在实数 3.14-,-3,π-中,最小的数是( ) A. 3.14- B .-3C .D .π-∴33 3.14<,在实数 3.14-,-3,3-,故选:D .【点睛】本题主要考查实数的比较大小,关键在于绝对值符号的去掉,根据负数绝对值越大,反而越小.2.(2022·湖南益阳·中考真题)四个实数﹣1,2,13中,比0小的数是( )A B .1 C .2D .133.(2022·吉林长春·中考真题)实数a ,b 在数轴上对应点的位置如图所示,下列结论正确的是( )A .0a >B .a b <C .10b -<D .0ab >【答案】B【分析】观察数轴得:2123a b -<<-<<<,再逐项判断即可求解.【详解】解:观察数轴得:2123a b -<<-<<<,故A 错误,不符合题意;B 正确,符合题意; ∴10b ->,故C 错误,不符合题意; ∴0ab <,故D 错误,不符合题意; 故选:B【点睛】本题主要考查了实数与数轴,实数的大小比较,利用数形结合思想解答是解题的关键. 4.(2022·广东深圳·中考二模)下列数中,大于-1且小于0的是( )A .B .32-C .23-D .23【详解】解:13<<,故A 不符合题意;B 不符合题意;,故C 符合题意;5.(2022·天津红桥·中考三模)估计 ). A .5-和4-之间 B .4-和3-之间 C .3-和2-之间 D .2-和1-之间【详解】解:1617<5-【点睛】本题考查无理数的估算,是基础考点,掌握相关知识是解题关键.6.(2022·山东临沂·“>”或“<”或“=”).【详解】解:22()2=1123>,∴223>故答案为:.【点睛】本题考查了实数的大小比较,解题的关键是灵活变通,比较两者平方后的结果.7.(2022·海南·___________.考点二:实数的基本运算8.(2022·浙江·杭州中考模拟)下列计算结果是正数的是( )A .1﹣2B .﹣π+3C .(﹣3)×(﹣5)2D .|【点睛】本题考查了实数,有理数的混合运算,熟练掌握运算法则是解本题的关键. 9.(2022·河北唐山·中考三模)运算后结果正确的是( )A.12=B 2 C 0= D =10.(2022·天津·中考模拟预测)计算sin30tan 45︒-︒( )A 1B .12-C D .3211.(2022·重庆中考二模)计算:1122-⎛⎫-+= ⎪⎝⎭( )A .0B .4C .-2D .32故选:B .【点睛】本题考查了实数的运算,正确理解实数的运算法则是解本题的关键.12.(2022·广东深圳·01(1+的结果是( )A.1 B C .2D .113.(2022·山东威海·中考真题)按照如图所示的程序计算,若输出y 的值是2,则输入x 的值是 _____.14.(2022·陕西·中考真题)计算:3-=______.15.(2022·四川攀枝花·0-__________.(1)=-【答案】3【分析】根据立方根的定义,零指数次幂的定义以及有理数减法法则,进行计算即可.=--=-.【详解】解:原式213-.故答案为:3【点睛】本题考查了立方根的定义,零指数次幂的定义以及有理数减法法则,正确进行计算是解题的关键.16.(2022·辽宁阜新·中考真题)计算:22-______.17.(2022·广东肇庆·中考二模)计算:=______________.18.(2022·湖北黄石·中考真题)计算:20--=____________.(2)(2022【答案】3【分析】根据有理数的乘法与零次幂进行计算即可求解.-=.【详解】解:原式=413故答案为:3.【点睛】本题考查了实数的混合运算,掌握零次幂以及有理数的乘方运算是解题的关键.考点三:实数的混合运算19.(2022·广东·佛山市中考模拟)计算0312(2017)()2π----+的结果为( ) A .3-B .3C .6D .920.(2022·山东威海·302(1)(1)2π-----的结果是( )A .74B .34C .14D .14-21.(2022·江苏南京·中考模拟)计算20212020的结果是( )A B .C .D 【答案】A【分析】把较高次幂拆分后逆用积的乘方法则,进行运算即可得解.22.(2022·广东·东莞市中考三模)计算:10|2|3sin 302(2022)π--+---︒等于( )A .2-B .12-C .2D .01123122 312122=+-- =2,23.(2022·广东惠州·中考二模)101tan60|(3)2π-︒⎛⎫---+-= ⎪⎝⎭__________. 【答案】-1【分析】根据负整数指数幂,特殊角三角函数值,绝对值,零指数幂,二次根式的性质化简等计算法则求解即可.24.(2022·山东泰安·中考三模)()022112cos 45π--+-︒=________.25.(2022·重庆长寿·中考模拟)计算:20112160π1tan --+-︒+⋅-()__________.26.(2022·内蒙古内蒙古·中考真题)计算:1012cos30(3π)2-︒⎛⎫-++- ⎪⎝⎭27.(2022·湖南·中考真题)计算:0112cos 45( 3.14)1()2π-︒+-++.28.(2022·湖南郴州·中考真题)计算:()12022112cos3013-⎛⎫--︒+ ⎪⎝⎭.=3.【点睛】本题考查了特殊角的三角函数值、绝对值的意义和负整数指数幂的运算法则等知识,熟记特殊角的三角函数值是解答本题的关键.29.(2022·广东中考三模)计算:()20120222sin 6023π-⎛⎫+-+︒ ⎪⎝⎭30.(2022·湖南·(032cos 60π+︒.31.(2022·四川德阳·()()023.143tan 6012π---︒++-.。

初中数学基础计算专题训练

初中数学基础计算专题训练

初中数学基础计算专题训练专题一:有理数的计算1. ( 3)2 22. 1 ( 2 ) 4 (1)(1)2 3 5 2 33.1 14. 8(5) 63 ( 1.5) 4 2.75(5)4 25.45( 1 )36. ( 2 )( 5) ( 4.9)0.62 5 67( 10)2 5 ( 2)8. ( 5)3(3)25 59.5(6) (4)2( 8) 10. 21( 6) (1 2)4 7 211.( 16 50 32) ( 2) 12.(6)8 (2)3( 4)2 5513. (1)2 1 ( 2 2 2 ) 14. 11997 (1 0.5) 12 23 3 315. 3 [ 32( 2)2 2] 16. (3)2( 2 1) 02 3 4 317. 14(1 0.5) 1[2 ( 3)2] 18. ( 81) ( 2.25) (4) 163 919. 52[ 4 (1 0.21) ( 2)] 20. ( 5) ( 36) (7)(36) 12 ( 36)5 7 7 721.(5) ( 4)2 0.25 ( 5) ( 4)322. ( 3)2(11 )3 2 6 28 2 9 31、化简( 40 分)(1) 12( x- 0.5)(2)3x+ (5y-2x)(3)8y-(-2x+3y) ( 4) -5a+(3a-2)-(3a-7)(5)7-3 x-4x2+ 4x-8x2-15 (6) 2(2a2-9b)-3(-4a2+b)(7)-2(8a+2b)+4(5a+b)( 8) 3 ( 5a-3c )- 2(a-c) (9)8x 2-[-3x-(2x2-7x-5)+3]+4x(10)(5a-3b) – 3(a 2-2b)+7(3b+2a) 2、先化简,后求值;( 1) (5x-3y-2xy)-(6x+5y-2xy),其中x5 ,y1 ( 2) 1 1 3 1 )x 2( x y) ( x3 y ,其中 x1, y 22 3 2( 3)若a2 b 3 20 ,求3a2b-[2ab2-2(ab-1.5a2b)+ab]+3ab2的值;1、计算:② ( - 8a b c ÷4ab ) ·(3ab )① (6a 5- 7a 2+36a 3) ÷3a 25 34 5 2③( 3x - 2)2④( 2x - 3)(- 2x - 3)2⑤ 79.8⑥ 2003 1997⑦ (2a +1)2-(2a +1)(-1+2a)2005 2004 2 2002 2003 20048. 40.259.( 3 ) × (1.5) ÷(-1)= 10. (a 2)4a-(a 3)2a 311. (5a 3b) ·(-4abc) (-5ab)· 2、化简求值 2a 3b 22a 3b 2 a 3b2a 3b 2,a2 , b13(x+3)(x-4)-x(x-2) , 其中 x=112 1a b a ba b ,其中 a =3, b =- .3已知 2x - y =10,求x 2 y 2x y 22y x y4y 的值.专题四:因式分解1.(1) 3p2﹣ 6pq(2)2x2+8x+83 3 2 2( 3)x y﹣xy ( 4) 3a ﹣ 6a b+3ab.2 2 2 2 2 2( 5) a ( x﹣ y) +16( y﹣x)( 6)( x +y )﹣ 4x y 2.( 1) 2x2﹣ x(2)16x2﹣1(3)6xy2﹣9x2y﹣y3( 4)4+12 ( x﹣ y) +9 (x﹣y)2 2 3 2 2( 5) 2am ﹣8a (6) 4x +4x y+xy( 7) 3x﹣12x 3 2 2 2﹣4x2 2 2 23 2 2( 8)(x +y )y ( 9) x y﹣2xy +y( 10)( x+2y )﹣y( 11) n2(m﹣ 2)﹣ n( 2﹣ m)(12)(x﹣1)(x﹣3)+12 2 2 2( 13)a﹣ 4a+4﹣b( 14) a ﹣ b ﹣2a+1专题五:二次根式的运算(1)3 25(2)8136( 3)0.040.25 (4)6 2 3( 5)0.36 46 ( 6)121(7)2734 (9)38 2 32503 (8)2 1248 (10)(31)2(11)93 712 548(12)805502( 13) (1)5 15- 4 3 ;( 14)250325 9( 15)0.2 900 0.5 121 (16)( 31 )23( 17)(74 3)(23) 2( 19)4 3 93 2 8( 21)( 1) 2006 ( 3 2 ) 0 1 1( ) 2 ( 23)123 ( 2006) 0(1)12217( 18)3 (20)(15)( 52)( 22)(3 2) 2002 ( 32)20031(24)3 20455( 25) 1 11 1 4 32 75 ( ) 12 2 326 32 3( 27)48412 120.25 1 0.75 (28)(11)2(2)24 25 5 (29)( 3)28122(63)0( 30)18 1 126 1 4 0.752 2(31)3 40 2 2 1 (32)4( 37)018 (1 2)25 10 224 1 4 1 (1 2) 0.3 8(33)解下列一元一次方程:( 1) 3( x-2) =2-5(x-2)(2) 2(x+3)- 5(1-x)=3(x - 1)(3) 3( x1) 2( x 2) 2x 3(4) 3( x2)1 x (2 x1)2x-1 x+2 1 x 1(5) 3 =2+1 (6) 3 2 1(7) x 8x (8) 3 1.2x 4 x 123 53 1 3x 1 4x 2(9 ) x 0.4 x 0.3 (10)5 14 2 2(11) 3 y 12 2 5 y 7 (12) 5 6 x 7 x 14 3 3 21 m 3 3m(14) y 1 y 2(13) 1 y 22 4 2 5(15) x 1 x x 2 1(16) 3 x x 8 13 6 2 3(17) 1 (x-3)=2- 1 (x-3) (18) x 2x 1 32 2 0.2 0.5(19)x 1 x 3 3 (20) x 2 2 x 3 10.2 0.01 4 6( 21)x 1x 2 4 x (22) 3 4 x 1 2 2x3 6 2 2 3 3专题七:解二元一次方程组(1)x y 3()4x 3y 0 ()4x 3y 5 ()4x y 5 x y 1234 12x 3y 84x 6y 143x 2y 1 (5)5x 4y 6()3x 2y 7 (7) y 2x 3 ()7x 5y 3 2x 3y 163x 2y 18 2x 3y 172x y 4( 9)x y()x 5y 6()3( y 2) x 1() xy 2 3 10 6y 4 0 111) 5y 8122 33x 2(x 3x 4y 18 3x 4y 184x 15y 170 6x 25y 23 0 x y 13 1 x 2 y 2 1x 2 3y 24 3 2 3 24 3 x y 33y 2 3x 21y 2 413 4 2x 122x 1 3y 2 3x 2y 2x 3y (7)5 4 2 () 18 6 73x 1 3y 2 3x 2y 2x 3y 5 4 0 6 5 7专题八:分式方程1.3x= 1 。

