1.5.2中点四边形

合集下载

1.5中点四边形(2)

1.5中点四边形(2)

1.5(2)中点四边形学习目标目标:(一)知识储备点1、学生能利用三角形中位线定理判断中点四边形的形状;2、感受中点四边形的形状取决于原四边形的两条对角线的位置与长短;3、通过图形变换使学生掌握简单添加辅助线的方法。

(二)能力培养点1、培养学生观察、发现、分析、探索知识的能力及创造性思维和归纳总结能力;2、通过对图形既相互变化,又相互联系的内在规律渗透辩证唯物主义观点,使学生领悟事物是运动、变化、相互联系和相互转化的。

学习难点中点四边形的形状判定教学过程一、新知识讲解中点四边形:顺次连接一个四边形四边中点所得四边形称为这个四边形的中点四边形二、观察与猜想依次连接任意四边形各边中点所成的四边形是什么形?请同学们画一画观察并猜想(同学们会出现各种图形,请同学们观察并分析其中的原因)三、命题的给出与证明:在同学探究的基础上给出结论:中点四边形至少是平行四边形已知:如图,点E、F、G、H分别是四边形ABCD各边中点。

求证:四边形EFGH为平行四边形。

B CF四、分析与探究:1、如果把上题中的“任意四边形”改为“平行四边形”,它的中点四边形是什么形状呢?把“任意四边形”改为“矩形”,它的中点四边形仍是平行四边形吗?有没有更特殊?再把它改为“菱形”、“正方形”呢?改成“一般梯形、直角梯形、等腰梯形”呢?结合手中准备的图片,小组探究以下几个问题答案:任意四边形的中点四边形都是___________;平行四边形的中点四边形是_____________;矩形的中点四边形是_______________;菱形的中点四边形是__________________;正方形的中点四边形是__________________;梯形的中点四边形是_________________;直角梯形的中点四边形是________________;等腰梯形的中点四边形是______________。

2、结合刚才的证明过程,小组讨论并思考:(1)、中点四边形的形状与原四边形的什么有密切关系?(2)、要使中点四边形是菱形,原四边形一定要是矩形吗?(3)、要使中点四边形是矩形,原四边形一定要是菱形吗?结论:(1)中点四边形的形状与原四边形的对角线有密切关系;(2)只要原四边形的两条对角线_相等_,就能使中点四边形是菱形;(3)只要原四边形的两条对角线互相垂直,就能使中点四边形是矩形;(4)要使中点四边形是正方形,原四边形要符合的条件是相等且互相垂直。

苏科版九年级数学上册第一单元《图形与证明》(1)小结+测试题

苏科版九年级数学上册第一单元《图形与证明》(1)小结+测试题

数学九年级(上)第一章知识点归纳总结1.1 等腰三角形的性质定理:等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”)。

等腰三角形的两底角相等(简称“等边对等角”)。

等腰三角形的判定定理:如果一个三角形的两个角相等,那么这两个角所对的边也相等(简称“等角对等边”)。

1.2 直角三角形全等的判定定理:斜边和一条直角边对应相等的两个直角三角形全等(简称“HL”)。

角平分线的性质:角平分线上的点到这个角的两边的距离相等。

角平分线的判定:角的内部到角的两边距离相等的点,在这个角的平分线上。

直角三角形中,30°的角所对的直角边是斜边的一半。

1.3 平行四边形的性质与判定:定义:两组对边分别平行的四边形是平行四边形。

定理1:平行四边形的对边相等。

定理2:平行四边形的对角相等。

定理3:平行四边形的对角线互相平分。

判定——从边:1两组对边分别平行的四边形是平行四边形。

2一组对边平行且相等的四边形是平行四边形。

3两组对边分别相等的四边形是平行四边形。

从角:两组对角分别相等的四边形是平行四边形。

对角线:对角线互相平分的四边形是平行四边形。

矩形的性质与判定:定义:有一个角的直角的平行四边形是矩形。

定理1:矩形的4个角都是直角。

定理2:矩形的对角线相等。

定理:直角三角形斜边上的中线等于斜边的一半。

判定:1有三个角是直角的四边形是矩形。

2对角线相等的平行四边形是矩形。

菱形的性质与判定:定义:有一组邻边相等的平行四边形是菱形。

定理1:菱形的4边都相等。

定理2:菱形的对角线相互垂直,并且每一条对角线平分一组对角。

判定:1四条边都相等的四边形是菱形。

2对角线互相垂直的平行四边形是菱形。

正方形的性质与判定:正方形的4个角都是直角,4条边都相等,对角线相等且互相垂直平分,每一条对角线平分一组对角。

正方形即是特殊的矩形,又是特殊的菱形,它具有矩形和菱形的所有性质。

判定:1有一个角是直角的菱形是正方形。

第六章 平行四边形(学生版)

第六章 平行四边形(学生版)