初中数学基础计算专题训练

初中数学基础计算专题训练

初中数学基础计算专题训练初中数学基础计算专题训练专题一:有理数的计算1.计算:-(-3)2×22.计算:1/2-3/4+2/3-1/43.计算:-1.5+4/14.计算:-8×(-5)-635.计算:4-5×(-1/2)36.计算:(-2)-5/56-(-4.9)-0.67.计算:-7(10)2÷5×(-2/5)8.计算:5×(-6)-(-4)2÷(-8)9.计算:(-16-50+3/5)÷(-2)10.计算:2/1×(-6)÷(1/472)211.计算:(-2)2+(-2)-(-3)212.计算:--(1-0.5)×(2/3)213.计算:-1/2×(-2)2+(-3)14.计算:-5/2-(-1/3)×2-(-3)215.计算:-1/2×[-32×(-2)2-2]16.计算:(-2)2+(-1)×(1/2)17.计算:-14-(1-0.5)×(1/3)×[2-(-3)2]18.计算:-81÷(2.25)×(-4/9)÷1619.计算:-5/2-[(-4)+(1-0.2)÷(1/5)]÷(-2)20.计算:-5/6×(-3/6)-(-7)×(-3/6)+12×(-3/6)21.计算:(-5)×(-4)2-0.25×(-5)×(-4)3/822.计算:(-3)2-(1/11)3×(-6)÷(-2/293)专题二:整式的加减1.化简:1) 12x-62) 2x+5y-23) 10y+2x4) -45) -12x2+1-7x6) 14a-33b7) 18a+6b8) 13a-9c9) 16x-210) 12b+4a 2.计算:1) -232) -53) 1.5专题三:整式的乘除1、计算:①(6a^5-7a^2+36a^3)÷3a^2②(-8abc÷4ab)·(3ab)③(3x-2)^2④(2x-3)(-2x-3)⑤(-79.8)^2⑥2003×1997⑦(2a+1)-(2a+1)(-1+2a)^2/82、化简求值2a-3b)^2-(2a+3b)(2a-3b)+(2a+3b)^2,a=-2,b= x+3)(x-4)-x(x-2)。

专题03_有理数的加减法(知识点串讲)(解析版)

专题03_有理数的加减法(知识点串讲)(解析版)

专题03 有理数的加减法重点突破知识点一 有理数的加法(基础)有理数的加法法则:(先确定符号,再算绝对值) 1. 同号两数相加,取相同的符号,并把绝对值相加;2. 异号两数相加,绝对值不相等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;3. 互为相反数的两个数相加得0;(如果两个数的和为0,那么这两个数互为相反数)4. 一个数同0相加,仍得这个数。