一、多边形1.(2020-2021成都十八中八年级(下)期末·5)(3分)某多边形的内角和是其外角和的3倍,则此多边形的边数是( )A.5B.6C.7D.82.(2020-2021成华区八年级(下)期末·12)(4分)一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数是 .3.(2020-2021高新区八年级(下)期末·13)(4分)如图所示是三个相同的正n边形拼成的无缝隙、不重叠的图形的一部分,则n的值为 .4.(2020-2021成都八年级(下)期末·13)(4分)一个多边形的内角和是外角和的2倍,则这个多边形的边数为 .5.(2020-2021金牛区八年级(下)期末·4)(3分)六边形的外角和为( )A.180°B.360°C.540°D.720°6.(2020-2021锦江区八年级(下)期末·4)(3分)一个多边形的内角和等于它的外角和的3倍,则该多边形的边数是( )A.六B.七C.八D.九7.(2020-2021龙泉驿八年级(下)期末·4)(3分)若一个多边形的每一个外角都是45°,则这个多边形是( )A.六边形B.七边形C.八边形D.九边形8.(3分)如果一个多边形的内角和等于720°,则它的边数为( )A.3B.4C.6D.59.(2020-2021双流区八年级(下)期末·6)(3分)正多边形的一个外角等于45°,这个多边形的边数是( )A.6B.8C.10D.1210.(2020-2021天府新区八年级(下)期末·12)(4分)一个多边形的内角和是720°,则它是 边形.11.(2020-2021温江区八年级(下)期末·5)(3分)一个多边形的内角和与它的外角和相等,则这个多边形的边数为( )A.4B.5C.6D.7二、中位线1.(2020-2021成都十八中八年级(下)期末·7)(3分)如图,DE是三角形ABC的中位线,点F在DE 上,∠AFB=90°,若AB=6,BC=10,则EF的长为( )A.3B.2C.5D.12.(2020-2021高新区八年级(下)期末·7)(3分)如图,已知在ABCD中,D,E,F分别是边BC,AC=,则四边形AFDE的周长等于( )CA,AB的中点.10AB=,8A.18B.16C.14D.123.(2020-2021成都八年级(下)期末·6)(3分)如图,在△ABC中,∠ACB=90°,AC=8,AB=10,DE垂直平分AC交AB于点E,则DE的长为( )A.3B.4C.5D.64.(2020-2021金牛区八年级(下)期末·7)(3分)平行四边形ABCD中,260Ð的度A CÐ+Ð=°,则B数为( )A.130°B.100°C.80°D.50°5.(2020-2021锦江区八年级(下)期末·9)(3分)如图,在ABCDY中,对角线AC与BD交于点O,Ð的度数是( )Ð,则ABD80Ð=°,点F为AD中点,连接FO,若OD平分FOCBAOA.40°B.50°C.60°D.80°6.(2020-2021天府新区八年级(下)期末·13)(4分)如图,在ABCD中,点D,E分别是AB,AC的中点,若10BC=,则DE= .7.(2020-2021天府新区八年级(下)期末·12)(4分)如图,ABCDY中,对角线AC、BD交于点O,点E是BC的中点.若2OE=,则AB的长为 .8.(2020-2021成华区八年级(下)期末·14)(4分)如图,ABCDY的对角线AC,BD相交于点O,点E是AD的中点,连接OE,若2Y的周长等于 .D的周长等于7,则ABCDOA=,AOE9.(2020-2021双流区八年级(下)期末·22)(4分)如图所示,点D、E分别是ABCD的边AB、AC的中点,连接BE,过点C作//EF=,则DE的长为 .CF BE,交DE的延长线于点F,若310.(2020-2021武侯区八年级(下)期末·23)(4分)如图,在ABC^D中,AD平分BACÐ,BD AD于点D,延长BD交AC于点E,点F为BC中点,连接DF.若6AB=,10D的面积为30,AC=,ABC D的面积为 .则BDF三、平行四边形的性质1.(2020-2021成都七中嘉祥外国语学校八年级(下)期末·9)(3分)延长平行四边形ABCD的一边AB到E,使BE=BD,连接DE交BC于F.若∠DAB=120°,∠CFE=135°,AB=1,则AC的长为( )A.1B.1.2C.D.1.52.(2020-2021成都十八中八年级(下)期末·8)(3分)以平行四边形ABCD对角线的交点O为原点,平行于BC边的直线为x轴,建立如图所示的平面直角坐标系.若A点坐标为(﹣2,1),则C点坐标为( )A.(﹣2,﹣1)B.(1,﹣2)C.(﹣1,﹣2)D.(2,﹣1)3.(2020-2021成都实验外国语八年级(下)期末·8)(3分)如图,在平行四边形ABCD中,∠A+∠C=140°,则∠B的度数为( )A .140°B .120°C .110°D .100°4.(2020-2021成华区八年级(下)期末·8)(3分)如图,在四边形ABCD 中,对角线AC 和BD 相交于点O ,下列条件不能判断四边形ABCD 是平行四边形的是( )A .//AB DC ,//AD BCB .AB DC =,AD BC =C .OA OC =,OB OD =D .//AB DC ,AD BC=5.(2020-2021成华区八年级(下)期末·10)(3分)如图,ABCD Y 的面积为S ,点P 是它内部任意一点,PAD D 的面积为1S ,PBC D 的面积为2S ,则S ,1S ,2S 之间满足的关系是( )A .1212S S S +>B .1212S S S +<C .1212S S S +=D .无法判定6.(2020-2021高新区八年级(下)期末·4)(3分)如图,在ABCD Y 中,125ABC Ð=°,21CAD Ð=°,则CAB Ð的度数是( )A .21°B .34°C .35°D .55°7.(2020-2021青羊区八年级(下)期末·8)(3分)在下列平行四边形性质的叙述中,错误的是( )A .平行四边形的对边相等B .平行四边形的对角相等C .平行四边形的对角线互相平分D .平行四边形的对角线相等8.(2020-2021青羊区八年级(下)期末·10)(3分)如图,已知ABCD Y 的顶点(4,0)C ,(7,4)D ,点B 在x 轴负半轴上,点A 在y 轴正半轴上,以顶点C 为圆心,适当长为半径画弧,分别交CB 、CD 于点E 、F ,再分别以点E 、F 为圆心,大于12EF 的长为半径画弧,两弧交于点G ,作射线CG 交边AD 于点M .则点M 的坐标为( )A .(1,4)B .(2,4)C .(3,4)D .(1.5,4)9.(2020-2021双流区八年级(下)期末·9)(3分)如图,在平行四边形ABCD 中,E 为BC 边上一点,连接AE .若AE 平分BAD Ð,58D Ð=°,则AEC Ð的大小是( )A .61°B .109°C .119°D .122°10.(2020-2021天府新区八年级(下)期末·10)(3分)如图,在平行四边形ABCD 中,ABC Ð的平分线交AD 于点E ,过点A 作AF BE ^,垂足为点F ,若5AF =,24BE =,则CD 的长为( )A .8B .13C .16D .1811.(2020-2021温江区八年级(下)期末·10)(3分)如图1,在平面直角坐标系中,将ABCD Y 放置在第一象限,且//AB x 轴.直线y x =-从原点出发沿x 轴正方向平移,在平移过程中直线被ABCD Y 截得的线段长度l 与直线在x 轴上平移的距离m 的函数图象如图2,那么ABCD Y 的面积为( )A .2B .3C .D .41.(2020-2021成都十八中八年级(下)期末·14)(4分)如图,在平行四边形ABCD 中,AB >AD ,以A 为圆心,小于AD 的长为半径画弧,分别交AB 、CD 于E 、F ;再分别以E 、F 为圆心,大于EF 的一半长为半径画弧,两弧交于点G ,作射线AG 交CD 于点H .若AD =2,CD =3,则CH = .2.(2020-2021金牛区八年级(下)期末·14)(4分)如图,在平行四边形ABCD 中,3CD =,以点B 为圆心,以任意长为半径作弧,分别交BA 、BC 于点P 、Q ,再分别以P 、Q 为圆心,以大于12PQ 的长为半径作弧,两弧在ABC Ð内交于点M ,连接BM 并延长交AD 于点E ,若2DE =,则平行四边形ABCD 的周长为 .3.(2020-2021锦江区八年级(下)期末·13)(4分)如图,在ABCD Y 中,1AB =,2BC =,点E 为线段AB 上一点,连接CE ,将BCE D 沿CE 翻折,点B 的对应点B ¢落在DA 的延长线上,若90B CD Т=°,则AB ¢= .4.(2020-2021武侯区八年级(下)期末·14)(4分)如图,在平行四边形ABCD 中,4AB =,沿对角线AC 翻折,点B 的对应点为B ¢,B C ¢与AD 交于点E ,此时CDE D 恰为等边三角形,则重叠部分(即图中阴影部分)的面积为 .5.(2020-2021高新区八年级(下)期末·25)(4分)如图,四边形ABCD 是平行四边形,60C Ð=°,AB BC =,点F 在BC 上,且13CF BC =,点E 为边CD 上的一动点,连接EF ,AE ,将CEF D 沿直线EF 翻折,点C 的对应点为点G ,连接BG ,若点B ,点G ,点E 在同一条直线上,则AE DE的值为 .1.(2020-2021成都十八中八年级(下)期末·18)(8分)已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=BC=5,AB=6,求四边形AMCN的面积.2.(2020-2021成都实验外国语八年级(下)期末·18)(3分)如图,四边形ABCD中,∠A=∠ABC=90°,AD=1,BC=3,E是边CD的中点,连接BE并延长与AD的延长线交于点F.(1)求证:四边形BDFC是平行四边形;(2)若BC=BD,求四边形BDFC的面积.3.(2020-2021金牛区八年级(下)期末·18)(8分)四边形ABCD 是平行四边形,对角线AC ,BD 交于点O ,90ADB Ð=°,点E 是AB 边上一点,AE DE =,连接OE ,求证:12OE AD =.4.(2020-2021高新区八年级(下)期末·19)(10分)如图,ABCD Y 的对角线AC 与BD 相交于点O ,点E ,F 分别在OB 和OD 上,且AEB CFD Ð=Ð.(1)求证:四边形AECF 是平行四边形;(2)若90AEB Ð=°,4AE =.且45EAF Ð=°,求线段AC 的长.5.(2020-2021锦江区八年级(下)期末·19)(10分)如图,在四边形ABCD中,AD BC=,延长BA至=,连接CE交AD于F,且FE FC点E,使AE AB=.(1)求证:四边形ABCD是平行四边形;(2)若AB AC=;^,求证:AD CE(3)在(2)的条件下,若3AC=,求CAFD的面积.AB=,56.(2020-2021青羊区八年级(下)期末·18)(8分)如图,ABCDY的对角线AC与BD相交于点O,过点B 作BE AC ^于点E ,过点D 作DF AC ^于点F ,连接DE 、BF .(1)求证:四边形BEDF 为平行四边形;(2)若8BE =,6EF =,求BD 的长.7.(2020-2021双流区八年级(下)期末·18)(8分)如图,在四边形ABCD 中,对角线AC ,BD 相交于点O ,DE AC ^于E ,BF AC ^于F ,DE BF =,ADB CBD Ð=Ð.(1)求证:四边形ABCD 为平行四边形;(2)若13AD =,12DE =,20DC =,求四边形ABCD 的面积.8.(2020-2021天府新区八年级(下)期末·18)(8分)如图,在平行四边形ABCD 中,点M ,N 分别在AB ,CD 上,AC 与MN 交于点O ,且AO CO =,连接AN ,CM .(1)求证:AM CN=;(2)已知:8^,求四边形AMCN的周长.AC=,6MN=,且MN AC9.(2020-2021新都区八年级(下)期末·19)(8分)如图,在四边形ABCD中,BE AC^^于点E,DF AC =,ADB CBD于点F,BE DFÐ=Ð.(1)求证:CBE ADFD@D;(2)判断四边形ABCD的形状,并说明理由.10.(2020-2021温江区八年级(下)期末·20)(10分)如图,90^,垂^,EG BDÐ=°,CH BDACB足分别为H,G,CH EGÐ=Ð.=,BCE DEC(1)求证:四边形BCDE是平行四边形;(2)若30CD=,求CE的长.BC=,6AÐ=°,41.(2020-2021成都七中嘉祥外国语学校八年级(下)期末·21)(4分)如图,在▱ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .2.(2020-2021锦江区八年级(下)期末·22)(5分)如图,直线1:2l y x =+与x 轴交于点A ,与y 轴交于点B ,直线2:44l y x =-与y 轴交于点C ,与x 轴交于点D ,直线1l ,2l 交于点P ,若x 轴上存在点Q ,使以A 、C 、P 、Q 为顶点的四边形是平行四边形,则点Q 的坐标是 .3.(2020-2021成都十八中八年级(下)期末·24)(4分)如图,Rt △OAB 的两直角边OA 、OB 分别在x轴和y轴上,A(﹣4,0),B(0,8),将△OAB绕O点顺时针旋转90°得到△OCD,直线AC、BD交于点E.点M为直线BD上的动点,点N为x轴上的点,若以A,C,M,N四点为顶点的四边形是平行四边形,则符合条件的点M的坐标为 .四、矩形的性质1.(2020-2021成都实验外国语八年级(下)期末·9)(3分)如图,矩形ABCD的对角线AC、BD相交于点O,AE平分∠BAD交BC于点E,连接OE,若OE⊥BC,OE=1,则AC的长为( )A.4B.2C.D.22.(2020-2021武侯区八年级(下)期末·15)(3分)要使ABCDY成为矩形,需要添加的条件是( ) A.AB BCÐ=ÐÐ=°D.ABD CBDABC=B.AC BD^C.903.(2020-2021武侯区八年级(下)期末·8)(3分)如图,在矩形ABCD中,ADCÐ的平分线交BC于点E,将一块三角板的直角顶点放在点E处,一条直角边经过点A,另一条直角边交CD于点M,若DM CM==,则BC的长为( )24A.8B.7C.5D.44.(2020-2021成都七中嘉祥外国语学校八年级(下)期末·14)(4分)如图所示,矩形ABCD沿对角线BD折叠,已知矩形的长BC=8cm,宽AB=6cm,那么折叠后重合部分的面积是 .5.(2020-2021成都八年级(下)期末·14)(4分)如图,在矩形ABCD中,BC=4,对角线AC与BD相交于点O,AN⊥BD,垂足为N,BN=3DN,则AN长为 .6.(2020-2021双流区八年级(下)期末·14)(4分)如图,在矩形ABCD中,6AD=,对角线AC与BD相交于点O,AE BD^,垂足为E.若3=,则BD= .ED BEAB=,3 7.(2020-2021成华区八年级(下)期末·24)(4分)如图,在长方形纸片ABCD中,4BC=,点P在BC边上,将CDPD沿DP折叠,点C落在点E处,PE,DE分别交AB于点G,F,若=,则CP的长为 .GE GB1.(2020-2021成都实验外国语八年级(下)期末·27)(10分)如图,在矩形ABCD中,对角线AC与BD相交于点O,AB=BO=12,将矩形ABCD翻折,使得B与D重合,A的对应点为A′,折痕为EF,连接BA′,DF.(1)求证:四边形BFDE是菱形;(2)若M,N为矩形边上的两个动点,且运动过程中,始终保持∠MON=60°不变,请回答下列两个问题:①如图2,当点M在边BC上,点N在边CD上,ON与ED交于点G,请猜想EO、EM、EG三条线段的数量关系,并说明理由;②如图3,若M,N都在BC边上,将△ONM沿ON所在直线翻折至△ONP,取线段CD的中点Q,连接PQ,则当PQ最短时,求PM的长.五、菱形的性质及判定1.(2020-2021成都八年级(下)期末·10)(3分)如图,菱形ABCD中,对角线AC,BD相交于点O,点M是DC的中点.若菱形ABCD的周长为24,则OM的长为( )A.12B.8C.6D.32.(2020-2021金牛区八年级(下)期末·9)(3分)菱形ABCD的对角线10BD=,则菱形ABCDAC=,8的面积是( )A.80B.60C.40D.303.(2020-2021成都十八中八年级(下)期末·13)(4分)如图,四边形ABCD是菱形,对角线AC=8,DB=6,DH⊥AB于点H,则DH的长为 .4.(2020-2021成都实验外国语八年级(下)期末·13)(3分)已知菱形的周长等于8cm,一条对角线长为2cm,则此菱形的面积为 .5.(2020-2021龙泉驿八年级(下)期末·14)(4分)如图,在菱形ABCD中,对角线AC,BD交于点OB=,则菱形ABCD的面积为 .CA=,3O,其中21.(2020-2021武侯区八年级(下)期末·17)(8分)如图,在菱形ABCD中,AC与BD相交于点E,若BD=ABCD的周长为20,求菱形ABCD的面积.2.(2020-2021成都七中嘉祥外国语学校八年级(下)期末·19)(10分)如图,△ABC中,∠BAC=90°,BG平分∠ABC,GF⊥BC于点F,AD⊥BC于点D,交BG于点E,连接EF.(1)求证:①AE=AG;②四边形AEFG为菱形.(2)若AD=8,BD=6,求AE的长.1.(2020-2021成都实验外国语八年级(下)期末·24)(4分)如图,在菱形ABCD中,边长AB=12,∠ABC=45°,连接BD,点P是边BC上一动点,连接AP与对角线BD交于点E,连接EC.则当BP =时,△EPC为等腰三角形.2.(2020-2021温江区八年级(下)期末·24)(4分)如图,菱形ABCD 的对角线AC 、BD 相交于点O ,过点C 作CE AD ^于点E ,连接OE ,若4OB =,48ABCD S =菱形,则OE 的长为 .3.(2020-2021成都七中嘉祥外国语学校八年级(下)期末·25)(4分)如图,边长为的菱形ABCD 中,∠DAB =60°,连接对角线AC ,以AC 为边作第二个菱形ACC 1D 1,使∠D 1AC =60°;连接AC 1,再以AC 1为边作第三个菱形AC 1C 2D 2,使∠D 2AC 1=60°…,按此规律所作的第n 个菱形的边长为 .六、正方形的性质及判定1.(2020-2021新都区八年级(下)期末·8)(3分)下列条件中能判断一个四边形是正方形的是( )A .对角线互相垂直且相等B.一组对边平行,另一组对边相等且有一个内角为90度C.对角线平分每一组对角D.四边相等且有一个角是直角2.(2020-2021成都十八中八年级(下)期末·10)(3分)如图,正方形ABCD的对角线AC,BD交于点O,M是边AD上一点,连接OM,过点O作ON⊥OM,交CD于点N.若四边形MOND的面积是1,则AB的长为( )A.1B.C.2D.23.(2020-2021温江区八年级(下)期末·9)(3分)如图,在正方形ABCD中,点E、F分别在CD、BC 上,且BF CE=,连接BE、AF相交于点G,则下列结论不正确的是( )=B.DAF BECA.BE AFÐ=ÐC.90AFB BEC^Ð+Ð=°D.AG BE4.(2020-2021成都实验外国语八年级(下)期末·23)(4分)如图,将边长为4的正方形ABCD绕点A 逆时针旋转60°得到正方形AEGF,连接EF,BF,点M,N分别为EF,BF的中点,连接MN,则线段MN的长为 .5.(2020-2021成都八年级(下)期末·24)(4分)如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,∠CAB与∠CBA的平分线交于点P,点D、E分别是边AC、BC上的点(均不与点C重合),且满足∠DPE=45°,则点P到边AB的距离是 ,△CDE的周长是 .6.(2020-2021武侯区八年级(下)期末·24)(4分)如图,在正方形ABCD中,4AB cm=,点E是AD 的中点,动点F从点A出发,以2/D为cm s的速度沿AB向终点B运动,设点F的运动时间为ts,当CEF等腰三角形时,t的值是 .7.(2020-2021龙泉驿八年级(下)期末·25)(4分)如图,已知正方形ABCD,点E为对角线AC上一点(不与A ,C 重合),过点E 作EF DE ^交BC 于点F ,连接DF ,则DE EF的值等于 .8.(2020-2021天府新区八年级(下)期末·25)(4分)如图,正方形ABCD ,BCD D 绕B 顺时针旋转至BFE D ,点C 与点F 对应,点D 与点E 对应,连接AE ,交BD 于点P ,当P 是AE 的中点时,AEB D 的面积为 .1.(2020-2021龙泉驿八年级(下)期末·27)(10分)如图,正方形ABCD 中,2AB =,E 为DC 右侧一点,且DE DC =,(90)CDE Ð<°.连接AE .(1)若20CDE Ð=°,求DAE Ð的度数;(2)过点A 作射线EC 的垂线段,垂足为P ,求证AE =;(3)在(2)的条件下,AP 与BC 交于点F ,当BF FC =时,求CE 的长.七、四边形综合性质及判定1.(2020-2021成都十八中八年级(下)期末·6)(3分)下列说法正确的有几个( )①对角线互相平分的四边形是平行四边形; ②对角线互相垂直的四边形是菱形;③对角线互相垂直且相等的平行四边形是正方形;④对角线相等的平行四边形是矩形.A .1个B .2个C .3个D .4个2.(2020-2021双流区八年级(下)期末·8)(3分)下列命题是真命题的是( )A .对角线相等的四边形是平行四边形B .对角线互相平分且相等的四边形是矩形C .对角线互相垂直的四边形是菱形D .对角线互相垂直平分的四边形是正方形3.(2020-2021锦江区八年级(下)期末·25)(5分)如图,在Rt OAB D 中,8OA =,6AB =,C 为线段AB 上一点,将OAC D 沿OC 翻折,点A 落在点D 处,延长CD 至点E ,连接OE ,且45COE Ð=°,若14BCE ODE S S D D =,则22DE AC +的值是 .八、四边形综合1.(2020-2021成都八年级(下)期末·19)(10分)如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点M为AD的中点,过点M作MN∥BD交CD延长线于点N.(1)求证:四边形MNDO是平行四边形;(2)请直接写出当四边形ABCD的边AB与BD满足什么关系时,四边形MNDO分别是菱形、矩形、正方形.1.(2020-2021成都实验外国语八年级(下)期末·20)(10分)如图1,在正方形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF、CE、CF,G为EF的中点,连接BG.(1)若CE=2,求FE的长;(2)连接AC,求证:BG垂直平分AC;(3)如图2,在菱形ABCD中,点E,F分别在AB上和AD的延长线上,且BE=DF,连接EF,G 为EF的中点,连接BG、CG,过F作FH∥DC交CB的延长线于H,那么(2)中的结论还成立吗?若成立,请加以证明,若不成立,请说明理由.2.(2020-2021锦江区八年级(下)期末·20)(10分)如图,AC为ABCDÐ=°,CEBACY的对角线,90平分ACBÐ,F为射线BC上一点.(1)如图1,F在BC延长线上,连接AF与CD交于点G,若8CD=;AC=,6①当G为CD中点时,求证:CF BC=;②当CF CA=时,求CG长度;(2)如图2,F在线段BC上,连接AF与CE交点于H,若3=,试探究AD,Ð=Ð,FA FCD ACEAC,AH三条线段之间的数量关系,并说明理由.3.(2020-2021双流区八年级(下)期末·20)(10分)如图1,在ABC D 中,AB AC =,AD 是ABC D 的一条角平分线,AN 为ABC D 的外角BAM Ð的平分线,BE AN ^,垂足为E .已知8AD =,6BD =.(1)求证:四边形ADBE是矩形;(2)如图2,延长AD至点F,使AF AB=,连接BF,G为BF的中点,连接EG,DG.求EG的长.(3)如图3,在(2)问的条件下,P为BE边上的一个动点,连接PG并延长交AD延长线于点Q,连接CQ,H为CQ的中点,求点P从E点运动到B点时,点H所经过的路径长.4.(2020-2021天府新区八年级(下)期末·20)(10分)在Rt ABCACBÐ=°,Ð=°,设60BACD中,90将ABCD(点D,E分别与B,A对应),连接BD.D绕着点C顺时针旋转,得到CDE(1)如图1,当点D在线段CA的延长线上时,若5AD=,求BD的长;(2)如图2,当点D在如图所示位置时,过点D作//DG AB交线段EA的延长线于G,EG与BD相交于点F,连接AD,BG.求证:四边形ADGB为平行四边形.(3)在(2)的条件下,如图3,连接CF,若5CF=,求EF的长.AC=,85.(2020-2021新都区八年级(下)期末·20)(10分)(1)如图1,ABCD都是等边三角形,联D与DEC=.结BE和AD.求证:BE AD(2)如图2,四边形ABCD和四边形DEFG都是正方形,连接AG和CE.探究线段AG和CE有怎样的数量关系和位置关系?并证明你的结论.(3)如图3,在图2的基础上,连接AC,将正方形DEFG绕着点D旋转到某一位置时,恰好使得Ð的度数.=.求出此时CAGDE AC,CE AC//6.(2020-2021龙泉驿八年级(下)期末·26)(8分)如图,矩形OABC中,4AB=,点E,FAO=,8分别在边AB,OC上,且3AE=,将矩形的部分沿直线EF翻折,点A的对应点A¢恰好落在对角线AC 上,求OF的长.1.(2020-2021高新区八年级(下)期末·27)(10分)如图1,四边形ABCD是正方形,点E在边AB上=.任意一点(点E不与点A,点B重合),点F在AD的延长线上,BE DF(1)求证:CE CF=;(2)如图2,作点D关于CF的对称点G,连接BG、CG、DG,DG与CF交于点P,BG与CF交于点H,与CE交于点Q.(ⅰ)若20Ð的度数;Ð=°,求CHBBCE(ⅱ)用等式表示线段CD,GH,BH之间的数量关系,并说明理由.2.(2020-2021金牛区八年级(下)期末·27)(10分)四边形ABCD 和四边形BEDF 都是矩形,BC 与DF 交于点G ,AD 与BE 交于点H .(1)如图1,当AB DE =时,求证:BH DH =;(2)如图2,当AB DE =时,连结CH ,若2BC AB =,求CH CD的值;(3)如图3,当AB DE ¹时,连结CH ,GH ,若CGH D 为等边三角形,求AB DE 的值.3.(2020-2021天府新区八年级(下)期末·27)(10分)如图1,在矩形ABCD 中,AM 平分BAD Ð,交BC 于点M ,点N 是AD 上的一点,连接MN ,MD ,且MN MD =,过点D 作DF MN ^于F ,DF 延长线交AM 于E ,过点E 作EP AD ^于P .(1)如图1,①若5CD =,7AD =,求线段CM 的长;②求证:PED CMD D @D .(2)如图2,过点F 作FH CD ^于H ,当AM AD =时,求AE FH 的值.4.(2020-2021温江区八年级(下)期末·27)(10分)如图,矩形ABCD中,点E在边CD上,将BCED沿BE翻折,点C落在AD边上的点F处,过点F作//FG CD交BE于点G,连接CG.(1)求证:四边形CEFG是菱形;(2)若3AD=,求四边形CEFG的面积.AB=,5。

2024年广东省深圳市33校联考中考数学质检试卷(2月份)(含解析)

2024年广东省深圳市33校联考中考数学质检试卷(2月份)(含解析)

2024年广东省深圳市33校联考中考数学质检试卷(2月份)一、选择题:(每小题只有一个正确选项,每小题3分,共计30分)1.(3分)“斗”是我国古代称量粮食的量器,它无盖,其示意图如图所示,下列图形是“斗”的俯视图的是( )A.B.C.D.2.(3分)如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,则下列选项正确的是( )A.B.C.D.3.(3分)将抛物线y=﹣(x﹣1)2+4先向左平移2个单位,再向下平移3个单位后,抛物线的解析式为( )A.y=﹣(x+1)2+1B.y=﹣(x+3)2+1C.y=﹣(x﹣3)2+1D.y=﹣(x+1)2+74.(3分)如图,已知AB∥CD∥EF,AD=3,BC=4,DF=5,则CE的长为( )A.6B.C.7D.5.(3分)如图,在矩形ABCD中,AB=2,对角线AC与BD相交于点O,AE垂直平分OB 于点E,则BC的长为( )A .B .C .4D .26.(3分)关于x 的方程x (x ﹣1)=3(x ﹣1),下列解法完全正确的是( )甲乙丙丁两边同时除以(x ﹣1)得到x =3.移项得x (x ﹣1)+3(x ﹣1)=0,∴(x ﹣1)(x +3)=0,∴x ﹣1=0或x +3=0,∴x 1=1,x 2=﹣3.整理得x 2﹣4x =﹣3,∵a =1,b =﹣4,c =﹣3,∴Δ=b2﹣4ac =28,∴x ==2±,∴x 1=2+,x 2=2﹣.整理得x 2﹣4x =﹣3,配方得x 2﹣4x +4=1,∴(x ﹣2)2=1,∴x ﹣2=±1,∴x 1=1,x 2=3.A .甲B .乙C .丙D .丁7.(3分)如图,安装路灯AB 的路面CD 比种植树木的地面PQ 高CP =1.2m ,在路灯的照射下,路基CP 留在地面上的影长EP 为0.4m ,通过测量知道BC 的距离为1.5m ,则路灯AB 的高度是( )A .3mB .3.6mC .4.5mD .6m8.(3分)二次函数y =ax 2+bx +c 的图象如图所示,则一次函数y =ax +b 和反比例函数在同一直角坐标系中的图象可能是( )A.B.C.D.9.(3分)《九章算术》是中国传统数学最重要的著作,书中有一个关于门和竹竿的问题,简译为:今有一扇门,不知门的高和宽.另有一竹竿,也不知竹竿的长短.竹竿横着放时比门的宽长4尺,竹竿竖着放时比门的高长2尺,竹竿斜着放时与门的对角线恰好相等,求门的对角线长.若设门的对角线长为x尺,则可列方程为( )A.(x+4)2=x2+(x﹣2)2B.x2=(x﹣4)2+(x﹣2)2C.(x+2)2=(x﹣4)2+x2D.(x+4)2=(x+2)2+x210.(3分)某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1(Ω)(如图1),当人站上踏板时,通过电压表显示的读数U0换算为人的质量m(kg),已知U0随着R1的变化而变化(如图2),R1与踏板上人的质量m 的关系见图3.则下列说法不正确的是( )A.在一定范围内,U0越大,R1越小B.当U0=3V时,R1的阻值为50ΩC.当踏板上人的质量为90kg时,U0=2VD.若电压表量程为0﹣6V(0≤U0≤6)为保护电压表,该电子体重秤可称的最大质量是115kg二、填空题:(每小题3分,共计15分)11.(3分)若,则的值为 .12.(3分)为了估计抛掷同一枚瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为450次,凸面向下的次数为550次,由此可估计抛掷瓶盖落地后凸面向上的概率约为 .13.(3分)如图,原点O是△ABC和△A′B′C′的位似中心,点A(1,0)与点A′(﹣2,0)是对应点,△ABC的面积是3,则△A′B′C′的面积是 .14.(3分)如图,4个小正方形拼成“L”型模具,其中三个顶点在正坐标轴上,顶点D在反比例函数的图象上,若S△ABC=4,则k= .15.(3分)如图,在△ABC中,∠B=90°,D是BC边上一点且满足∠C=2∠BAD,CD=3BD,E是AC边上一点且满足∠ADB=∠ADE,连接BE交AD于点F,则= .三、解答题:(共7题,共55分)16.(5分)计算:2cos45°tan30°cos30°+sin260°.17.(7分)为建设美好公园社区,增强民众生活幸福感,如图1,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.在如图2的侧面示意图中,遮阳篷靠墙端离地高记为BC,遮阳篷AB长为5米,与水平面的夹角为16°.(1)求点A到墙面BC的距离;(2)当太阳光线AD与地面CE的夹角为45°时,量得影长CD为1.8米,求遮阳篷靠墙端离地高BC的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)18.(8分)某超市在元旦节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式:方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠,指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受9折优惠,其它情况无优惠.(备注:①转盘甲中,指针指向每个区域的可能性相同;转盘乙中,B、C区域的圆心角均为90°;②若指针指向分界线,则重新转动转盘.)(1)若顾客选择方式一,则享受9折优惠的概率为 ;(2)两种方式中,哪一种让顾客获得9折优惠的可能性大?请用树状图或列表法说明理由.19.(8分)社区利用一块矩形空地ABCD建了一个小型停车场,其布局如图所示.已知AD =52m,AB=28m,阴影部分设计为停车位,要铺花砖,其余部分均为宽度为x米的道路.已知铺花砖的面积为640m2.(1)求道路的宽是多少米?(2)该停车场共有车位50个,据调查分析,当每个车位的月租金为200元时,可全部租出;若每个车位的月租金每上涨5元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为10125元?20.(8分)如图,在Rt△ABC中,∠ACB=90°,D是AC边上一点,连接BD,E是△ABC 外一点且满足BE∥AC,AE∥BD,AB平分∠DAE,连接DE交AB于点O.(1)求证:四边形ADBE是菱形;(2)连接OC,若四边形ADBE的周长为20,,求OC的长.21.(9分)综合与应用如果将运动员的身体看作一点,则他在跳水过程中运动的轨迹可以看作为抛物线的一部分.建立如图2所示的平面直角坐标系xOy,运动员从点A(0,10)起跳,从起跳到入水的过程中,运动员的竖直高度y(m)与水平距离x(m)满足二次函数的关系.(1)在平时的训练完成一次跳水动作时,运动员甲的水平距离x与竖直高度y的几组数据如表:水平距离x(m)01 1.5竖直高度y(m)1010 6.25根据上述数据,求出y关于x的关系式;(2)在(1)的这次训练中,求运动员甲从起点A到入水点的水平距离OD的长;(3)信息1:记运动员甲起跳后达到最高点B到水面的高度为k(m),从到达到最高点B开始计时,则他到水面的距离h(m)与时间t(s)之间满足h=﹣5t2+k.信息2:已知运动员甲在达到最高点后需要1.6s的时间才能完成极具难度的270C动作.问题解决:①请通过计算说明,在(1)的这次训练中,运动员甲能否成功完成此动作?②运动员甲进行第二次跳水训练,此时他的竖直高度y(m)与水平距离x(m)的关系为y=ax2﹣ax+10(a<0),若选手在达到最高点后要顺利完成270C动作,则a的取值范围是 .22.(10分)综合与实践在一次综合实践活动课上,王老师给每位同学各发了一张正方形纸片,请同学们思考如何仅通过折纸的方法来确定正方形一边上的一个三等分点.【操作探究】“乘风”小组的同学经过一番思考和讨论交流后,进行了如下操作:第1步:如图1所示,先将正方形纸片ABCD对折,使点A与点B重合,然后展开铺平,折痕为EF;第2步:将BC边沿CE翻折到GC的位置;第3步:延长EG交AD于点H,则点H为AD边的三等分点.证明过程如下:连接CH,∵正方形ABCD沿CE折叠,∴∠D=∠B=∠CGH=90°,① ,又∵CH=CH,∴△CGH≌△CDH,∴GH=DH.由题意可知E是AB的中点,设AB=6(个单位),DH=x,则AE=BE=EG=3,在Rt△AEH中,可列方程:② ,(方程不要求化简)解得:DH=③ ,即H是AD边的三等分点.“破浪”小组是这样操作的:第1步:如图2所示,先将正方形纸片对折,使点A与点B重合,然后展开铺平,折痕为EF;第2步:再将正方形纸片对折,使点B与点D重合,再展开铺平,折痕为AC,沿DE翻折得折痕DE交AC于点G;第3步:过点G折叠正方形纸片ABCD,使折痕MN∥AD.【过程思考】(1)“乘风”小组的证明过程中,三个空的所填的内容分别是①: ,②: ,③: ;(2)结合“破浪”小组操作过程,判断点M是否为AB边的三等分点,并证明你的结论;【拓展提升】如图3,在菱形ABCD中,AB=5,BD=6,E是BD上的一个三等分点,记点D关于AE 的对称点为D′,射线ED′与菱形ABCD的边交于点F,请直接写出D′F的长.参考答案与解析一、选择题:(每小题只有一个正确选项,每小题3分,共计30分)1.(3分)“斗”是我国古代称量粮食的量器,它无盖,其示意图如图所示,下列图形是“斗”的俯视图的是( )A.B.C.D.【解答】解:从上面看,看到的图形为一个正方形,在这个正方形里面还有一个小正方形,即看到的图形为,故选C.2.(3分)如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c,则下列选项正确的是( )A.B.C.D.【解答】解:在△ABC中,∠C=90°,BC=a,AC=b,AB=c,∴sin A=,cos B=,tan A=,tan B=,故选:D.3.(3分)将抛物线y=﹣(x﹣1)2+4先向左平移2个单位,再向下平移3个单位后,抛物线的解析式为( )A.y=﹣(x+1)2+1B.y=﹣(x+3)2+1C.y=﹣(x﹣3)2+1D.y=﹣(x+1)2+7【解答】解:将抛物线y=﹣(x﹣1)2+4先向左平移2个单位,再向下平移3个单位后,抛物线的解析式为y=﹣(x+2﹣1)2+4﹣3=﹣(x+1)2+1;故选:A.4.(3分)如图,已知AB∥CD∥EF,AD=3,BC=4,DF=5,则CE的长为( )A.6B.C.7D.【解答】解:∵AB∥CD∥EF,∴,∴,∴,故选:B.5.(3分)如图,在矩形ABCD中,AB=2,对角线AC与BD相交于点O,AE垂直平分OB 于点E,则BC的长为( )A.B.C.4D.2【解答】解:∵四边形ABCD是矩形,∴AO=BO=CO=DO,∵AE垂直平分OB,∴AB=AO,∴AB=AO=BO,∴△AOB是等边三角形,∴∠BAC=60°,∴BC=AB=2,故选:B .6.(3分)关于x 的方程x (x ﹣1)=3(x ﹣1),下列解法完全正确的是( )甲乙丙丁两边同时除以(x ﹣1)得到x =3.移项得x (x ﹣1)+3(x ﹣1)=0,∴(x ﹣1)(x +3)=0,∴x ﹣1=0或x +3=0,∴x 1=1,x 2=﹣3.整理得x 2﹣4x =﹣3,∵a =1,b =﹣4,c =﹣3,∴Δ=b 2﹣4ac =28,∴x ==2±,∴x 1=2+,x 2=2﹣.整理得x 2﹣4x =﹣3,配方得x 2﹣4x +4=1,∴(x ﹣2)2=1,∴x ﹣2=±1,∴x 1=1,x 2=3.A .甲B .乙C .丙D .丁【解答】解:甲的解法错误,方程两边不能同时除以(x ﹣1),这样会漏解;乙的解法错误,移项时3(x ﹣1)没有变号;丙的解法错误,就没有将原方程整理成一元二次方程的一般形式,所以c 的值错误;丁利用配方法解方程,计算正确;故选:D .7.(3分)如图,安装路灯AB 的路面CD 比种植树木的地面PQ 高CP =1.2m ,在路灯的照射下,路基CP 留在地面上的影长EP 为0.4m ,通过测量知道BC 的距离为1.5m ,则路灯AB 的高度是( )A .3mB .3.6mC .4.5mD .6m【解答】解:由题意得:AB ⊥CD ,CP ⊥PQ ,∴∠ABC =∠CPE =90°,由题意得:CD ∥PQ ,∴∠ACB=∠CEP,∴△ACB∽△CEP,∴=,∴=,解得:AB=4.5,∴路灯AB的高度是4.5m,故选:C.8.(3分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=ax+b和反比例函数在同一直角坐标系中的图象可能是( )A.B.C.D.【解答】解:根据二次函数y=ax2+bx+c的图象可以确定,开口向上a>0,对称轴在y 轴右侧,b<0,图象与y轴交于负半轴,c<0,∴一次函数y=ax+b经过第一、三、四象限,反比例函数分布在第二、四象限,选项A符合,故选:A.9.(3分)《九章算术》是中国传统数学最重要的著作,书中有一个关于门和竹竿的问题,简译为:今有一扇门,不知门的高和宽.另有一竹竿,也不知竹竿的长短.竹竿横着放时比门的宽长4尺,竹竿竖着放时比门的高长2尺,竹竿斜着放时与门的对角线恰好相等,求门的对角线长.若设门的对角线长为x尺,则可列方程为( )A.(x+4)2=x2+(x﹣2)2B.x2=(x﹣4)2+(x﹣2)2C.(x+2)2=(x﹣4)2+x2D.(x+4)2=(x+2)2+x2【解答】解:若设门的对角线长为x尺,则门的高为(x﹣2)尺,宽为(x﹣4)尺,根据题意得:x2=(x﹣4)2+(x﹣2)2.故选:B.10.(3分)某综合实践活动小组设计了简易电子体重秤:制作一个装有踏板(踏板质量忽略不计)的可变电阻R1(Ω)(如图1),当人站上踏板时,通过电压表显示的读数U0换算为人的质量m(kg),已知U0随着R1的变化而变化(如图2),R1与踏板上人的质量m 的关系见图3.则下列说法不正确的是( )A.在一定范围内,U0越大,R1越小B.当U0=3V时,R1的阻值为50ΩC.