有理数的加法运算律:1. 两个数相加,交换加数的位置,和不变。

即a b b a +=+;2. 三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。

即()()a b c a b c ++=++。

知识点二 有理数的减法(基础) 有理数的减法法则:减去一个数等于加上这个数的相反数。

即()a b a b -=+-。

【注意减法运算2个要素发生变化】:减号变成加号;减数变成它的相反数。

有理数减法步骤: 1.将减号变为加号。

2.将减数变为它的相反数。

3.按照加法法则进行计算。

考查题型考查题型一 有理数加法运算典例1.(2018·广东初一期中)计算-(-1)+|-1|,其结果为( ) A .-2 B .2 C .0 D .-1【答案】B 【解析】试题提示:由题可得:原式=1+1=2,故选B.a b的值()变式1-1.(2019·呼伦贝尔市期末)有理数a、b在数轴上的位置如图所示,则A.大于0B.小于0C.小于a D.大于b【答案】A【提示】先根据数轴的特点判断出a,b的符号,再根据其与原点的距离判断出其绝对值的大小,然后根据有理数的加法法则得出结果.【详解】根据a,b两点在数轴上的位置可知,a<0,b>0,且|b|>|a|,所以a+b>0.故选A.【名师点拨】此题考查数轴,绝对值,有理数的加法法则.解题关键在于用几何方法借助数轴来求解,非常直观,体现了数形结合的优点.变式1-2.(2019·庆阳市期中)若a=2,|b|=5,则a+b=( )A.-3 B.7 C.-7 D.-3或7【答案】D【提示】根据|b|=5,求出b=±5,再把a与b的值代入进行计算,即可得出答案.【详解】∵|b|=5,∴b=±5,∴a+b=2+5=7或a+b=2-5=-3;故选D.【名师点拨】此题考查了有理数的加法运算和绝对值的意义,解题的关键是根据绝对值的意义求出b的值.变式1-3.(2019·扬州市期中)若|m|=3,|n|=5,且m-n>0,则m+n的值是()A.-2 B.-8或8 C.-8或-2 D.8或-2【答案】C【详解】∵|m|=3,|n|=5,∴m=±3,n=±5,∵m-n>0,∴m=±3,n=-5,∴m+n=±3-5,∴m+n=-2或m+n=-8.故选C .变式1-4.(2018·上饶市期末)若m 是有理数,则m m +的值是( ) A .正数 B .负数C .0或正数D .0或负数【答案】C【提示】根据:如果m>0,则|m|=m; 如果m<0,则|m|=-m; 如果m=0,则|m|=0.【详解】如果m 是正数,则m m +是正数;如果m 是负数,则m m +是0;如果m 是0,则m m +是0. 故选C【名师点拨】本题考核知识点:有理数的绝对值.解题关键点:理解绝对值的意义. 考查题型二 有理数加法中的符号问题典例2.(2018·重庆市期末)将 6-(+3)+(-2) 改写成省略括号的和的形式是( ) A .6-3-2 B .-6-3-2C .6-3+2D .6+3-2【答案】A【提示】先把加减法统一成加法,再省略括号和加号.【详解】将6﹣(+3)+(﹣2)改写成省略括号的和的形式为6﹣3﹣2. 故选A .【名师点拨】本题考查了有理数的加减混合运算,将算式写成省略括号的形式必须统一成加法后,才能省略括号和加号.变式2-1.(2020·银川市期中)把(+3)﹣(+5)﹣(﹣1)+(﹣7)写成省略括号的和的形式是( ). A .﹣3﹣5+1﹣7 B .3﹣5﹣1﹣7 C .3﹣5+1﹣7 D .3+5+1﹣7 【答案】C【解析】(+3)﹣(+5)﹣(﹣1)+(﹣7)=(+3)+(-5)+(+1)+(﹣7)=3﹣5+1﹣7, 故选:C.变式2-2.(2020·邯郸市期末)若两个非零的有理数a ,b 满足:|a|=-a ,|b|=b ,a +b <0,则在数轴上表示数a ,b 的点正确的是( ) A .B .C .D .【答案】D【提示】根据|a|=-a 得出a 是负数,根据|b|=b 得出b 是正数,根据a+b <0得出a 的绝对值比b 大,在数轴上表示出来即可.【详解】解:∵a 、b 是两个非零的有理数满足:|a|=-a ,|b|=b ,a+b <0, ∴a <0,b >0, ∵a+b <0, ∴|a|>|b|,∴在数轴上表示为:故选D.【名师点拨】本题考查数轴,绝对值,有理数的加法法则等知识点,解题关键是确定出a <0,b >0,|a|>|b|. 变式2-3.(2019·深圳市期中)如果a <0,b >0,a +b <0 ,那么下列关系式中正确的是( ) A .a b b a ->>-> B .a a b b >->>- C .a b b a >>->- D .b a b a >>->-【答案】A【提示】由于a <0,b >0,a+b <0,则|a|>b ,于是有-a>b ,-b>a ,易得a ,b ,-a ,-b 的大小关系. 【详解】∵a <0,b >0,a+b <0, ∴|a|>b , ∴-a>b ,-b>a ,∴a ,b ,-a ,-b 的大小关系为:-a>b>-b>a , 故选A .【名师点拨】本题考查了有理数的加法法则,有理数的大小比较,异号两数的加法法则确定出|a|>b 是解题的关键. 考查题型三 有理数加法在实际生活中的应用典例3(2018·厦门市期末)下列温度是由-3℃上升5℃的是( ) A .2℃ B .-2℃C .8℃D .-8℃【答案】A【提示】物体温度升高时,用初始温度加上上升的温度就是上升之后的温度,即是所求 【详解】(-3℃)+5℃= 2℃ 故本题答案应为:A【名师点拨】此题考查了温度的有关计算,是一道基础题.熟练掌握其基础知识是解题的关键变式3-1.(2019·石家庄市期中)在学习“有理数的加法与减法运算”时,我们做过如下观察:“小亮操控遥控车模沿东西方向做定向行驶练习,规定初始位置为0,向东行驶为正,向西行驶为负.先向西行驶3m ,在向东行驶lm ,这时车模的位置表示什么数?”用算式表示以上过程和结果的是( )A.(﹣3)﹣(+1)=﹣4 B.(﹣3)+(+1)=﹣2C.(+3)+(﹣1)=+2 D.(+3)+(+1)=+4【答案】B【详解】由题意可得:(﹣3)+(+1)=﹣2.故选B.变式3-2.(2019·石家庄市期中)一家快餐店一周中每天的盈亏情况如下(盈利为正):37元,-26元,-15元,27元,-7元,128元,98元,这家快餐店总的盈亏情况是()A.盈利了290元B.亏损了48元C.盈利了242元D.盈利了-242元【答案】C【提示】利用有理数的加法求出已知各数的和即可求出一周总的盈亏情况.【详解】∵37+(−26)+(−15)+27+(−7)+128+98=242(元),∴一周总的盈亏情况是盈利242元.故选择C.【名师点拨】本题考查正数和负数、有理数的加法,解题的关键是掌握正数和负数、有理数的加法.±kg,现随机选取10袋面粉进行质量变式3-3.(2020·沈阳市期末)面粉厂规定某种面粉每袋的标准质量为500.2检测,结果如下表所示:则不符合要求的有()A.1袋B.2袋C.3袋D.4袋【答案】A【提示】提示表格数据,找到符合标准的质量区间即可解题.±kg,即质量在49.8kg——50.2kg之间的都符合要求,【详解】解:∵每袋的标准质量为500.2根据统计表可知第5袋49.7kg不符合要求,故选A.【名师点拨】本题考查了有理数的实际应用,属于简单题,熟悉概念是解题关键.考查题型四有理数加法运算律典例4.(2019·忠县期中)计算1﹣3+5﹣7+9=(1+5+9)+(﹣3﹣7)是应用了()A.加法交换律B.加法结合律C.分配律D.加法交换律与结合律【答案】D【提示】根据加法交换律与结合律即可求解.【详解】计算1-3+5-7+9=(1+5+9)+(-3-7)是应用了加法交换律与结合律.故选:D.【名师点拨】考查了有理数的加减混合运算,方法指引:①在一个式子里,有加法也有减法,根据有理数减法法则,把减法都转化成加法,并写成省略括号的和的形式.②转化成省略括号的代数和的形式,就可以应用加法的运算律,使计算简化.变式4-1.(2018·新蔡县期中)计算()+()+()+()等于()A.-1 B.1 C.0 D. 4【答案】A【提示】有理数的加减运算,适当运用加法交换律.【详解】解:故选:A.【名师点拨】本题考查有理数的加减运算,熟记有理数的加减运算法则,同时能够题目数字特点进行灵活计算.变式4-2.(2019淮南市期中)-1+2-3+4-5+6+…-2017+2018的值为()A.1 B.-1 C.2018 D.1009【答案】D【提示】从左边开始,相邻的两项分成一组,组共分成1009组,每组的和是1,据此即可求解.【详解】原式=(−1+2)+(−3+4)+(−5+6)+…(−2015+2016)+(−2017+2018),=1+1+1+…+1=1×1009,=1009.故选D.【名师点拨】属于规律型:数字的变化类,考查有理数的加减混合运算,掌握运算法则是解题的关键.变式4-3.(2019·南阳市期中)下列交换加数的位置的变形中,正确的是A.1-4+5-4=1-4+4-5B.13111311 34644436 -+--=+--C.1-2+3-4=2-1+4-3D.4.5-1.7-2.5+1.8=4.5-2.5+1.8-1.7 【答案】D【详解】A. 1−4+5−4=1−4−4+5,故错误;B. 13111311=-34644436-+--+--,故错误; C. 1-2+3-4=-2+1-4+3,故错误;D. 4.5−1.7−2.5+1.8=4.5−2.5+1.8−1.7,故正确. 故选D.考查题型五 有理数减法运算典例5.(2020·济南市期末)﹣3﹣(﹣2)的值是( ) A .﹣1 B .1C .5D .﹣5【答案】A【提示】利用有理数的减法的运算法则进行计算即可得出答案. 【详解】﹣3﹣(﹣2)=﹣3+2=﹣1,故选A .【名师点拨】本题主要考查了有理数的减法运算,正确掌握运算法则是解题关键. 变式5-1.(2019·郯城县期末)比﹣1小2的数是( ) A .3 B .1C .﹣2D .﹣3【答案】D【提示】根据题意可得算式,再计算即可. 【详解】-1-2=-3, 故选D .【名师点拨】此题主要考查了有理数的减法,关键是掌握减去一个数,等于加上这个数的相反数. 变式5-2.(2019·重庆市期末)若 |a |= 3, |b | =1 ,且 a > b ,那么 a -b 的值是( ) A .4 B .2C .-4D .4或2【答案】D根据绝对值的性质可得a =±3,b =±1,再根据a >b ,可得①a =3,b =1②a =3,b =﹣1,然后计算出a -b 即可. 【详解】∵|a |=3,|b |=1,∴a =±3,b =±1. ∵a >b ,∴有两种情况: ①a =3,b =1,则:a -b =2; ②a =3,b =﹣1,则a -b =4. 故选D .【名师点拨】本题考查了绝对值的性质,以及有理数的减法,关键是掌握绝对值的性质,绝对值等于一个正数的数有两个.变式5-3.(2018·自贡市期中)若x <0,则()x x --等于( )A .-xB .0C .2xD .-2x【答案】D【提示】根据有理数的加法法则和绝对值的代数意义进行提示解答即可. 【详解】()2x x x x x --=+=, ∵0x <, ∴20x <, ∴原式=22x x =-. 故选D.【名师点拨】“由已知条件0x <得到20x <,进而根据绝对值的代数意义得到:22x x =-”是解答本题的关键. 考查题型六 有理数减法在实际生活中的应用典例6.(2019临河区期末)某市有一天的最高气温为2℃,最低气温为﹣8℃,则这天的最高气温比最低气温高( ) A .10℃ B .6℃ C .﹣6℃ D .﹣10℃ 【答案】A【解析】提示:用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可得解. 详解:2-(-8) =2+8 =10(℃). 故选:A .名师点拨:本题考查了有理数的减法,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键. 变式6-1.(2019·长兴县月考)某地一周前四天每天的最高气温与最低气温如右表,则这四天中温差最大的是( )A .星期一B .星期二C .星期三D .星期四【答案】C【提示】利用每天的最高温度减去最低温度求得每一天的温差,比较即可解答. 【详解】星期一温差:10﹣3=7℃; 星期二温差:12﹣0=12℃; 星期三温差:11﹣(﹣2)=13℃;星期四温差:9﹣(﹣3)=12℃; 综上,周三的温差最大. 故选C .【名师点拨】本题考查了有理数的减法的应用,根据题意正确列出算式,准确计算有理数减法是解题的关键. 变式6-2.(2018·吕梁市期末)我市冬季里某一天的最低气温是-10℃,最高气温是5℃,这一天的温差为 A .-5℃ B .5℃C .10℃D .15℃【答案】D【详解】解:5−(−10) =5+10=15℃. 故选D.变式6-3.(2020·寿阳县期末)甲、乙、丙三地海拔分别为20m ,15m -,10m -,那么最高的地方比最低的地方高( ) A .10m B .25mC .35mD .5m【答案】C【提示】根据正数与负数在实际生活中的应用、有理数的减法即可得.【详解】由正数与负数的意义得:最高的地方的海拔为20m ,最低的地方的海拔为15m - 则最高的地方比最低的地方高20(15)201535()m --=+= 故选:C .【名师点拨】本题考查了正数与负数在实际生活中的应用、有理数的减法,理解负数的意义是解题关键. 考查题型七 有理数加减混合运算典例7(2018·南阳市期中)计算:①﹣13+(﹣20)﹣(﹣33);②(+12)﹣(﹣13)+(﹣14)﹣(+16) 【答案】①0;②512. 【解析】①﹣13+(﹣20)﹣(﹣33) =﹣33+33 =0;②(+12)﹣(﹣13)+(﹣14)﹣(+16) =12+13﹣14﹣16 =643212121212+-- =512.变式7-1.(2019·河池市期中)计算:(1) 6789-+- (2) 2(5)(8)5---+-- 【答案】(1)-2;(2)-10 【详解】解:(1)6789-+- =189-+- =79-2=-(2)2(5)(8)5---+--2585=-+--385=--55=-- 10=-【名师点拨】此题考查的是有理数的加减法混合运算,掌握有理数的加、减法法则是解决此题的关键. 变式7-2.(2019·枣庄市期中)请根据如图所示的对话解答下列问题.求:(1)a ,b ,c 的值; (2)8-a +b -c 的值.【答案】(1)a =-3,b =±7,c=-1或-15; (2)33或5. 【详解】解:(1)∵a 的相反数是3,b 的绝对值是7, ∴a=-3,b=±7; ∵a=-3,b=±7,c 和b 的和是-8, ∴当b=7时,c= -15, 当b= -7时,c= -1,(2)当a=-3,b=7,c=-15时,8-a+b-c=8-(-3)+7-(-15)=33; 当a=-3,b=-7,c=-1时,8-a+b-c=8-(-3)+(-7)-(-1)=5. 故答案为(1)a=-3,b=±7;c=-1或-15;(2)33或5. 【名师点拨】本题考查有理数的加减混合运算,掌握相反数和绝对值的概念是解题关键.。

基础计算分析综合讲义 (1)

基础计算分析综合讲义 (1)

专题一:固定资产处置固定资产处置包括固定资产的出售.报废.毁损等,通过“固定资产清理”科目核算。

处置的基本程序1.将出售.报废和毁损的固定资产转入固定资产清理。

清理的分录:借:固定资产清理累计折旧贷:固定资产2.核算发生的清理费用,借:固定资产清理。

——贷记“银行存款”3.核算出售收入和残料变价收入,借记“银行存款”或“原材料”——贷:固定资产清理。

4.计算应收取的保险赔偿,借记“其他应收款”——贷:固定资产清理。

5.核算应缴纳的相关税费(出售无形资产和不动产)。

借:固定资产清理。

——贷记“应交税费——应交营业税”6.结转清理净损益,计入固定资产清理。

属于生产经营期间正常的处理损失,借记“营业外支出——处置非流动资产损失”科目;属于自然灾害等非正常原因造成的损失,借记“营业外支出——非常损失”科目。

【例题1】企业出售一座建筑物,原价2 000 000元,已使用6年,计提折旧300 000元,支付清理费用10 000元,出售收入为1 900 000元,营业税率5%。

编制会计分录如下:1.固定资产转入清理:借:固定资产清理 1 700 000(清理成本)累计折旧300 000贷:固定资产 2 000 0002.支付清理费用:借:固定资产清理 10 000贷:银行存款10 0003.收到价款:借:银行存款 1 900 000贷:固定资产清理 1 900 0004.计算应交纳的营业税(1 900 000×5%=95 000元):借:固定资产清理 95 000贷:应交税费——应交营业税 95 0005.结转固定资产清理后的净收益:借:固定资产清理95 000贷:营业外收入——处置非流动资产净收益95 000历年考试试题:【例题·多选题】1—5 题资料:某小企业以80 万元价格对外出售厂房,该房产的原值为100 万元,已提折旧60万元,转让该房产适用的营业税率为5%。

1.该企业固定资产的以下相关业务通过“固定资产清理”科目进行核算的有()。

高中数学必修一 专题三 函数的定义域和值域(含详解)