当踏板上人的质量为90kg时,U0=2VD.若电压表量程为0﹣6V(0≤U0≤6)为保护电压表,该电子体重秤可称的最大质量是115kg【解答】解:∵图2中U0随R1的增大而减小,∴在一定范围内,U0越大,R1越小.A正确,不符合题意;∵图2中的图象经过点(50,3),∴当U0=3V时,R1的阻值为50Ω.B正确,不符合题意;∵当m=90时,R1=﹣2m+240=60Ω,U0=2V时,对应的是90Ω,∴踏板上人的质量为90kg时,U0=2V,错误.C符合题意.∵R1=﹣2m+240,∴R1随m的增大而减小.∵R1的最小值为10,∴m的最大值为115.∴若电压表量程为0﹣6V(0≤U0≤6)为保护电压表,该电子体重秤可称的最大质量是115kg.D正确,不符合题意.故选:C.二、填空题:(每小题3分,共计15分)11.(3分)若,则的值为 .【解答】解:∵=,∴b=a,∴==.故答案为:.12.(3分)为了估计抛掷同一枚瓶盖落地后凸面向上的概率,小明做了大量重复试验.经过统计得到凸面向上的次数为450次,凸面向下的次数为550次,由此可估计抛掷瓶盖落地后凸面向上的概率约为 0.45 .【解答】解:估计抛掷瓶盖落地后凸面向上的概率约为,故答案为:0.45.13.(3分)如图,原点O是△ABC和△A′B′C′的位似中心,点A(1,0)与点A′(﹣2,0)是对应点,△ABC的面积是3,则△A′B′C′的面积是 12 .【解答】解:∵点A的坐标为(1,0),点A′的坐标为(﹣2,0),∴OA=1,OA′=2,∵原点O是△ABC和△A′B′C′的位似中心,∴△ABC∽△A′B′C′,且相似比为,∴△ABC与△A′B′C′的面积比为,∵△ABC的面积是3,∴△A′B′C′的面积是3×4=12,故答案为:12.14.(3分)如图,4个小正方形拼成“L”型模具,其中三个顶点在正坐标轴上,顶点D在反比例函数的图象上,若S△ABC=4,则k= 24 .【解答】解:∵S△ABC=4,∴,∴BC2=4,∴小正方形边长为2,∴AB=4,BC=AF=1,DF=6,AC=2,如图,作DE⊥x轴,垂足为点E,∵∠BAF=90,∴∠OAF=∠BCA,∴△ABC∽△FOA,∴,即,∴AO=,OF=,同理△AOF∽△FED,,即,∴EF=,DE=,∴OE=OF+EF=+=2.D(2,),∵点D在反比例函数图象上,∴k=2×=24.故答案为:24.15.(3分)如图,在△ABC中,∠B=90°,D是BC边上一点且满足∠C=2∠BAD,CD=3BD,E是AC边上一点且满足∠ADB=∠ADE,连接BE交AD于点F,则= .【解答】解:过点A作AH⊥DE于点H,过点E作EG⊥CD于点G,延长EG交AD的延长线于点Q,如图,在△ABD和△AHD中,,∴△ABD≌△AHD(AAS),∴∠BAD=∠HAD,∵∠C=2∠BAD,∴∠C=∠BAH.∵∠ABD=∠AHD=90°,∴∠BDH+∠BAH=180°.∵∠BDH+∠EDC=180°,∴∠EDC=∠C,∴ED=EC,∵EG⊥DC,∴DG=GC=CD,∵CD=3BD,∴设BD=k,则CD=3k,∴DG=GC=k,BC=4k.∵EG⊥BC,AB⊥BC,∴EG∥AB,∴△EGC∽△ABC,∴.∴EG=AB.∵EQ∥AB,∴△ADB∽△QGD,∴,∴QG=AB,∴EQ=EG+QG=AB.∵AB∥EQ,∴△QEF∽△ABF,∴.故答案为:.三、解答题:(共7题,共55分)16.(5分)计算:2cos45°tan30°cos30°+sin260°.【解答】解:原式=2×﹣××+()2=﹣+=.17.(7分)为建设美好公园社区,增强民众生活幸福感,如图1,某社区服务中心在文化活动室墙外安装遮阳篷,便于社区居民休憩.在如图2的侧面示意图中,遮阳篷靠墙端离地高记为BC,遮阳篷AB长为5米,与水平面的夹角为16°.(1)求点A到墙面BC的距离;(2)当太阳光线AD与地面CE的夹角为45°时,量得影长CD为1.8米,求遮阳篷靠墙端离地高BC的长.(结果精确到0.1米;参考数据:sin16°≈0.28,cos16°≈0.96,tan16°≈0.29)【解答】解:(1)过点A作AF⊥BC,垂足为F,在Rt△ABF中,AB=5米,∠BAF=16°,∴AF=AB•cos16°≈5×0.96=4.8(米),∴点A到墙面BC的距离约为4.8米;(2)过点A作AG⊥CE,垂足为G,由题意得:AG=CF,AF=CG=4.8米,∵CD=1.8米,∴DG=CG﹣CD=4.8﹣1.8=3(米),在Rt△ADG中,∠ADG=45°,∴AG=DG•tan45°=3(米),∴CF=AG=3米,在Rt△ABF中,AB=5米,∠BAF=16°,∴BF=AB•sin16°≈5×0.28=1.4(米),∴BC=BF+CF=1.4+3=4.4(米),∴遮阳篷靠墙端离地高BC的长为4.4米.18.(8分)某超市在元旦节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式:方式一:转动转盘甲,指针指向A区域时,所购买物品享受9折优惠,指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受9折优惠,其它情况无优惠.(备注:①转盘甲中,指针指向每个区域的可能性相同;转盘乙中,B、C区域的圆心角均为90°;②若指针指向分界线,则重新转动转盘.)(1)若顾客选择方式一,则享受9折优惠的概率为 ;(2)两种方式中,哪一种让顾客获得9折优惠的可能性大?请用树状图或列表法说明理由.【解答】解:(1)若顾客选择方式一,转动转盘甲一次共有3种等可能结果,其中指针指向A区域只有1种结果,∴享受9折优惠的概率为,故答案为:;(2)两种方式让顾客获得9折优惠的可能性大一样大,理由如下:由(1)可知,顾客选择方式一享受9折优惠的概率为,方式二中,画树状图如下:共有12种等可能的结果,其中两个转盘的指针指向每个区域的字母相同的结果有4种,即AA、AA、BB、CC,∴方式二让顾客获得9折优惠的概率为=,∴顾客选择方式一享受9折优惠的概率=顾客选择方式二享受9折优惠的概率,∴两种方式让顾客获得9折优惠的可能性大一样大.19.(8分)社区利用一块矩形空地ABCD建了一个小型停车场,其布局如图所示.已知AD =52m,AB=28m,阴影部分设计为停车位,要铺花砖,其余部分均为宽度为x米的道路.已知铺花砖的面积为640m2.(1)求道路的宽是多少米?(2)该停车场共有车位50个,据调查分析,当每个车位的月租金为200元时,可全部租出;若每个车位的月租金每上涨5元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为10125元?【解答】解;(1)根据道路的宽为x米,根据题意得,(52﹣2x)(28﹣2x)=640,整理得:x2﹣40x+204=0,解得:x1=34(舍去),x2=6,答:道路的宽为6米.(2)设月租金上涨a元,停车场月租金收入为10125元,根据题意得:(200+a)(50﹣)=10125,整理得:a2﹣50a+625=0,解得a=25,答:每个车位的月租金上涨25元时,停车场的月租金收入为10125元.20.(8分)如图,在Rt△ABC中,∠ACB=90°,D是AC边上一点,连接BD,E是△ABC 外一点且满足BE∥AC,AE∥BD,AB平分∠DAE,连接DE交AB于点O.(1)求证:四边形ADBE是菱形;(2)连接OC,若四边形ADBE的周长为20,,求OC的长.【解答】(1)证明:∵BE∥AC,AE∥BD,∴四边形ADBE是平行四边形,∠ABE=∠DAB,∵AB平分∠DAE,∴∠BAE=∠DAB,∴∠ABE=∠BAE,∴BE=AE,∴平行四边形ADBE是菱形;(2)解:由(1)可知,四边形ADBE是菱形,∴OA=OB,AD=BD=AB=BC,AE∥BD,∴∠EAD=∠BDC,∵四边形ADBE的周长为20,∴AD=BD=5,∴∠EAD=∠BDC,∵∠ACB=90°,∴cos∠BDC==cos∠EAD=,∴CD=BD=3,∴AC=AD+CD=5+3=8,在Rt△BCD中,BC===4,在Rt△ABC中,AB===4,∵OA=OB,∠ACB=90°,∴OC=AB=×4=2,即OC的长为2.21.(9分)综合与应用如果将运动员的身体看作一点,则他在跳水过程中运动的轨迹可以看作为抛物线的一部分.建立如图2所示的平面直角坐标系xOy,运动员从点A(0,10)起跳,从起跳到入水的过程中,运动员的竖直高度y(m)与水平距离x(m)满足二次函数的关系.(1)在平时的训练完成一次跳水动作时,运动员甲的水平距离x与竖直高度y的几组数据如表:水平距离x(m)01 1.5竖直高度y(m)1010 6.25根据上述数据,求出y关于x的关系式;(2)在(1)的这次训练中,求运动员甲从起点A到入水点的水平距离OD的长;(3)信息1:记运动员甲起跳后达到最高点B到水面的高度为k(m),从到达到最高点B开始计时,则他到水面的距离h(m)与时间t(s)之间满足h=﹣5t2+k.信息2:已知运动员甲在达到最高点后需要1.6s的时间才能完成极具难度的270C动作.问题解决:①请通过计算说明,在(1)的这次训练中,运动员甲能否成功完成此动作?②运动员甲进行第二次跳水训练,此时他的竖直高度y(m)与水平距离x(m)的关系为y=ax2﹣ax+10(a<0),若选手在达到最高点后要顺利完成270C动作,则a的取值范围是 .【解答】(1)解:由运动员的竖直高度y(m)与水平距离x(m)满足二次函数的关系,设二次函数的关系为y=ax2+bx+c,代入(0,10),(1,10),(1.5,6.25),得,解得,∴y关于x的关系式为y=﹣5x2+5x+10;(2)把y=0代入y=﹣5x2+5x+10,得﹣5x2+5x+10=0,解得x1=2,x2=﹣1(不合题意,舍去),∴运动员甲从起点A到入水点的水平距离OD的长为2米;(3)①运动员甲不能成功完成此动作,理由如下:由运动员的竖直高度y(m)与水平距离x(m)满足二次函数的关系为y=﹣5x2+5x+10,整理得,得运动员甲起跳后达到最高点B到水面的高度k为m,即,把h=0代入,得,解得x1=1.5,x2=﹣1.5(不合题意,舍去),∵1.5<1.6,∴运动员甲不能成功完成此动作;②由运动员甲进行第二次跳水训练,竖直高度y(m)与水平距离x(m)的关系为y=ax2﹣ax+10(a<0),得顶点为,得,得,把h=0代入,得,由运动员甲在达到最高点后需要1.6s的时间才能完成极具难度的270C动作,得t≥1.6,则t2≥1.62,即,解得.故答案为:.22.(10分)综合与实践在一次综合实践活动课上,王老师给每位同学各发了一张正方形纸片,请同学们思考如何仅通过折纸的方法来确定正方形一边上的一个三等分点.【操作探究】“乘风”小组的同学经过一番思考和讨论交流后,进行了如下操作:第1步:如图1所示,先将正方形纸片ABCD对折,使点A与点B重合,然后展开铺平,折痕为EF;第2步:将BC边沿CE翻折到GC的位置;第3步:延长EG交AD于点H,则点H为AD边的三等分点.证明过程如下:连接CH,∵正方形ABCD沿CE折叠,∴∠D=∠B=∠CGH=90°,① CG=CB=CD ,又∵CH=CH,∴△CGH≌△CDH,∴GH=DH.由题意可知E是AB的中点,设AB=6(个单位),DH=x,则AE=BE=EG=3,在Rt△AEH中,可列方程:② (6﹣x)2+32=(x+3)2 ,(方程不要求化简)解得:DH=③ 2 ,即H是AD边的三等分点.“破浪”小组是这样操作的:第1步:如图2所示,先将正方形纸片对折,使点A与点B重合,然后展开铺平,折痕为EF;第2步:再将正方形纸片对折,使点B与点D重合,再展开铺平,折痕为AC,沿DE翻折得折痕DE交AC于点G;第3步:过点G折叠正方形纸片ABCD,使折痕MN∥AD.【过程思考】(1)“乘风”小组的证明过程中,三个空的所填的内容分别是①: CG=CB=CD ,②: (6﹣x)2+32=(x+3)2 ,③: 2 ;(2)结合“破浪”小组操作过程,判断点M是否为AB边的三等分点,并证明你的结论;【拓展提升】如图3,在菱形ABCD中,AB=5,BD=6,E是BD上的一个三等分点,记点D关于AE 的对称点为D′,射线ED′与菱形ABCD的边交于点F,请直接写出D′F的长.【解答】【过程思考】解:(1)结合①下面两个三角形全等,可以得到该空为CG=CB=CD,此时可根据(HL)推断出两个三角形全等;根据在直角三角形中三边满足勾股定理,即AH2+AE2=EH2,则(6﹣x)2+32=(x+3)2;将(6﹣x)2+32=(x+3)2化简可得36﹣12x+x2+9=x2+6x+9,移项合并同类项得:36=18x,解得x=2,即DH=2,故答案为:①CG=CB=CD,②(6﹣x)2+32=(x+3)2,③2;(2)点M是AB边的三等分点,证明如下:由第1步的操作可知E,F分别是AB,CD的中点,∵ABCD是正方形,∴AB∥CD,AB=CD,∴∠AED=∠CDG,∠EAG=∠DCG,∴△AEG∽△CDG,∴,∵MN∥AD,∴,∴点M是否为AB边的三等分点;【拓展提升】解:连接AC交BD于点O,如图,∴,∠AOD=∠AOB=90°,∵四边形ABCD为菱形,∴∠ADB=∠ABD=∠DBC,∴,分两种情况:①当时,如图,连接AD',AE,AD'与BD交点N,由对称性可知,DE=DE'=2,∠AD′E=∠ADB=∠ABD,∠END'=∠ANB,∴△END'∽△ANB,∴,设EN=2x,则AN=5x,即ON=2x﹣1,在△ANO中,AN2=AO2+ON2,即(5x)2=42+(2x﹣1)2,解得:x1=﹣1 (合),,∵∠ED′A=∠DBC=∠ADB,∠NED'=∠FEN∴△END′∽△EFB,∴.∴,∴.②当时,连接AD′,AE,由对称性可知,AD'=AD=5,D′E=DE=4,∠ADE=∠AD′E=∠ABD,∠AED=∠AEF,过点A作AN⊥D′E于点N,如图,∵∠AD′F=∠EBF,∠AFD'=∠BFE,∴△AFD′∽△EFB,∴,设EF=2x,则AF=5x,在△AEO和△ANE中,,∴△AEO≌△ANE(AAS),∴OE=EN=1,∴NF=2x﹣1,AN=AO=4,在△ANF中,AF2=AN2+NF2,即(5x)2=42+(2x﹣1)2,解得:x1=﹣1 (舍),,∴,即,综上,D'F的长为或.。

特殊平行四边形-中考数学第一轮总复习课件(全国通用)

特殊平行四边形-中考数学第一轮总复习课件(全国通用)

中考数学第一轮总复习典例精讲考点聚集查漏补缺拓展提升第五单元 四边形专题5.2 特殊平行四边形知识点矩 形01菱 形02正 方 形03中点四边形04拓展训练05【例1-1】如图,在□ABCD中,E为BC的中点,连接AE并延长交DC的延长线于点F,连接BF,AC,若AD=AF.求证:四边形ABFC是矩形.A EFD CB利用对角线相等的平行四边形是矩形证明方法一:利用△ABE≌△FCE证平行四边形;证法二:利用△ABE∽△FCE证平行四边形考点聚焦一个角为直角对角线相等平行四边形平行四边形直角证明四边形ABCD 是矩形的方法(三种)①先证明四边形ABCD为___________,再证明□ABCD的任意_____________;②先证明四边形ABCD为___________,再证明□ABCD的____________;【例1-2】如图,在矩形ABCD中,AB=3,BC=6,若点E,F分别在AB,CD上,且BE=2AE,DF=2FC,G,H分别是AC的三等分点,则四边形EHFG的面积为( ) A.1 B.1.5 C.2 D.4AHGECBD F C 考点聚焦对边平行且相等四角都是直角对角线互相平分且相等矩形的性质(1)边:________________;(2)角:________________;(3)对角线:______________________.1.已知□ABCD,下列条件中,不能判定这个平行四边形为矩形的是( ) A.∠A=∠B B.∠A=∠C C.AC=BD D.AB⊥BC2.如图,矩形ABCD的对角线AC=10,P,Q分别为AO,AD的中点,则PQ=_____.3.如图,矩形ABCD中,AB=3,BC=4,则图中四个小矩形的周长之和为____.4.如图,矩形OCDE,矩形OFGH,矩形OMNP各有一边在半⊙O的直径AB上,D,G,N都在半⊙O上,比较EC,HF,MP的大小_________.B 2.514EC=HF=EP5.如图,在矩形ABCD中,AB=8,AD=4,E为CD边上一点,CE=5,点P从B点出发,以每秒1个单位的速度沿着BA边向终点A运动,设点P运动的时间为t秒,则当t=_______时,△PAE是以PE为腰的等腰三角形.6.如图,将矩形ABCD绕点B顺时针旋转,得到矩形EBFG,且点E落在CD上,过点C作FG的垂线,垂足为H,若FH=HG,则BC:AB的值为_______.7.如图,在Rt△ABC中,∠BAC=90º,BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小最为_____.M2.4知识点矩 形01菱 形02正 方 形03中点四边形04拓展训练05【例2-1】如图,在等腰△ABC中,AD平分顶角∠BAC,交底边BC于点H,点E在AD上,BE=BD,求证:四边形BDCE是菱形.考点聚焦证明四边形ABCD 是菱形的方法(三种)①先证明四边形ABCD为___________,再证明□ABCD的任意_____________;②先证明四边形ABCD为___________,再证明□ABCD的________________平行四边形一组邻边相等平行四边形对角线互相垂直四边相等AH E DCB利用“三线合一”得出AD 垂直平分BC,从而得出四边相等。

内蒙古呼和浩特实验教育集团2024-2025学年第二学期中考试八年级数学试卷(无答案)

内蒙古呼和浩特实验教育集团2024-2025学年第二学期中考试八年级数学试卷(无答案)

试验教化集团2024-2025学年其次学期初二年级期中考试数学试卷A 卷一、选择题(每题3分,共30分.每小题只有唯一正确答案,请将正确答案的选项填在下表里)1.下列二次根式是最简二次根式的是( )2.下列计算错误..的是( )= ÷==D.3=3.下列各组数中,以它们为边长的线段能构成直角三角形的是 ( )A.13,14,15B.2,3C.13,14,15D.2,3,44.顺次连接四边形各边中点得到一个平行四边形,则原四边形肯定是( )A.对角线相等的四边形B.对角线相互垂直的四边形C.对角线相互平分的四边形D.随意四边形5.直角三角形的周长为30cm ,斜边长为13cm ,则其面积为( )A.362cmB.302cmC.242cmD.602cm6.如图,有一张直角三角形纸片,两直角边AC=6cm ,BC=8cm ,将△ABC 折叠,使点B 与点A 重合,折痕为DE ,则CD 等于( )A.2C.74 D.946题图7题图8题图7.已知,如图,△ABC 中,D 是BC 边的中点,AE 平分∠BAC ,BE ⊥AE 于E 点,若AB=4,AC=6,则ED 的长为( )A.1B.2C.3D.48.如图,网格中的小正方形边长均为1,△ABC 的三个顶点在格点上,则△ABC 中BC 边上的高为( )9.若平面直角坐标系中,已知点P 的坐标为(0,2),以点P 为圆心,3个单位长为半径画弧,交x 轴的正半轴于点A ,则点A 的横坐标介于( )A.1和1.5之间.B.1.5和2之间.C.2和2.5之间.D.2.5和3之间.10.四边形ABCD 中,对角线AC ,BD 相交于点O ,给出下列四组条件:①AB=CD ,AD=BC ;②AC=BD ,AO=CO ;③AO=CO ,BO=DO ;④AB//CD ,AD=BC ;⑤∠A=∠C ,∠B=∠D ;⑥∠A+∠B=180°,∠B=∠D.其中肯定能判定这个四边形是平行四边形的条件共有( )A.3组B.4组C.5组D.6组二、填空题(本题共6小题,每小题3分,共18分)11.化简22a +-的结果是___________.12.x 的取值范围是_____________. 13.在平面直角坐标系中,点A (-1,-1)与点B (2,4)的距离是____________. 14.如图,ABCD 中,EF 过对角线的交点O ,AB=5,AD=4,OF=1.5,则四边形BCEF 的周长为___________.15.直角三角形ABC 的两边a ,b 30b -=,则第三边c=____________.14题图16题图16.如图,在ABCD 中,AD=2AB ,F 是AD 的中点,作CE ⊥AB ,垂足E 在线段AB 上,连接EF ,CF ,则下列结论中肯定成立的是_____________.(把全部正确结论的序号都填在横线上) ①12DCF BCD ∠=∠;②EF=CF ;③BEC CEF S S ∆∆=;④∠DFE=3∠AEF. 三.解答题:(共7道题,共52分) 17.计算:(每小题4分共8分)(1(22-;(2(112--.18.(本题6分)已知:2a =,2b =,求代数式22a b ab -的值.19.(本题6分)如图,P 是△ABC 边BC 上的动点,PE//AB ,PF//AC ,且PE+PF=AB. 求证:△ABC 是等腰三角形.20.(本题7分)如图,有一长、宽、高分别为5cm 、4cm 、3cm 的木箱,在它里面放入一根7cm 的细木棍,请你算一算,这根细木棍能不能放入木箱里.21.(本题8分)如图,在△ABC 中,BD 、CE 分别是边AC 、AB 上的中线,BD 与CE 相交于点O ,试猜想OB 与OD 的长度有什么关系?并说明理由.22.(本题8分)如图①,用硬板纸做成的两个全等的直角三角形,两直角边的长分别是a 和b ,斜边长为c ,如图②是以c 为直角边的等腰直角三角形.请你将他们拼成一个梯形. (1)画出拼成的这个图形的示意图;(3分) (2)利用(1)中画出的图形证明勾股定理.(5分)图①图②23.(本题9分)如图,将ABCD 沿过点A 的直线l 折叠,使点D 落到AB 边上的点D '处,折痕l 交CD 边于点E ,连接BE.(1)求证:四边形BCED '是平行四边形;(4分)(2)若点D '恰好是AB 的中点,求证:222DC AE BE =+.(5分)。

(常考题)人教版初中数学八年级数学下册第三单元《平行四边形》检测(答案解析)(4)