专题三函数的定义域和值域一.选择题(共12小题)1.函数的定义域是()A.(﹣1,+∞)B.(﹣1,1)∪(1,+∞) C.[﹣1,+∞)D.[﹣1,1)∪(1,+∞)2.已知函数f(x)=的定义域为(1,2),则函数f(x2)的定义域是()A.(1,2) B.(1,4) C.R D.(﹣,﹣1)∪(1,)3.已知函数f(x)=的定义域是R,则实数a的取值范围是()A.a>B.﹣12<a≤0 C.﹣12<a<0 D.a≤4.集合A={x|0≤x≤4},B={y|0≤y≤2},下列不能表示从A到B的函数的是()A.B.f:x→y=2﹣x C.D.5.下列图形中,不能表示以x为自变量的函数图象的是()A.B.C.D.6.下列函数与函数y=x相等的是()A.B.C.D.7.如图所示,可表示函数图象的是()A.①B.②③④C.①③④D.②8.下列四组函数,表示同一函数的是()A.,g(x)=xB.C.D.f(x)=|x+1|,g(x)=9.已知函数f(x)=,x∈{1,2,3}.则函数f(x)的值域是()A.B.(﹣∞,0]C.[1,+∞)D.R10.若函数y=的值域为[0,+∞),则a的取值范围是()A.(3,+∞)B.[3,+∞)C.(﹣∞,0]∪[3,+∞)D.(﹣∞,0)∪[3,+∞)11.二次函数f(x)=x2﹣4x+1(x∈[3,5])的值域为()A.[﹣2,6]B.[﹣3,+∞)C.[﹣3,6]D.[﹣3,﹣2]12.若函数的定义域、值域都是[2,2b],则()A.b=2 B.b∈[1,2]C.b∈(1,2)D.b=1或b=2二.填空题(共4小题)13.函数f(x)=的定义域为,值域为.14.函数的定义域是.15.函数y=的定义域为R,则k的取值范围.16.函数的值域为.三.解答题(共6小题)17.求下列函数的定义域:(1);(2).18.已知函数f(x)=(1)求f(1)+f(2)+f(3)+f()+f()的值;(2)求f(x)的值域.19.已知函数y=的定义域为R,求实数m的取值范围.20.当x>0时,求函数的值域.21.已知函数,(1)求函数的定义域;(2)求的值.22.求函数f(x)=x2+|x﹣2|,x∈[0,4]的值域.专题三(2)函数的概念参考答案与试题解析一.选择题(共12小题)1.函数的定义域是()A.(﹣1,+∞)B.(﹣1,1)∪(1,+∞) C.[﹣1,+∞)D.[﹣1,1)∪(1,+∞)【分析】由根式内部的代数式大于等于0,且分式的分母不为0联立不等式组求解.【解答】解:由,解得x≥﹣1且x≠1.∴函数的定义域是[﹣1,1)∪(1,+∞).故选:D.【点评】本题考查函数的定义域及其求法,是基础的计算题.2.已知函数f(x)=的定义域为(1,2),则函数f(x2)的定义域是()A.(1,2) B.(1,4) C.R D.(﹣,﹣1)∪(1,)【分析】由已知函数的定义域可得1<x2<2,求解不等式组得答案.【解答】解:∵数f(x)=的定义域为(1,2),∴由1<x2<2,得﹣<x<﹣1或1<x<.即函数f(x2)的定义域是(﹣,﹣1)∪(1,).故选:D.【点评】本题考查函数的定义域及其求法,关键是掌握该类问题的求解方法,是基础题.3.已知函数f(x)=的定义域是R,则实数a的取值范围是()A.a>B.﹣12<a≤0 C.﹣12<a<0 D.a≤【分析】由函数f(x)=的定义域是R,表示函数的分母恒不为零,即方程ax2+ax﹣3=0无解,根据一元二次方程根的个数与判断式△的关系,我们易得数a的取值范围.【解答】解:由a=0或可得﹣12<a≤0,故选:B.【点评】求函数的定义域时要注意:(1)当函数是由解析式给出时,其定义域是使解析式有意义的自变量的取值集合.(2)当函数是由实际问题给出时,其定义域的确定不仅要考虑解析式有意义,还要有实际意义(如长度、面积必须大于零、人数必须为自然数等).(3)若一函数解析式是由几个函数经四则运算得到的,则函数定义域应是同时使这几个函数有意义的不等式组的解集.若函数定义域为空集,则函数不存在.(4)对于(4)题要注意:①对在同一对应法则f 下的量“x”“x+a”“x﹣a”所要满足的范围是一样的;②函数g(x)中的自变量是x,所以求g(x)的定义域应求g(x)中的x的范围.4.集合A={x|0≤x≤4},B={y|0≤y≤2},下列不能表示从A到B的函数的是()A.B.f:x→y=2﹣x C.D.【分析】根据函数的定义分别进行判断即可.【解答】解:C的对应法则是f:x→y=x,可得f(4)=∉B,不满足映射的定义,故C的对应法则不能构成映射.故C的对应f中不能构成A到B的映射.故选:C.【点评】本题给出集合A、B,要求我们找出从A到B的映射的个数,着重考查了映射的定义及其判断的知识,属于基础题.5.下列图形中,不能表示以x为自变量的函数图象的是()A.B.C.D.【分析】利用函数定义,根据x取值的任意性,以及y的唯一性分别进行判断.【解答】解:B中,当x>0时,y有两个值和x对应,不满足函数y的唯一性,A,C,D满足函数的定义,故选:B.【点评】本题主要考查函数的定义的应用,根据函数的定义和性质是解决本题的关键.6.下列函数与函数y=x相等的是()A.B.C.D.【分析】已知函数的定义域是R,分别判断四个函数的定义域和对应关系是否和已知函数一致即可.【解答】解:A.函数的定义域为{x|x≥0},两个函数的定义域不同.B.函数的定义域为R,y=|x|,对应关系不一致.C.函数的定义域为R,两个函数的定义域和对应关系相同,是同一函数.D.函数的定义域为{x|x≠0},两个函数的定义域不同.故选:C.【点评】本题主要考查判断两个函数是否为同一函数,判断的标准是判断函数的定义域和对应关系是否一致,否则不是同一函数.7.如图所示,可表示函数图象的是()A.①B.②③④C.①③④D.②【分析】利用函数的定义分别对四个图象进行判断.【解答】解:由函数的定义可知,对定义域内的任何一个变化x,在有唯一的一个变量y与x对应.则由定义可知①③④,满足函数定义.但②不满足,因为②图象中,当x>0时,一个x对应着两个y,所以不满足函数取值的唯一性.所以不能表示为函数图象的是②.故选:C.【点评】本题主要考查了函数的定义以及函数的应用.要求了解,对于一对一,多对一是函数关系,一对多不是函数关系.8.下列四组函数,表示同一函数的是()A.,g(x)=xB.C.D.f(x)=|x+1|,g(x)=【分析】根据两个函数的定义域相同,对应关系也相同,判断它们是同一函数.【解答】解:对于A,f(x)==|x|,与g(x)=x的对应关系不同,∴不是同一函数;对于B,f(x)=(x≥2或x≤﹣2),与g(x)==(x≥2)的定义域不同,∴不是同一函数;对于C,f(x)=x(x∈R),与g(x)==x(x≠0)的定义域不同,∴不是同一对于D,f(x)=|x+1|=,与g(x)=的定义域相同,对应关系也相同,是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.9.已知函数f(x)=,x∈{1,2,3}.则函数f(x)的值域是()A.B.(﹣∞,0]C.[1,+∞)D.R【分析】直接由已知函数解析式求得函数值得答案.【解答】解:f(x)=,x∈{1,2,3},当x=1时,f(1)=1;当x=2时,f(2)=;当x=3时,f(3)=.∴函数f(x)的值域是.故选:A.【点评】本题考查函数值域的求法,是基础的计算题.10.若函数y=的值域为[0,+∞),则a的取值范围是()A.(3,+∞)B.[3,+∞)C.(﹣∞,0]∪[3,+∞)D.(﹣∞,0)∪[3,+∞)【分析】由题意:函数y是一个复合函数,值域为[0,+∞),则函数f(x)=ax2+2ax+3的值域要包括0.即最小值要小于等于0.【解答】解:由题意:函数y=是一个复合函数,要使值域为[0,+∞),则函数f(x)=ax2+2ax+3的值域要包括0,即最小值要小于等于0.则有:⇒解得:a≥3所以a的取值范围是[3,+∞).故选:B.【点评】本题考查了复合函数的值域的求法,通过值域来求参数的问题.属于基11.二次函数f(x)=x2﹣4x+1(x∈[3,5])的值域为()A.[﹣2,6]B.[﹣3,+∞)C.[﹣3,6]D.[﹣3,﹣2]【分析】利用二次函数的单调性即可求解值域.【解答】解:函数f(x)=x2﹣4x+1,其对称轴x=2,开口向上,∵x∈[3,5],∴函数f(x)在[3,5]单调递增,当x=3时,f(x)取得最小值为﹣2.当x=5时,f(x)取得最小值为6∴二次函数f(x)=x2﹣4x+1(x∈[3,5])的值域为[﹣2,6].故选:A.【点评】本题考查二次函数的单调性求解最值问题,属于函数函数性质应用题,较容易.12.若函数的定义域、值域都是[2,2b],则()A.b=2 B.b∈[1,2]C.b∈(1,2)D.b=1或b=2【分析】根据二次函数的性质建立关系解得b的值.【解答】解:函数其对称轴x=2,∴函数f(x)在定义域[2,2b]是递增函数,且2b>2,即b>1.那么:f(2b)=2b即2b=﹣4b+4解得:b=2故选:A.【点评】本题考查了定义域、值域的关系,利用二次函数的性质,属于基础题.二.填空题(共4小题)13.函数f(x)=的定义域为[﹣3,1] ,值域为[0,2] .【分析】根据函数的定义域和值域的定义进行求解即可.【解答】解:要使函数有意义,则3﹣2x﹣x2≥0,即x2+2x﹣3≤0,解得﹣3≤x≤1,故函数的定义域为[﹣3,1],设t=3﹣2x﹣x2,则t=3﹣2x﹣x2=﹣(x+1)2+4,则0≤t≤4,即0≤≤2,即函数的值域为[0,2],故答案为:[﹣3,1],[0,2]【点评】本题主要考查函数定义域和值域的求解,利用换元法结合一元二次函数的性质是解决本题的关键.14.函数的定义域是[﹣3,1] .【分析】根据使函数的解析式有意义的原则,结合偶次根式的被开方数必须不小于0,我们可以构造关于自变量x的不等式组,解不等式组,可得答案.【解答】解:要使函数的解析式有意义自变量x须满足解得﹣3≤x≤1即函数的定义域是[﹣3,1]故答案为:[﹣3,1]【点评】本题考查的知识点是函数的定义域及其求法,其中列出满足条件的不等式组,是解答本题的关键.15.函数y=的定义域为R,则k的取值范围[0,2] .【分析】把函数y=的定义域为R转化为kx2﹣4kx+6≥0对任意x∈R恒成立.然后对k分类求解得答案.【解答】解:要使函数y=的定义域为R,则kx2﹣4kx+6≥0对任意x∈R恒成立.当k=0时,不等式化为6≥0恒成立;当k≠0时,则,解得0<k≤2.综上,k的取值范围是[0,2].故答案为:[0,2].【点评】本题考查函数的定义域及其求法,考查数学转化思想方法,是中档题.16.函数的值域为.【分析】令(t≥0),得x=﹣t2+1,把原函数转化为关于t的一元二次函数求解.【解答】解:令(t≥0),得x=﹣t2+1,∴原函数化为y=.∴数的值域为:.故答案为:.【点评】本题考查函数值域的求法,训练了利用换元法求函数的值域,是中档题.三.解答题(共6小题)17.求下列函数的定义域:(1);(2).【分析】(1)由二次根式的意义可知:(2)由二次根式和分式的意义可知:,分别解不等式组可得答案.【解答】解:(1)由二次根式的意义可知:,∴定义域为[﹣8,3].(2)由二次根式和分式的意义可知:∴定义域为{﹣1}.故答案为:(1)定义域为[﹣8,3],(2)定义域为{﹣1}.【点评】本题为函数定义域的求解,使式子有意义,化为不等式组是解决问题的关键,属基础题.18.已知函数f(x)=(1)求f(1)+f(2)+f(3)+f()+f()的值;(2)求f(x)的值域.【分析】(1)直接根据函数解析式求函数值即可.(2)根据x2的范围可得1+x2的范围,再求其倒数的范围,即为所求.【解答】解:(1)原式=++=.(2)∵1+x2≥1,∴≤1,即f(x)的值域为(0,1].【点评】本题考查了函数的值与函数的值域的求法,可怜虫推理能力与计算能力,属于中档题.19.已知函数y=的定义域为R,求实数m的取值范围.【分析】根据题意,一元二次不等式x2+6mx+m+8≥0恒成立;△≤0,求解集即可.【解答】解:函数y=的定义域为R,∴x2+6mx+m+8≥0恒成立;∴△=36m2﹣4(m+8)≤0,整理得9m2﹣m﹣8≤0,解得﹣≤m≤1,∴实数m的取值范围是﹣≤m≤1.【点评】本题考查了一元二次不等式恒成立的应用问题,是基础题.20.当x>0时,求函数的值域.【分析】利用分离常数法,结合基本不等式即可求解值域;【解答】解:∵x>0,x+1>0∴函数===2(当且仅当x=时取等号)故得原式函数的值域为[,+∞).【点评】本题考查了函数值域的求法.高中函数值域求法有:1、观察法,2、配方法,3、反函数法,4、判别式法;5、换元法,6、数形结合法,7、不等式法,8、分离常数法,9、单调性法,10、利用导数求函数的值域,11、最值法,12、构造法,13、比例法.要根据题意选择.21.已知函数,(1)求函数的定义域;(2)求的值.【分析】(1)根据分式及偶次根式成立的条件可得,,解不等式可求函数的定义域(2)直接把x=﹣3,x=代入到函数解析式中可求【解答】解:(1)由题意可得,解不等式可得,{x|x≥﹣3且x≠﹣2}故函数的定义域,{x|x≥﹣3且x≠﹣2}(2)f(﹣3)=﹣1,f()=【点评】本题主要考查了函数的定义域的求解,函数值的求解,属于基础试题22.求函数f(x)=x2+|x﹣2|,x∈[0,4]的值域.【分析】去掉绝对值,得到两段函数,并对每段函数配方即可求出该段的函数f (x)的范围,对两段上求得的f(x)求并集即可求得f(x)的值域.【解答】解:f(x)=;∴当x∈[0,2]时,当x∈(2,4]时,f(x)∈(4,18]综上,即函数f(x)的值域为.【点评】考查求函绝对值函数的值域的求法,以及配方法求二次函数的值域.。