一、选择题1.如图为某城市部分街道示意图,四边形ABCD 为正方形,点G 在对角线BD 上,GE CD ⊥,GF BC ⊥,1500m AD =,小敏行走的路线为B A G E →→→,小聪行走的路线为B A D E F →→→→.若小敏行走的路程为3100m ,则小聪行走的路程为( )A .3100mB .4600mC .5500mD .6100m 2.如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,已知6AD =(正方形的四条边都相等,四个内角都是直角),2DF =.则AEF 的面积AEF S =( )A .6B .12C .15D .30 3.如图,将长方形纸片沿对角线折叠,重叠部分为BDE ,则图中全等三角形共有( )A .0对B .1对C .2对D .3对4.下列命题是真命题的是( )A .三角形的三条高线相交于三角形内一点B .一组对边平行,另一组对边相等的四边形是平行四边形C .对于所有自然数n ,237n n -+的值都是质数D .三角形一条边的两个顶点到这条边上的中线所在直线的距离相等5.已知四边形ABCD 是平行四边形,下列结论中不正确的是( )A .当AB BC =时,四边形ABCD 是菱形B .当AC BD ⊥时,四边形ABCD 是菱形C .当90ABC ∠=时,四边形ABCD 是矩形D .当AC BD =时,四边形ABCD 是正方形6.已知点()0,0A ,()0,4B ,()3,4C t +,()3,D t .记()N t 为ABCD 内部(不含边界)整点的个数,其中整点是指横坐标和纵坐标都是整数的点,则()N t 所有可能的值为( )A .6、7B .7、8C .6、7、8D .6、8、9 7.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC 于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .45D .108.如图1,平行四边形纸片ABCD 的面积为120,20AD =.今沿两对角线将四边形ABCD 剪成甲、乙、丙、丁四个三角形纸片.若将甲、丙合并(AD 、CB 重合)形成一轴对称图形(戊),如图2所示,则图形戊的两对角线长度和为( )A .26B .29C .2243 D .12539.顺次连接矩形ABCD 各边的中点,所得四边形是( )A .平行四边形B .正方形C .矩形D .菱形10.如图,在直角三角形ABC 中,∠ACB =90°,AC =3,BC =4,点M 是边AB 上一点(不与点A ,B 重合),作ME ⊥AC 于点E ,MF ⊥BC 于点F ,若点P 是EF 的中点,则CP 的最小值是( )A .1.2B .1.5C .2.4D .2.511.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .4 12.如图,将矩形ABCD 折叠,使点C 和点A 重合,折痕为EF .若5AF =,3BE =,则EF 的长为( )A .23B .17C .25D .35二、填空题13.在正方形ABCD 中,点E 在对角线BD 上,点P 在正方形的边上,若∠AEB=105°,AE=EP ,则∠AEP 的度数为_________.14.如图,EF 过ABCD 对角线的交点O ,交AD 于E ,交BC 于F ,若ABCD 的周长为19, 2.5OE =,则四边形EFCD 的周长为_____.15.如图,在ABC ∆中,点,D E 分别在边,AB AC 上,且BD CE =,连接,CD DE ,点,,M N P 分别是,,DE BC CD 的中点,34PMN ∠=,则MPN ∠的度数是_______.16.如图,在ABCD 中,AC 与BD 相交于点O ,(1)若18cm,24cm AC BD ==,则AO =_______,BO =_______.又若13AB =厘米,则COD △的周长为________.(2)若AOB 的周长为30cm ,12cm AB =,则对角线AC 与BD 的和是________. 17.已知:如图,把长方形纸片ABCD 沿EF 折叠,使D C 、分别落在D C ''、的位置,若65EFB ︒∠=,则AED '∠的度数为_________.18.如图,A B 、两点分别位于山脚的两端,小明想测量A B 、两点间的距离,于是想了个主意,先在地上取一个可以直接达到A B 、两点的点C ,找到AC BC 、的中点D 、E ,并且测出DE 的长为15m ,则A B 、两点间的距离为_________m .19.如图,矩形ABCD 全等于矩形BEFG ,点C 在BG 上,连接DF ,点H 为DF 的中点,若20AB =,12BC =,则CH 的长为__________.20.如图所示,在ABCD 中,AC 与BD 相交于点O ,若DAC EAC ∠=∠,4AE =,3AO =,则AEC S ∆的面积为____.三、解答题21.如图,过ABCD 对角线AC 与BD 的交点E 作两条互相垂直的直线,分别交边AB 、BC .CD 、DA 于点P 、M 、Q 、N .(1)求证:PBE QDE ≅△△;(2)顺次连接点P 、M 、Q 、N ,求证:四边形PMQN 是菱形.22.如图,四边形ABCD 中,//AD BC ,90A D ∠=∠=︒,点E 是AD 的中点,连接BE ,将ABE △沿BE 折叠后得到GBE ,且点G 在四边形ABCD 内部,延长BG 交DC 于点F ,连接EF .(1)求证:EGF EDF △△≌;(2)求证:BG CD =;(3)若点F 是CD 的中点,8BC =,求CD 的长.23.已知:如图,在梯形ABCD 中,AD ∥BC ,点E 、F 在边BC 上,DE ∥AB ,AF ∥CD ,且四边形AEFD 是平行四边形.(1)试判断线段AD 与BC 的长度之间有怎样的数量关系?并证明你的结论; (2)现有三个论断:①AD AB =;②=B C +∠∠90°;③=2B C ∠∠.请从上述三个论断中选择一个论断作为条件,证明四边形AEFD 是菱形.24.如图,将长方形ABCD 沿着对角线BD 折叠,使点C 落在C '处,BC '交AD 于点E .(1)试判断BDE 的形状,并说明理由.(2)若4AB =,8AD =,求AE 的长.参考答案25.如图1,正方形ABCD ,E 为平面内一点,且90BEC ∠=︒,把BCE 绕点B 逆时针旋转90︒得BAG ,直线AG 和直线CE 交于点F .(1)证明:四边形BEFG 是正方形;(2)若135AGD ∠=︒,猜测CE 和CF 的数量关系,并说明理由;(3)如图2,连接DF ,若13AB =,17CF =,求DF 的长.26.“半角型”问题探究:如图1,在四边形ABCD 中,AB =AD ,∠BAD =120°,∠B =∠ADC =90°,且∠EAF =60°,探究图中线段BE ,EF ,FD 之间的数量关系.(1)小明同学的方法是将△ABE 绕点A 逆时针旋转120°到△ADG 的位置,然后再证明△AFE ≌△AFG ,从而得出结论:(2)如图2,在四边形ABCD 中,AB =AD ,∠B+∠D =180°,E ,F 分别是边BC ,CD 上的点,且∠EAF =12∠BAD ,上述结论是否仍然成立,并说明理由. (3)如图3,边长为4的正方形ABCD 中,点E 、F 分别在AB 、CD 上,AE =CF =1,O 为EF 的中点,动点G 、H 分别在边AD 、BC 上,EF 与GH 的交点P 在O 、F 之间(与O 、F 不重合),且∠GPE =45°,设AG =m ,求m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】连接CG ,由正方形的对称性,易知AG=CG ,由正方形的对角线互相平分一组对角,GE ⊥DC ,易得DE=GE .在矩形GECF 中,EF=CG .要计算小聪走的路程,只要得到小聪比小敏多走了多少就行.【详解】解:连接GC ,∵四边形ABCD 为正方形,所以AD=DC ,∠ADB=∠CDB=45°,∵∠CDB=45°,GE ⊥DC ,∴△DEG 是等腰直角三角形,∴DE=GE .在△AGD 和△GDC 中,AD CD ADG CDG DG DG ⎧⎪∠∠⎨⎪⎩===,∴△AGD ≌△GDC (SAS )∴AG=CG ,在矩形GECF 中,EF=CG ,∴EF=AG .∵BA+AD+DE+EF-BA-AG-GE ,=AD=1500m .∵小敏共走了3100m ,∴小聪行走的路程为3100+1500=4600(m ),故选:B .【点睛】本题考查了正方形的性质、全等三角形的性质和判定、矩形的性质及等腰三角形的性质.解决本题的关键是证明AG=EF ,DE=GE .2.C解析:C【分析】延长CD 到G ,使DG=BE ,连接AG ,易证ADG ABE △≌△所以AE=AG ,BAE=DAG ∠∠ , 证AFG AEG △≌△,所以 GF=EF ,设BE=DG=x ,则EF=FG=x+2,在ECF Rt △中,利用勾股定理得222462x x 解得求出x ,最后求AGF S △问题即可求解.【详解】 解:延长CD 到G ,使DG=BE ,连接AG ,在正方形ABCD 中,AB=AD ,90ADB B C ADC ∠=∠=∠=∠=︒90ADG B ∴∠=∠=︒,ADG ABE(SAS)∴△≌△,,AG AE BAE DAG ∴=∠=∠,45EAF ∠=︒ ,45DAF BAE ∴∠+∠=︒ ,GAF=45DAG DAF ∴∠∠+∠=︒,GAF=EAF ∴∠∠,又AF=AF ,AFG AEG ∴△≌△(SAS),EF=FG ∴,设BE=DG=x ,则EC=6-x ,FC=4,EF=FG=x+2,在ECF Rt △中,222=FC CE EF +,()()22246=2x x ∴+-+,解得,x=3, GF=DG DF=2+3=5∴+,AEF AGF 11S =S =GF AD=56=1522∴⨯⨯△△, 故选:C .【点睛】本题考查了正方形的性质,全等三角形的判定和性质,勾股定理,正确构造辅助线,证三角形全等是解决本题的关键.3.C解析:C【分析】因为图形对折,所以首先△CDB≌△ABD,由于四边形是长方形,进而可得△ABE≌△CDE,如此答案可得.【详解】解:∵△BDC是将长方形纸片ABCD沿BD折叠得到的,∴CD=AB,AD=BC,∵BD=BD,∴△CDB≌△ABD(SSS),∴∠CBD=∠ADB∴EB=ED∴CE=AE又AB=CD∴△ABE≌△CDE,∴图中全等三角形共有2对故选:C【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.做题时要由易到难,循序渐进.4.D解析:D【分析】根据钝角三角形的高的交点在三角形外部可对A进行判断;根据平行四边形的判定对B进行判断;取n=6可对C进行判断;根据三角形全等的知识可对D进行判断.【详解】解:A、钝角三角形的三条高线相交于三角形外一点,所以A选项错误;B、一组对边平行,另一组对边也平行的四边形是平行四边形,所以B选项错误;C、当n=6时,n2-3n+7=25,25不是质数,所以C选项错误;D、通过证明三角形全等,可以证明三角形一条边的两个顶点到这条边上的中线所在直线的距离相等,所以D选项准确.故选:D.【点睛】本题考查了命题:判断事物的语句叫命题;正确的命题称为真命题;错误的命题称为假命题.也考查了平行四边形的判定及全等三角形的判定和性质.5.D解析:D【分析】根据邻边相等的平行四边形是菱形;根据所给条件可以证出邻边相等;根据有一个角是直角的平行四边形是矩形;根据对角线相等的平行四边形是矩形.【详解】解:A、根据邻边相等的平行四边形是菱形可知:四边形ABCD是平行四边形,当AB BC=时,它是菱形,故本选项不符合题意;B、根据对角线互相垂直的平行四边形是菱形知:当AC BD⊥时,四边形ABCD是菱形,故本选项不符合题意;C、根据有一个角是直角的平行四边形是矩形知:当90ABC∠=时,四边形ABCD是矩形,故本选项不符合题意;D、根据对角线相等的平行四边形是矩形可知:当AC BD=时,它是矩形,不是正方形,故本选项符合题意;综上所述,符合题意是D选项;故选:D.【点睛】本题考查了对矩形的判定、菱形的判定,正方形的判定的应用,能正确运用判定定理进行判断是解此题的关键,难度适中.6.C解析:C【分析】分别求出t=1,t=1.5,t=2,t=0时的整数点,根据答案即可求出答案.【详解】解:当t=0时,A(0,0),B(0,4),C(3,4),D(3,0),此时整数点有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),共6个点;当t=1时,A(0,0),B(0,4),C(3,5),D(3,1),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),共8个点;当t=1.5时,A(0,0),B(0,4),C(3,5.5),D(3,1.5),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),共7个点;当t=2时,A(0,0),B(0,4),C(3,6),D(3,2),此时整数点有(1,1),(1,2),(1,3),(1,4),(2,2),(2,3),(2,4),(2,5),共8个点;故选项A错误,选项B错误;选项D错误,选项C正确;故选:C.【点睛】本题考查了平行四边形的性质.主要考查学生的理解能力和归纳能力.7.A解析:A【分析】过A作AH⊥BC于H,根据已知条件得到AE=CE,求得DE=12BC,求得DF=12AH,根据三角形的面积公式得到DE•DF=2,得到AB•AC=8,求得AB=2(负值舍去),根据勾股定理即可得到结论.【详解】解:过A作AH⊥BC于H,∵D是AB的中点,∴AD=BD,∵DE∥BC,∴AE=CE,∴DE=1BC,2∵DF⊥BC,∴DF∥AH,DF⊥DE,∴BF=HF,∴DF=1AH,2∵△DFE的面积为1,∴1DE•DF=1,2∴DE•DF=2,∴BC•AH=2DE•2DF=4×2=8,∴AB•AC=8,∵AB=CE,∴AB=AE=CE=1AC,2∴AB•2AB=8,∴AB=2(负值舍去),∴AC=4,∴2222+=+=2425AB AC故选:A.【点睛】本题考查了三角形中位线定理,三角形的面积的计算,勾股定理,平行线的判定和性质,正确的识别图形是解题的关键.8.A解析:A【分析】由题意可得对角线EF⊥AD,且EF与平行四边形的高相等,进而利用面积与边的关系求出BC边的高即可.【详解】解:如图,连接AD、EF,则可得对角线EF⊥AD,且EF与平行四边形的高相等.∵平行四边形纸片ABCD的面积为120,AD=20,∴BC=AD=20,12EF×AD=12×120,∴EF=6,又AD=20,∴则图形戊中的四边形两对角线之和为20+6=26,故选:A.【点睛】本题考查了平行四边形的性质以及图形的对称问题,熟练掌握平行四边形的性质是解题的关键.9.D解析:D【分析】利用三角形中位线定理,矩形对角线的性质,菱形的判定判断即可.【详解】如图,设矩形ABCD各边的中点依次为E,F,G,H,∴EF,FG,GH,HE分别是△ABC,△BCD,△CDA,△DAB的中位线,∴EF=12AC,FG=12BD,GH=12AC,EH=12BD,∵四边形ABCD是矩形,∴AC=BD,∴EF=FG=GH=HE,∴四边形EFGH是菱形,故选D.【点睛】本题在矩形背景考查了三角形中位线定理,菱形的判定,矩形的性质,熟练运用三角形中位线定理,矩形的性质,菱形的判定是解题的关键.10.A解析:A【分析】先由勾股定理求出AB=5,再证四边形CEMF是矩形,得EF=CM,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,然后由三角形面积求出CM=2.4,即可得出答案.【详解】解:连接CM,如图所示:∵∠ACB=90°,AC=3,BC=4,∴2222345AC BC++=,∵ME⊥AC,MF⊥BC,∠ACB=90°,∴四边形CEMF是矩形,∴EF=CM,∵点P是EF的中点,∴CP=12EF,当CM⊥AB时,CM最短,此时EF也最小,则CP最小,∵△ABC的面积=12AB×CM=12AC×BC,∴CM=•AC BCAB=342.45⨯=,∴CP=12EF=12CM=1.2,故选:A .【点睛】本题考查了矩形的判定与性质、勾股定理、三角形面积以及最小值等知识;熟练掌握矩形的判定与性质是解题的关键.11.C解析:C【分析】根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC ≌△DEF ,∴EF=EC ,DF=DC ,∠CDE=∠FDE ,∵DA=DF ,DG=DG ,∴Rt △ADG ≌Rt △FDG ,∴AG=FG ,∠ADG=∠FDG ,∴∠GDE=∠FDG+∠FDE =12(∠ADF+∠CDF ) =45°,∵△BGE 的周长=BG+BE+GE ,GE=GF+EF=EC+AG ,∴△BGE 的周长=BG+BE+ EC+AG=AB+AC ,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.12.C解析:C【分析】如图,过E 作EM AD ⊥于M ,证明//,AD BC 90B ∠=︒,四边形ABEM 为矩形,再证明5AE AF ==,求解43ME AB AM BE ====,,可得:2MF =,再利用勾股定理可得答案.【详解】解:如图,过E 作EM AD ⊥于M ,矩形ABCD ,53AF BE ==,,//,AD BC ∴ 90B ∠=︒, 四边形ABEM 为矩形,,AFE CEF ∴∠=∠由对折可知:,AEF CEF ∠=∠,AFE AEF ∴∠=∠5AE AF ∴==,224AB AE BE ∴=-=,四边形ABEM 为矩形,43ME AB AM BE ∴====,, 2MF ∴=,22+2 5.EF ME MF ∴=故选:.C【点睛】本题考查的是轴对称的性质,矩形的判定与性质,等腰三角形的判定,勾股定理的应用,掌握以上知识是解题的关键.二、填空题13.60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB 再以E 为圆心EA 为半径作圆与正方形的交点即为满足条件的P 点分类讨论即可【详解】如图所示在正方形ABCD 中∠AEB=105°∵点P 在正解析:60°或90°或150°【分析】首先根据题意作出正方形以及∠AEB ,再以E 为圆心,EA 为半径作圆,与正方形的交点即为满足条件的P 点,分类讨论即可.【详解】如图所示,在正方形ABCD 中,∠AEB=105°,∵点P 在正方形的边上,且AE=EP ,∴可以E 为圆心,EA 为半径作圆,与正方形的交点即为满足条件的P 点,①当P 在AD 上时,如图,AE=EP 1,∵∠EBA=45°,∴∠EAB=180°-45°-105°=30°,∠EAP 1=60°,△EAP 1为等边三角形,∴此时∠AEP 1=60°;②当P 在CD 上时,如图,AE=EP 2,AE=EP 3,由①可知∠DEP1=180°-105°-60°=15°,∴此时∠DEP1=∠DEP2=15°,∠CEP2=∠AEP1=60°,∴此时∠AEP2=60°+15°+15°=90°;∠AEP3=2∠AED=2×(180°-105°)=150°,故答案为:60°或90°或150°.