微专题三 化学计算

化学计算是高中化学学科学习的重要内容之一,在高考中要取得好成绩,就必须掌握好解答化学计算的科学思维方法。

B(g) p例1软锰矿(主要成分MnOMnSO4·H2O ,反应的化学方程式为化成Mn3+,用c(Fe2+)=0.050 0 mol·L-1的标准溶液滴定至终点(滴定过程中Mn3+被还原为Mn2+),消耗molmol(3)Mn2+先转化成Mn3+,Mn元素的量没有改变,依据反应Mn3++Fe2+===Mn2++Fe3+知,消耗的Fe2+的物质的量等于Mn3+的物质的量,所以n(MnSO4·H2O)=n(Mn2+)=n(Mn3+)=n(Fe2+)=0.05mol/L×0.02 L=0.001 mol,MnSO4·H2O的纯度为0.001 mol×M(MnSO4·H2O)×100%=98.8%0.171 g2HI(g)H(2)建立平衡时,v正=v逆,即k正x2(HI)=k逆x(H2)·x(I2),k逆=x2HIx H2x I2k正。

由于该反应前后气体分子数不变,故k逆=x2HIx H2x I2k正=c2HIc H2c I2k正=k正K。

在40 min时,x(HI)=0.85,则v正=0.002 7 min -1×0.852≈1.95×10-3 min-1。

(3)因2HI(g)H2(g)+I2(g) ΔH>0,升高温度,v正、v逆均增大,且平衡向正反应方向移动,HI的物质的量分数减小,H2、I2的物质的量分数增大。

因此,反应重新达到平衡后,相应的点分别应为A点和E点-11-1,1.FeCl3是一种很重要的铁盐,主要用于污水处理,具有效果好、价格便宜等优点。

工业上可将铁屑溶于盐酸中,先生成FeCl2,再通入(3)FeCl3溶液可以用来净水,其净水的原理为____________________________________(用离子方程式表示)。

中考数学几何模型专题专题三—三角形

专题三三角形模型8 “8字”形模型展现基础模型怎么用?1.找模型两条相交的线段构成含对顶角的两个三角形,简称“有交点,想8字”2.用模型“8字”型的实质是利用三角形内角和定理进行角度转化来解题∠结论分析结论1:∠A+∠B=∠C+∠D证明:AC与BD相交于点0 , 连接AB,CD,在∠ABO中,∠.A+∠B+∠.AOB= 180°在OCD0中,∠C+∠D+∠COD= 180°因为∠AOB=∠COD(对顶角相等),所以∠A+∠B=∠C+∠D.拓展延伸角度和相等,是解决角度转化的重要思想。

“8字”型虽简单,但往往在几何综合题中推导角度时用到.∠模型拓展典例小试例1如图,线段AB , CD,EF两两相交,交点分别为G,H,I,连接AC,BE,DF,则∠A+∠B+∠C+∠D+∠E+∠F的度数是()出现多个模型,分离模型,逐个计算A.180°B.360°C.540°D.720°考什么?对顶角相等,三角形的内角和例2如图,A,B,C,D,E是同一平面上的点,F是AB上一点,则∠A+∠B+∠C+∠D+∠E+∠DFE的度数是( )试着转化到一个四边形中,利用内角和求解A.180°B.360°C.540°D.720°考什么?对顶角相等,四边形的内角和思路点拨“8字”型能得到角度和的关系,在题目未给出具体角度的情况下,考虑将所求角度和转化到同一个多边形中,再利用多边形内角和求解.实战演练1.如图,AB∠BD,AC∠CD,∠A=30°,则∠.D的度数为____.2.一副三角板如图摆放,其中一块三角板的直角边EF落在另.一块三角板的斜边AC上,边BC与DF交于点0,则∠BOD的度数是____。

模型9 “燕尾”型模型展现基础模型怎么用?1.找模型遇到凹四边形的角度问题,考虑用“燕尾”型基础模型1 2.用模型通过“燕尾”型把“凹”的角转换成三个内角之和结论分析结论1:∠BDC=∠A+∠B+∠C证法1:如解图,延长BD交AC于点E.∠∠BEC是∠ABE的外角∠∠BEC=∠A+∠B又∠∠BDC是∠CDE的外角,∠BDC=∠BEC+∠C=∠A+∠B+∠C证法2:如解图,连接AD并延长,则∠1=∠B+∠3,∠2=∠C+∠4,∠BDC=∠1+∠2=∠B+∠3+∠C+∠4=∠A+∠B+∠C.∠∠BDC=∠A+∠B+∠C.结论2:AB+AC>BD+CD证明:如解图,延长BD交AC于点E,则AB+AE>BD+DE , DE+CE>CD,∠AC=AE+CE,∠AB+AC=AB+AE+CE>BD+DE+CE>BD+CD.巧学巧记简记:“凹角等于凸角之和”.拓展延伸也可以连接BC,使用三角形内角和定理来证明,同学们可以试试哦.:AOBAOCS S BD =:AOB COBS S AE =:BOC AOCSSBF =怎么用? 1.找模型遇到共边的两个三角形的面积相关问题,考虑用“燕尾”型基础模型2 2.用模型通过模型将面积问题转化为边的问题 满分技法燕尾相邻的两个三角形共底不等高,常根据三角形的面积公式“12×底×高”可推导“共底不等高”的三角形的面积比即为应高的比. 结论分析 结论3:∠::;AOBAOCSSBD CD =证明:如解图,分别过点B ,C 作 BH , CG 垂直于AD 交于点H , G ,在∠ABC 中,∠11,,22AOBAOCSAO BH S AO CG ==∠11:::,22AOB AOCSSAO BH AO CG BH CG ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭在∠BHD 和∠CGD 中,∠BHD =∠CGD =90°,∠BDH =∠CDG , ∠∠BHD ∠∠CGD ,∠BH BDCG CD =, ∠::.AOBAOCSSBD CD =典例小试例1如图,已知点D ,E 分别在∠ABC 的边AB ,AC 上,将∠A 沿DE 折叠 (点拨:折叠产生相等的角)使点A 落在点F 的位置,已知∠A =50°(点拨:∠F =50°),∠1=130°,则∠2的度数为( ) A .130° B .120° C .150° D .140°考什么?三角形外角的性质,折叠的性质思路点拨 折叠产生三角形全等,即ADE FDE ∆≅∆例2(2021河北)如图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且∠A ,∠B ,∠E 保持不变.为了舒适,需调整∠D 的大小(点拨:先分析哪个角的大小随着D 点变化),使∠EFD =110°,则图中∠D 应(填“增加”或“减少”)____度.考什么?三角形的内角和,对顶角相等实战实演1.将一副直角三角板如图放置,使两直角边重合,则∠1的度数为 () A .75° B .105° C .135° D .165°2.如图,是一块不规则的纸片,∠ABC =∠DEF = 80°,则∠A +∠C +∠D +∠F 的度数为( )A . 80°B . 160°C .240°D . 360°3.如图,∠A = 45°, ∠BDC = 135°,∠ABE =13∠ABD ,∠ACE =13∠ACD ,则∠BEC 的度数是( )A . 30°B .45°C .75°D .90°4.如图,矩形ABCD 中,点E ,F 分别是边AB ,BC 的中点,连接AF ,CE 交于点G ,若矩形ABCD 的面积为3,则四边形AGCD 的面积为________5.如图,在∠ABC 中,点 D ,E 分别在BC ,AC 边上,AD 与BE 交于点F ,若CD =3BD ,EC =4AE ,四边形CDFE 的面积是10,则∠ABC 的面积为________模型10 “风筝”型模型展现基础模型怎么用?1.找模型三角形折叠或者在角内部的角容易产生“风筝”型2.用模型三角形外角性质是解决问题的关键结论分析结论1:∠DBF+∠ECF= ∠A+∠F证明:如解图,连接AF,∠∠DBF是∠ABF的外角,∠∠DBF=∠BAF+∠BF A.∠∠FCE是∠ACF的外角,∠∠FCE=∠CAF+∠CF A,∠∠DBF+∠FCE=∠BAF+∠BF A+∠CAF+∠CF A=∠BAC+∠BFC,即∠DBF+∠ECF= ∠BAC+∠BFC.怎么用?1.找模型遇到与四边形(含对角线)相关的面积问题,考虑用“风筝”型2.用模型共边三角形面积问题可转化为线段问题例1如图,已知点D,E分别在∠ABC的边AB,AC上,将∠A沿DE 折叠(注:折叠性质产生相等的角,且有“风筝”型),使点A落在BC上,对应点为F,已知∠B=50°,∠C=60°,则么∠1+∠2的度数为()A.100°B. 120°C. 140°D. 135°例2如图,∠ABC中,AB=BC,(等腰三角形)延长AB,AC至点D,E,点F是∠DAE内部一点,连接BF,CF.若∠ABC= 40°,∠F= 50°则∠DBF+∠ECF(寻找与求解有关的角度关系)的度数为()A. 90°B. 100°C. 110°D. 120°实战实演1.如图,在平行四边形ABCD中,∠B= 50°,点E是BC上一点,将∠ABE沿边AE翻折得到∠AFE,延长BA至点M.若∠FEC=70°,则∠MAF的度数为()A. 20° B.30° C. 40° D. 50°2.如图,在等边∠ABC中,点D 、E 分别是AB, BC边上一点,把∠BDE沿DE 折叠,使点B落在点B'处, DB', EB'分别交边AC于点F、G ,若∠ADF=70°,则∠AGE的度数为.3.如图,在四边形ABCD中,点E, F分别是AD, BC上的点,将四边形ABCD 沿直线EF折叠,若∠A =130°, ∠B =110°,则∠1+∠2的度数为.4.如图,在四边形ABCD中,对角线AC , BD相交于点E ,∠ADE , ∠ABE ,∠CDE 的面积分别为2,3,4,则∠BCE的面积为, AE : CE的值为.5.如图,平行四边形ABCD 的对角线交于点O,点E , F分别在BC , CD上,连接EF交OC于点G ,连接OE , OF , S∠OEF= S∠ODF =2S∠CEF, S∠BOE =6,则∠OCF的面积为;∠GCE的面为.模型11 角平分线模型模型展现基础模型结论分析结论: P A = PB , OA = OB , ∠APO = ∠BPO 证明:OP 平分∠MON , ∠∠AOP = ∠BOP ,在∠AOP 和∠BOP 中,90AOP BOPOAP OBP OPOP ∠=∠∠=∠==∠∠AOP ∠∠BOP ,∠P A = PB , OA = OB , ∠APO = ∠BPO .怎么用? 1.找模型遇到图形中含角平分线,考虑用角平分线模型 2.用模型一般直接用角平分线的性质,或者构造等腰三角形或全等三角形解决线段和角度问题模型拓展满分技法角平分线性质:角平分线上的点到角两边的距离相等.碰到角平分线,常需要截相等线段来构造三角形全等或者作平行线产生等腰三角形来解决问题.例1(2021青海)如图,在四边形ABCD中, ∠A =90°, AD=3,BC=5,对角线BD平分∠ABC(点拨:考虑角平分线的性质),则∠BCD 的面积为A .8B .7.5 C.15 D .无法确定考什么?角平分线的性质,三角形的面积计算公式思路点拨已知角平分线+边的垂直(直角),考虑作垂直,应用角平分线上的点到角两边的距离相等.例2(2019青岛)如图,BD是∠ ABC的角平分线, AE∠BD(点拨:角平分线的垂线产生全等),垂足为 F .若∠ABC =35°, ∠C =50°,则∠CDE 的度数为A .35°B .40°C .45°D .50°考什么?角平分线的性质,三角形的内角和,全等三角形的判定与性质,三角形的内外角关系,等腰三角形的性质思路点拨已知角平分线+角平分线的垂线,构造出等腰三角形.例3如图,已知∠ABC的平分线交AC于点E ,过点E作DE∠BC(点拨:过角平分线上的点作平行线产生等腰三角形及角相等),交AB于点D.若∠A =70°, ∠AED =50°, BD =2,则BE长为.考什么?角平分线的性质,平行线的性质,三角形的内角和,等腰三角形的判定与性质,特殊角的三角函数值思路点拨已知角平分线+平行线,构造出等腰三角形.实战演练1.如图,已知三角形ABC 中, ∠ABC =60°, BD 是∠ABC的平分线, CE ∠AB于点E ,交BD于点F,若EF =4,则FC 的长为.2.如图,在∠ABC中, BD平分∠ABC,以点B为圆心,AB长为半径画弧,交BC于点E,连接DE,已知∠A=70° ,则∠CED的度数为______.3.如图,在∠ABC中,D,E分别是AB,AC的中点,CF平分∠ACB,交DE于点F,若AC=10,BC=12,则DF的长为________.4.如图,在矩形ABCD中,点E,F分别是BC,CD上的点,连接EF,AE,AF,若AE,AF恰好平分∠BEF,∠DFE.(1)则∠EAF的度数为__________;(2)求证:四边形ABCD是正方形;(3)若BE=EC=3,则DF的长为________.模型12 双角平分线模型模型展现基础模型111怎么用?1. 找模型三角形中,遇到两角平分线,考虑用双角平分线模型2.用模型通过三角形的内角和,内外角关系及角平分线的性质,建立两角之间的数量关系结论分析结论1:∠D=90°+12∠A证明:∠ BD平分∠ABC,CD平分∠ACB∠∠DBC=12∠ABC,∠DCB=12∠ACB∠∠D= 180°-(∠DBC+∠DCB)= 180°-(12∠ABC+12∠ACB)=180°-12(∠ABC+∠ACB)= 180°-12(180°-∠A)=90°+12∠A拓展延伸结论2的证明同学们可参考结论1和结论3,利用三角形的内外角关系进行证明.结论3:∠D =90°-12∠A证明:∠BD平分∠EBC,CD平分∠FCB,∠∠DBC=12∠EBC,∠DCB=12∠FCB,∠∠D= 180°-(∠DBC+∠DCB)= 180°-(12∠EBC +12∠FCB)= 180°-12(∠ACB+∠A+∠ABC+∠A)= 180°-12( 180°+∠A )= 90°-12∠A.模型拓展333111满分技法若将角平分线改为三等分角线,同样根据三角形的内角和及角度的倍数关系求解.典例小试例1 如图,在∠ABC中,∠ B=40°,CD∠AB于点D,∠BCD和∠BDC的平分线相交于点E(结合图形可知是双内角平分线型),则∠E的度数为()A.105°B.110°C.140°D.145°考什么?角平分线的性质,三角形的内角和万唯中考几何模型例2如图,在四边形ABCD中,∠DAB的平分线与∠ABC的外角平分线相交于点P,且∠D+∠C=210°,则∠P=()A. 10°B.15° C.30° D.40°考什么?角平分线的性质,三角形外角的性质,三角形的内角和思路点拨结合图形可知两角平分线分别为内角、外角平分线,根据“一内一外”角平分线结论求解即可.实战实演1.如图,在∠ABC中, ∠C= 110°,AE平分∠DAB,延长EA,交∠ABC的平分线于点F,则∠F= 。

专题三:绝对值(基础专题);人教版七年级上学期培优专题讲练(含答案)

专题三:绝对值(基础专题)一.选择题1.若a=﹣5,|a|=|b|,则b的值等于()2.下列判断正确的是()A.若|a|=|b|,则a=b B.若|a|=|b|,则a=﹣bC.若a=b,则|a|=|b|D.若a=﹣b,则|a|=﹣|b|3.有下列结论:①|a|一定是正数;②只有两个数相等时,它们的绝对值才相等;③绝对值最小的数是0;④在数轴上表示﹣a的点一定在原点的左边;⑤有理数分为正有理数和负有理数;其中正确的结论的个数为()A.1个B.2个C.3个D.4个4.如图,四个有理数在数轴上的对应点分别为点M,P,N,Q,若点P,Q表示的有理数互为相反数,则图中表示绝对值最大的有理数的点是()A.点M B.点P C.点N D.点Q二.填空题5.若a>0,b<0,化简a+3b﹣|a|+|2b|得.6.绝对值不大于3的整数是______________.绝对值小于2015的所有整数之积为_____.7.数轴上到原点的距离小于3的整数的个数为x,不大于3的正整数的个数为y,绝对值等于3的整数的个数为z,则x+y+z=_____.三.解答题8.已知|x﹣4|+|y+2|=0,求x与y的值.9.已知|x﹣4|+|5﹣y|=0,求12(x+y)的值.10.若|a|=4,|b|=2,且a,b异号,求a与b的值.11.有理数a,b,c在数轴上的对应点如图所示.(1)在横线上填入“>”或“<”:a______0;b______0;c______0;|c|______|a|.(2)试在数轴上找出表示﹣a,﹣b,﹣c的点;(3)试用“<”将a,﹣a,b,﹣b,c,﹣c,0连接起来.12.已知数a ,b 表示的点在数轴上的位置如图所示.(1)在数轴上表示出a ,b 的相反数的位置,并将这四个数从小到大排列;(2)若数b 与其相反数相距16个单位长度,则b 表示的数是多少?(3)在(2)的条件下,若数a 与数b 的相反数表示的点相距4个单位长度,则a 表示的数是多少?【参考答案】1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题三基础计算Ⅰ.有关物质的量的计算一、选择题1.质量相等的两份气体样品,一份是CO ,另一份是CO 2,这两份气体样品中,CO 与CO 2所含氧原子的原子个数之比是 ( )A .1:2B .1:4C .11:14D .1l :282.下列各组中两种气体的分子数一定相等的是 ( )A .温度相同、体积相同的O 2和N 2B .质量相等、密度不等的N 2和C 2H 4C .体积相同、密度相等的CO 和C 2H 4D .压强相同、体积相同的O 2和H 23.由钾和氧组成的某种离子晶体含钾的质量分数是78/126,其阴离子只有过氧离子(O 22-)和超氧离子(O 2-)两种。

在此晶体中,过氧离子和超氧离子的物质的量之比为 ( )A .2:lB .1:lC .1:2D .1:35.由X 、Y 两元素组成的气态化合物XY 4,在一定条件下完全分解为A 、B 两种气体物质,己知标准状况下20mLXY 4分解可产生标准状况下30mL A 气体(化学式为Y 2)和10mL B 气体,则B 的化学式为A .X 2B .Y 2X 2C .XY 2D .X 2Y 46.将N02、NH 3、O 2混合气22.4L 通过稀硫酸后,溶液质量增加了26.7g ,气体体积缩小为4.48L .(气体体积均在标况下测定)剩余气体能使带火星的木条着火,则混合气体的平均分子量为 ( )A .28.1B .30.2C .33.1D .34.08.两种气态烃组成的混合气体0.1mol ,完全燃烧得O.16molCO 2 T3.6g 水。