【点睛】本题考查正方形的性质以及等腰三角形的判定,熟练运用尺规作图的方式进行等腰三角形的确定是解题关键.14.145【分析】根据平行四边形的性质易证三角形全等进而易得AE=CF故四边形的周长=AD+CD+EF根据已知求解即可【详解】解:在平行四边形ABCD中AD∥BCAC与BD互相平分∴AO=OC∠DAC=解析:14.5【分析】根据平行四边形的性质易证三角形全等,进而易得AE=CF,故四边形EFCD的周长=AD+CD+EF,根据已知求解即可.【详解】解:在平行四边形ABCD中,AD∥BC,AC与BD互相平分∴AO=OC,∠DAC=∠ACB,∠AOE=∠COF∴△AOE≌△COF∴AE=CF,OF=OE=2.5∴四边形EFCD的周长=CF+DE+CD+EF=AE+DE+CD+EF=AD+CD+EF=192.5 2×2=14.5.故答案为:14.5.【点睛】本题考查了平行四边形的性质以及三角形全等的证明,将所求线段转化为已知线段是解题的关键.15.【分析】根据点MNP分别是DEBCCD的中点可以证明MP是ΔDEC的中位线NP是ΔDBC的中位线根据中位线定理可得到MP=NP再根据等腰三角形的性质得到∠PMN=∠PNM最后根据三角形的内角和定理可解析:112【分析】根据点 M,N,P 分别是 DE,BC,CD 的中点,可以证明MP是ΔDEC的中位线,NP是ΔDBC的中位线,根据中位线定理可得到MP=NP,再根据等腰三角形的性质得到∠PMN=∠PNM,最后根据三角形的内角和定理可以得到∠MPN.【详解】解:如图∵点 M,N,P 分别是 DE,BC,CD 的中点∴MP是ΔDEC的中位线,∴MP=1EC,2NP是ΔDBC的中位线∴NP=1BD,2又∵BD=CE∴MP=NP∴∠PMN=∠PNM=34∘∴∠MPN=180∘-∠PMN-∠PNM=180∘-34∘-34∘=112∘故答案位:112°【点睛】本题考查了三角形的中位线定理,等腰三角形的性质和判定,以及三角形的内角和定理,解题的关键是灵活运用三角形的中位线定理求线段的长度.16.9cm12cm34cm36cm【分析】(1)根据平行四边形对角线互相平分对边相等可得结果;(2)根据△AOB的周长和AB的长度得到AO+BO从而得到AC+BD【详解】解:(1)在平行四边形ABCD中解析:9cm 12cm 34cm 36cm【分析】(1)根据平行四边形对角线互相平分,对边相等可得结果;(2)根据△AOB的周长和AB的长度,得到AO+BO,从而得到AC+BD.解:(1)在平行四边形ABCD 中,∵AC=18cm ,BD=24cm ,∴AO=12AC=9cm=CO ,BO=12BD=12cm=DO , ∵AB=13cm ,∴CD=13cm ,∴COD △的周长为CO+DO+CD=9+12+13=34cm ,故答案为:9cm ,12cm ,34cm ;(2)∵△AOB 的周长为30cm ,∴AB+AO+BO=30cm ,∵AB=12cm ,∴AO+BO=30-12=18cm ,∴AC+BD=2AO+2BO=36cm .【点睛】此题考查了平行四边形的性质:平行四边形的对角线互相平分,平行四边形的对边相等. 17.【分析】由长方形纸片可得再求解由折叠的性质求解结合平角的定义可得答案【详解】解:长方形纸片由折叠可得:故答案为:【点睛】本题考查的是矩形与折叠平行线的性质简单题解题的关键是理解折叠的性质解析:50︒【分析】由长方形纸片ABCD ,65EFB ∠=︒可得//,AD BC 再求解,DEF ∠ 由折叠的性质求解,D EF '∠ 结合平角的定义可得答案.【详解】 解: 长方形纸片ABCD ,65EFB ∠=︒,//,AD BC ∴65DEF EFB ∴∠=∠=︒,由折叠可得:65D EF DEF '∠=∠=︒,180180656550.AED D EF DEF ''∴∠=︒-∠-∠=︒-︒-︒=︒故答案为:50.︒【点睛】本题考查的是矩形与折叠,平行线的性质,简单题,解题的关键是理解折叠的性质. 18.30【分析】由DE 分别是边ACAB 的中点首先判定DE 是三角形的中位线然后根据三角形的中位线定理求得AB 的长即可【详解】解:∵DE 分别是ACBC 的中点∴DE 是△ABC 的中位线根据三角形的中位线定理得:解析:30【分析】由D ,E 分别是边AC ,AB 的中点,首先判定DE 是三角形的中位线,然后根据三角形的中位线定理求得AB 的长即可.解:∵D、E分别是AC、BC的中点,∴DE是△ABC的中位线,根据三角形的中位线定理,得:AB=2DE=30m.故答案为:30.【点睛】本题考查了三角形中位线定理的运用;熟记三角形中位线定理是解决问题的关键.19.【分析】连接并延长交于Q由矩形的性质得出由平行线的性质得出由证得得出则是等腰直角三角形得出由直角三角形斜边上的中线性质即可得出结果【详解】如图所示:连接并延长交于Q∵矩形全等于矩形∴∴∵点H为的中点解析:42【分析】连接GH并延长GH交CD于Q,由矩形的性质得出20AB CD BG===,12BC FG==,////,90FG AE CD GCQ∠=,由平行线的性质得出HFG HDQ∠=∠,由ASA证得HFG HDQ≌,得出12DQ FG==,HG HQ=,8CG BG BC=-=,8CQ CD DQ=-=,则GCQ是等腰直角三角形,得出282GQ CQ==,由直角三角形斜边上的中线性质即可得出结果.【详解】如图所示:连接GH并延长GH交CD于Q,∵矩形ABCD全等于矩形BEFG,∴20AB CD BG===,12BC FG==,////FG AE CD,90GCQ∠=,∴HFG HDQ∠=∠,∵点H为DF的中点,∴HF HD=,在HFG和HDQ中,HFG HDQHF HDGHF QHD∠=∠⎧⎪=⎨⎪∠=∠⎩,∴()HFG HDQ ASA≌,∴12DQ FG==,HG HQ=,20128CG BG BC =-=-=,20128CQ CD DQ =-=-=,∴GCQ 是等腰直角三角形, ∴282GQ CQ ==, 在Rt GCQ 中,HG HQ =,∴11824222CH GQ ==⨯=, 故答案为:42.【点睛】本题考查了矩形的性质、等腰直角三角形的判定与性质、全等三角形的判定与性质等知识;熟练掌握矩形的性质,通过作辅助线构建全等三角形是解题的关键.20.【分析】先证明△AEC 是等腰三角形再证OE ⊥AC 然后用勾股定理求出OE 即可求【详解】解:如图1连接OE ∵四边形ABCD 是平行四边形∴OA=OC=3AD ∥BC ∴∠DAC=∠ACB 又∵∴∠ACB=∠EA 解析:37【分析】先证明△AEC 是等腰三角形,再证OE ⊥AC ,然后用勾股定理求出OE ,即可求AEC S ∆.【详解】解:如图1,连接OE ,∵四边形ABCD 是平行四边形,∴OA=OC=3,AD ∥BC ,∴∠DAC=∠ACB ,又∵DAC EAC ∠=∠,∴∠ACB=∠EAC ,∴AE=EC=4,∴△AEC 是等腰三角形,∴OE ⊥AC ,在Rt △AOE 中,由勾股定理得,AO 2+OE 2=AE 2,∴32+OE 2=42,∴7∴167372AEC s =⨯= 故答案是:37本题综合考查了平行四边形的性质,等腰三角形的判定与性质和勾股定理等相关知识,证明△AEC 是等腰三角形是解本题的关键.三、解答题21.(1)见解析;(2)见解析.【分析】(1)由ASA 证PBE QDE ≅△△即可;(2)由全等三角形的性质得出EP EQ =,同理可得EM EN =,根据对角线互相平分的四边形是平行四边形得四边形PMQN 是平行四边形,再由对角线互相垂直的平行四边形是菱形,即可得出结论.【详解】(1)证明:四边形ABCD 是平行四边形,EB ED ∴=,//AB CD ,EBP EDQ ∴∠=∠,在PBE △和QDE △中,EBP EDQ EB ED BEP DEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,()PBE QDE ASA ∴≅△△;(2)证明:如图所示:PBE QDE ≅△△,EP EQ ∴=,同理可得EM EN =,∴四边形PMQN 是平行四边形,PQ MN ⊥,∴四边形PMQN 是菱形.【点睛】本题考查了平行四边形的判定与性质,菱形的判定,全等三角形的判定与性质;熟练掌握菱形的判定和平行四边形的判定与性质,证明三角形全等是解题的关键.22.(1)见解析;(2)见解析;(3)2(1)根据HL 证明Rt △EGF ≌Rt △EOF 即可;(2)证明四边形ABCD 为矩形,可得BG=CD ;(3)设CD=x ,分别表示出BE 2,EF 2,BF 2,证明∠BEF=90°,利用勾股定理得到方程,解之即可.【详解】解:(1)∵E 是AD 中点,∴AE=DE ,由折叠可知:AE=EG ,∠EGB=∠EGF=∠D=∠A=90°,∴EG=ED ,又EF=EF ,∴Rt △EGF ≌Rt △EOF (HL );(2)△ABE 折叠得到△GBE ,∴AB=BG ,∵AD ∥BC ,∠A=∠D=90°,∴∠ABC=90°,∠C=90°,∴四边形ABCD 为矩形,∴AB=DC ,∴BG=CD ;(3)∵点E 是AD 中点,AD=BC=8,∴AE=DE=4,∵点F 是CD 中点,∴设CD=x ,则DF=12x , 则BE 2=BG 2+EG 2,即BE 2=CD 2+AE 2,即BE 2=x 2+42,且EF 2=DE 2+DF 2,即EF 2=42+(12x )2, 且BF 2=BC 2+CF 2,即BF 2=82+(12x )2, ∵∠AEB=∠GEB ,∠DEF=∠GEF ,∴∠BEF=∠GEB+∠GEF=90°,∴BF 2=BE 2+EF 2,∴82+(12x )2= x 2+42+42+(12x )2,解得:x=,即CD=【点睛】本题考查了矩形的判定和性质,勾股定理,折叠的性质,全等三角形的判定和性质,熟记性质,找出三角形全等的条件,合理利用勾股定理得到方程是解题的关键.23.(1)3BC AD ,见解析;(2)见解析【分析】(1)先证明四边形ABED 是平行四边形,得到AD BE =,同理得到AD FC =,根据四边形AEFD 是平行四边形,得到AD EF =,从而得到AD BE EF FC ===,进而得到3BC AD =;(2)选择论断②作为条件.根据DE ∥AB ,得到B DEC ∠=∠,从而证明90DEC C ∠+∠=,得到90EDC ∠=,根据EF FC =,得到DF EF =,从而证明平行四边形AEFD 是菱形.【详解】解:(1)线段AD 与BC 的长度之间的数量为:3BC AD =.证明:∵AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形.∴AD BE =.同理可证,四边形AFCD 是平行四边形.∴AD FC =.又∵四边形AEFD 是平行四边形,∴AD EF =.∴AD BE EF FC ===.∴3BC AD =.(2)选择论断②作为条件.证明:∵DE ∥AB ,∴B DEC ∠=∠.∵90B C ∠+∠=,∴90DEC C ∠+∠=.即得90EDC ∠=.又∵EF FC =,∴DF EF =.∵四边形AEFD 是平行四边形,∴平行四边形AEFD 是菱形.【点睛】本题考查平行四边形的判定与性质,菱形的判定,直角三角形斜边上的中线等于斜边的一半等知识,熟知相关定理并根据题意灵活应用是解题关键.24.(1)BDE 是等腰三角形,证明见解析;(2)3AE =.【分析】(1)根据折叠的性质可知EBD DBC ∠=∠,又因为//AD BC ,可知ADB DBC ∠=∠,即推出ADB EBD ∠=∠,所以BE DE =,BDE 为等腰三角形.(2)设AE x =,则8BE DE x ==-,在Rt ABE △中根据勾股定理列出等式,解出x 即可.【详解】(1)BDE 是等腰三角形,理由是:由折叠得:EBD DBC ∠=∠,∵四边形ABCD 是矩形,∴//AD BC ,∴ADB DBC ∠=∠,∴ADB EBD ∠=∠,∴BE DE =,∴BDE 是等腰三角形.(2)设AE x =,则8BE DE x ==-,∵四边形ABCD 是矩形,∴90A ∠=︒,∴在Rt ABE △中,222AB AE BE +=,即2224(8)x x +=-,解得:3x =,∴3AE =.【点睛】本题考查翻折的性质,矩形的性质,等腰三角形的判定以及勾股定理.根据翻折的性质间接证明出BE DE =是解答本题的关键.25.(1)见解析;(2)CE=CF ,理由见解析;(3)【分析】(1)根据正方形的判定定理进行证明即可;(2)证明Rt ADH ≌Rt BAG 得DH AG =,AH=BG ,再证明△DHG 是等腰直角三角形,可得DH=BH=AG ,最后由BEFG 是正方形可得结论;(3)分点F 在AB 右侧和左侧两种情况求解即可.【详解】解:(1)证明:90BEC =︒∠,把BCE 绕点B 逆时针旋转90︒得BAG , BE BG ∴=,90EBG ∠=︒,90BGA ∠=︒,则90BGF ∠=︒,90BEC EBG BGF ∴∠=∠=∠=︒,∴四边形BEFG 是正方形;(2)CE CF =,理由如下:过D 点作DH AF ⊥,垂足为H ,如图,四边形ABCD 是正方形,90BAD ∴∠=︒,AB AD =,90BGA ∠=︒,90DAH BAG ∴∠+∠=︒,90BAG ABG ∠+∠=︒,DAH ABG ∴∠=∠,在Rt ADH 和Rt BAG 中,90,DAH ABG BGA AHD AD AB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩Rt ADH ∴≌()Rt BAG AAS ,DH AG ∴=,∵∠DGH =180°-∠AGD =45°∴在Rt △DHG 中,∠GDH =45°∴DH =GH =AG ∴1122AG GH AH BG === 又AG CE =,EF BG =,2EF CE ∴=,CE CF ∴=;(3)①点F 在AB 右侧时,如图,过D 作DK ⊥AG ,交其延长线于K .设正方形BEFG 的边长为x ,则BE x =,17CE x =-,在Rt BEC △中,13BC =,根据勾股定理可得,222BE CE BC +=,即222(17)13x x +-=,解得112x =,25(x =不符合条件,舍去),即12BG BE ==,17125AG CE ==-=,∵四边形BEFG 是正方形,∴∠BAD =90°.∵DK ⊥AG ,∴∠K =90°.∵∠BAG +∠KAD =180°—∠BAD =90°∠ADK +∠KAD =90°∴∠BAG =∠ADK在Rt △ABG 和Rt △DAK 中,90G K AB ADBAG ADK ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩所以Rt △ADK ≌Rt BAG ,则AK =BG =12,DK =AG =5,∵AF +FK =AK =BG=GF=AG +AF∴FK =AG =5在R t △DFK 中,根据勾股定理可得,DF 2252DK FK +=②点F 在AB 左侧时,如图,过D 作DK ⊥AG ,交其延长线于K .方法同①,可得FK =AG =12,在R t △DFK 中,根据勾股定理可得,DF 22122DK FK +=综上所述,DF 的长为522【点睛】此题是几何变换综合题,主要考查了旋转的性质,全等三角形的判定和性质,正方形的性质,勾股定理,熟练掌握相关性质和定理是解本题的关键.26.(1)见详解;(2)见详解;(3)4833m <≤ 【分析】(1)根据旋转变换及三角形全等即可得解;(2)延长FD 到点G ,使DG=BE ,连接AG ,通过,ABE ADG △≌△AEF AGF ≌即可得解;(3)根据题意分两种情况∶P 与O 重合,H 与C 重合,通过构造全等三角形,求得MN=NQ ,再设BM=a ,则CM=4-a ,MN=QN=a+2,根据222MN CM CN =+,得出222(2)(4)2a a +=-+,进而得到a=43,求得AG 的长为于43;根据BM=43,可得48'433AG CM ==-=,进而分析计算即可得出m 的取值范围 . 【详解】解∶(1)结论∶ EF=BE+FD .理由如下 ∶由旋转及题意知,F ,D ,G 三点共线,BE=DG ,AE=AG ,∠BAE=∠DAG ,∠EAF=12∠BAD, ∴∠GAF=∠DAF+∠DAG=∠DAF+∠BAE=∠BAD-∠EAF=∠EAF ,∴∠EAF=∠GAF ,在△AEF 和△AGF 中, AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴AEF AGF ≌∴.EF=FG , 又∵FG=DG+DF=BE+DF ,∴EF=BE+DF.(2)结论EF=BE+DF 仍然成立.理由如下 ∶延长FD 到点G ,使DG=BE ,连接AG ,如图所示∶∵∠B+∠ADC =180°,180ADF ADG ∠+∠=︒ ,∴B ADG ∠=∠,在△ABE 和△ADG 中,DG BE B ADG AB AD =⎧⎪∠=∠⎨⎪=⎩,,ABE ADG ∴△≌△∴AE=AG ,∠BAE=∠DAG ,12EAF BAD ∠=∠ GAF DAF DAG FAD BAE BAD EAF EAF ∴∠=∠+∠=∠+∠=∠-∠=∠ , ∴∠EAF=∠GAF ,在△AEF 和△AGF 中,AE AG EAF GAF AF AF =⎧⎪∠=∠⎨⎪=⎩, ∴,AEF AGF △≌△∴.EF=FG.又 ∴FG=DG+DF=BE+DF ,∴EF=BE+DF .(3)①假设P 与O 重合, 如图,∵O 为EF 的中点,∴O 为正方形ABCD 的对称中心,过A 作AN //EF 交CD 于N ,则NF=AE=1, ∴DN=CN=2,过O 作''//G H GH 交AD 于'G ,交BC 于'H ,''AG CH ∴=,''DG BH = ,过A 作//''AM G H 交BC 于M ,∴''AG MH = ,'45G OE ∠=︒ ,∴∠MAN=45°,延长CD 到Q ,使DQ=BM ,由AB=AD ,∠B=∠ADQ ,BM=DQ ,可得△ABM ≌△ADQ ,∴AM=AQ,∠BAM=∠DAQ∵∠MAN=45°,∠BAD=90°,∴∠BAM+∠DAN=45°=∠DAQ+∠DAN=∠QAN,∴∠MAN= ∠QAN由AM=AQ ,∠MAN=∠QAN ,AN=AN ,可得△MAN ≌△QAN ,∴MN=NQ设BM=a ,则CM=4-a ,MN=QN=a+2,∵222MN CM CN =+,()()222242a a ∴+=-+ ,解得∶a=43, ∴ BM=43, CM=83又∵'''AG CH MH ==,814'323AG ∴=⨯=, ②当H 与C 重合时,如图由①知BM=4348''433AG CM ==-=∴,∴m 的取值范围为∶4833m <≤ . 【点睛】 本题考查了全等三角形的判定和性质,旋转变换以及正方形的性质,熟练掌握相关各个性质并作辅助线构造出全等三角形是解题的关键.。