下列说法正确的是:混合气体中A .一定有甲烷B .一定是甲烷和乙烯C .一定没有乙烷D .一定有乙炔9.用惰性电极电解M(NO 3)x 的水溶液,当阴极上增重ag 时,在阳极上同时生b L 氧气(标准状况),从而可知M 的原子量为 ( )lO .b g 某金属与足量的稀硫酸反应,生成该金属的三价正盐和a g 氢气。

该金属的相对原子质量为11.下列叙述正确的是A 同温同压下,相同体积的物质,它们的物质的量必相等B 任何条件下,等物质的量的乙烯和一氧化碳所含的分子数必相等C1L 一氧化碳气体一定比1L 氧气的质量小D. 等体积、等物质的量浓度的强酸中所含的H + 数一定相等12.下列说法不正确的是 ( )A .磷酸的摩尔质量与6.02×1023个磷酸分子的质量在数值上相等B .6.02×1023个氮分子和6.02×l023个氢分子的质量比等于14:1C .32g 氧气所含的原子数目为2×6.02×1023。

D .常温常压下,0.5×6.02×1023个一氧化碳分子所占体积是11.2L13.用N A 表示阿伏加德罗常数,下列叙述中正确的是 ( )A .0.1mol·L -1稀硫酸100mL 中含有硫酸根个数为0·1N AB .1mol CH 3+(碳正离子)中含有电子数为10N AC .2.4g 金属镁与足量的盐酸反应,转移电子数为2N AD. 12.4g 白磷中含有磷原子数为O.4N A14.N A 代表阿伏加德罗常数值,下列说法正确的是 ( )A .9g 重水所含有的电子数为5N A22.4axA.b 11.2axB.b 5.6axC.b 2.8axD.b2b A.a 2b B.2a 3bC.a aD.3bB.1molMgCl5中含有离子数为N AC.7.1g氯气与足量NaOH溶液反应转移的电子数为0.2N AD.1molC10H22分子中共价键总数为31N A15.从矿物学资料查得,一定条件下自然界存在如下反应:14CuSO4+5FeS2+12H2O═7Cu2S+5FeSO4+12H2SO4,下列说法正确的是()A.Cu2S既是氧化产物又是还原产物B.5molFeS2发生反应,有10mol电子转移C.产物中的SO42-离子有一部分是氧化产物D.FeS2只作还原剂16.在120℃时分别进行如下四个反应:A.2H2S+02═2H2O+2S B 2H2S+3O2═2H2O+2SO2C.C2H4+3O2═2H2O+2CO2D.C4H8+6O2═4H2O+4CO2(1)若反应在容积固定的容器内进行,反应前后气体密度(d)和气体总压强(p)分别符合系式d前=d后和P前>P后的是;符合关系式d前=d后和P前=P后的是(请填写反应的代号)。

(2)若反应在压强恒定容积可变的容器内进行,反应前后气体密度(d)和气体体积(V)分别符合系d前>d后和V前>V后的是;符合d前>d后和V前>V后的是(请填写反应的代号)。

17.标准状况下1.68L无色可燃气体在足量氧气中完全燃烧。

若将产物通足量澄清石灰水,得到的白色沉淀质量为15.0g;若用足量碱石灰吸收燃烧产物,增重9.3g。

(1)计算燃烧产物中水的质量。

(2)若原气体是单一气体,通过计算推断它的分子式。

(3)若原气体是两种等物质的量的气体的混合物,其中只有一种是烃,请写出它们的分子式(只要求写出一组)。

18.将一定量由C、H、O三种元素组成的有机化合物A的蒸气与3.2 g O2,混合点燃,再将生成的气体依次通过①盛有浓硫酸的洗气瓶②灼热的氧化铜③饱和石灰水(设每个装置中的反应物均过量)。

经测定①中增重3.60 g ②中减重1.60 g ③中增重8.80g。

A蒸气的密度为3.393 g·L-1(已换算成标准状况)。

又测知A既能与碳酸钠溶液反应又能与金属钠反应,且均有气体生成,但分别得到的气体在相同条件下体积不同。

试求该有机物的分子式,并写出其可能的结构简式。

Ⅱ有关溶液的计算一、选择题1.300mL某溶液的NaOH溶液中含有60g溶质。

现欲配制lmol·L-1NaOH溶液,应取原溶液与蒸馏水的体积比约为A.1:4 B.1:5 C.2:l D.2:32.有三种不同浓度的稀硫酸、体积比较依次为3:2:l,它们分别与等物质的量的K2CO3、KHC03、Al恰好完全反应。

这三种硫酸的浓度之比是()A.1:l:l B.6:2:3 C.4:3:18 D.2:l:33.乙知25%氨水的密度为O.91g·cm-3,5%氨水的密度为O.98g·cm-3,若将上述两溶液等体积混合,所得氨水溶液的质量分数是()A.等于15%B.大于15%C.小于15%D.无法估算4.用0.1mol•L-1NaOH溶液滴定O.1 mol•L-1盐酸,如达到滴定的终点时不慎多加了1滴NaOH溶液(l滴溶液的体积约为0.05mL),继续加水至50ml,所得溶液的pH是()A.4 B.7.2 C.10 D.35.有五瓶溶液分别是:①l0mL0.60mol•L-1 NaOH水溶液,②20mL0.50 mol•L-1H2SO4。

③30mLO .4 mol•L-1HCl④40mL0.30 mol•L-1HAc水溶液,⑤50ML0.20 mol•L-1蔗糖水溶液。

以上各瓶溶液所含离子、分子总数的大小顺序是( )A.①>②>③>④>⑤B.②>①>③>④>⑤C.②>③>④>①>⑤D.⑤>④>③>②>①6.pH=9的Ba(OH)2溶液与pH=12的KOH 溶液。

按4:1的体积比混合,则混合溶液中的氢离子浓度(mol •L -1)是A .1/5(4×l09+1×10-12)B .1/5(4×10-15+1×10-2)JC.5×10-9 D .5×lO -127.在硫酸铝、硫酸钾和明矾的混合溶液中,如果[SO 42-]=O .2 mol •L -1,当加等体积的O .2 mol •L -1的KOH 溶液时,生成沉淀恰好溶解,则原混合物中K +的浓度是 ( )A .0.2 mol •L -1B .O.25 mol •L -1C .O.45 mol •L -1D .O.225 mol •L -19.将标准状况下的aLHCl(气)溶于l00g 水中,得到的盐酸密度为b·g·cm -3,则该盐酸的物质的量浓度是12.将40mL 1.5mol·L -1的CuSO 4溶液30mL 与3mol·L -1的NaOH 溶液混合,生成浅蓝色沉淀,假如溶液中[Cu 2+]或[OH 一]都已变得很小,可忽略,则生成沉淀的组成可表示为 ( )A .Cu(OH)2B .CuS04·Cu(OH)2C .CuSO 4·2Cu(0H)2D .CuS04·3Cu(OH)2二、计算题17.维生素C 是一种水溶性维生素(水溶液呈酸性),它的化学式是C 6H 806,人体缺少这种维生素容易得坏血症。

维生素C 易被空气中的氧气氧化。

新鲜橙汁中维生素C 的含量一般在5 00mg /L 左右。

现有一密封软包装橙汁,用移液管从管中吸出20.00 mL 。

滴入锥形瓶中,然后再滴加浓度为7.50×10 -3 mol /L 的标准碘溶液15 mL 和一定量淀粉,轻轻摇动锥形瓶,最终溶液呈蓝紫色。

试由以上实验数据推算软包装内的橙汁是否是纯天然橙汁。

Ⅲ有关化学方程式的计算一、选择题1.将适量铁粉放入三氯化铁溶液中,完全反应后,溶液中的Fe 3+和Fe 2+浓度相等。

则已反应的Fe 3+和未反应的Fe 3+的物质的量之比是 ( )A .2:3B .3:2C .1:2D .1:l2.常温下,在密闭容器里充入两种气体各O.1mol ,在一定条件下充分反应后,恢复到原温度时,压强降低为开始的 1/4 则原混合气体可能是 ( )A .H 2和O 2B .HCl 和NH 3C .H 2和Cl 2D .CO 和O 23.甲、乙两烧杯中各盛有100mL 3mol /L 的盐酸和氢氧化钠溶液,向两烧杯中分别加入等质量的铝粉,反应结束后测得生成的气体体积比为甲:乙=l :2,则加入铝粉的质量为 ( )A .5.4gB .3.6gC .2.7gD .1.8g4.等物质的量的Na 2CO 3·mH 2O 和BaCl 2·nH 20的混合物3.68g ,加足量水搅拌,充分反应后可得到1.97g 沉淀,则m 和n 值分别是 ( )A .1和2B .1和3C .7和3D .10和25.将20mL 氯气和氨气的混合气体在一定条件下充分反应,化学方程式为:3C12+8NH 3=6NH 4 Cl+N 2已知参加反应的氯气比氨气少5mL(同温同压下),则原混合气体中氯气和氨气的物质的量之比是 ( )A .3:2B .2:3C .3:8D .3:176.沼气是一种能源,它的主要成分是CH 4。

相关文档
最新文档