安徽省郎溪二中学2024年九年级数学第一学期开学调研试题【含答案】

安徽省郎溪二中学2024年九年级数学第一学期开学调研试题题号一二三四五总分得分A 卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)下列计算结果正确的是()A +=B .2=C =D .=2、(4分)如图是一次函数y =kx +b 的图象,则k 、b 的符号是()A .k >0,b <0B .k <0,b >0C .k <0,b <0D .k >0,b >03、(4分)如图,在平面直角坐标系中,等边△OAB 的顶点B 的坐标为(2,0),点A 在第一象限内,将△OAB 沿直线OA 的方向平移至△O′A′B′的位置,此时点A′的横坐标为3,则点B′的坐标为()A .(4,2)B .(3,3)C .(4,3)D .(3,2)4、(4分)生活处处有数学:在五一出游时,小明在沙滩上捡到一个美丽的海螺,经仔细观察海螺的花纹后画出如图所示的蝶旋线,该螺旋线由一系列直角三角形组成,请推断第n 个三角形的面积为()A .nBC .2nD .25、(4分)如图,,的顶点在上,交于点,若,则()A .B .C .D .6、(4分)如图,正方形ABCD 中,AB=6,G 是BC 的中点.将△ABG 沿AG 对折至△AFG ,延长GF 交DC 于点E ,则DE 的长是()A .1B .1.5C .2D .2.57、(4分)如图,已知一次函数y kx b =+,y 随着x 的增大而增大,且0kb <,则在直角坐标系中它的图象大致是()A .B .C .D .8、(4分)若分式11x x -+有意义,则实数x 的取值范围是()A .1x ≠B .1x ≠-C .1x =D .1x =-二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)阅读下面材料:在数学课上,老师提出如下问题:已知:如图,及边的中点.求作:平行四边形.①连接并延长,在延长线上截取;②连接、.所以四边形就是所求作的平行四边形.老师说:“小敏的作法正确.请回答:小敏的作法正确的理由是__________.10、(4分)如果P (2,m),A (1,1),B (4,0)三点在同一直线上,则m 的值为_________.11、(4分)若五个整数由小到大排列后,中位数为4,唯一的众数为2,则这组数据之和的最小值是_____.12、(4分)如图,在菱形ABCD 中,∠ABC =∠EAF =60,∠BAE =20,则∠CEF =________.13、(4分)是整数,则整数x 的值是_____.三、解答题(本大题共5个小题,共48分)14、(12分)益群精品店以转件21元的价格购进一批商品,该商品可以白行定价,若每件商B 品位价a 元,可卖出(350-10a )件,但物价局限定每件商品的利润率不得超过20%,商店计划要盈利400元,求每件商品应定价多少元?15、(8分)有一个等腰三角形的周长为30。

1.5中位线2

H G F E D B A 课题:中位线(2)主备人:王伟 班级: 姓名: 学习目标:1.了解中点四边形,并能利用其性质进行简单的证明2.逐步学会分析和综合的思考的方法,发展合乎逻辑的思考能力3.经历对合情推理得到的结论的正确性的证明过程,不断感受证明的必要性.感受合情推理和演绎推理都是人们认识事物的重要途径4.感觉探索活动中所体现的转化.类比的思想方法重点难点:中点四边形的性质及应用学习过程:一、知识回顾:1.三角形中位线的定义及性质?梯形中位线的定义及性质?2. 的四边形是中点四边形。

二、探索活动:1.合作与讨论证明:顺次连结任意四边形的各边中点所组成的四边形一定是平行四边形 已知:如图,在四边形ABCD 中, E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点求证:四边形EFGH 是平行四边形2.思考与讨论(1)当原四边形是平行四边形、矩形、菱形、正方形、对角线相等、对角线垂直、对角线既相等又垂直时,中点四边形分别是什么图形?(2)当中点四边形分别是平行四边形、矩形、菱形、正方形时,那么原四边形是什么形状?H G F E D C B A 三、例题点拨:1.已知:如图,在四边形ABCD 中,AC=BD , E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点 求证:四边形EFGH 是菱形变式:若将AC=BD 改为AC ⊥BD ,其余条件不变,那么四边形EFGH 是什么的四边形?中点四边形的形状取决于外面四边形的对角线关系2.已知:如图,已知E 为平行四边形ABCD 中DC 边的延长线上的一点,且CE=DC ,连结AE ,分别交BC 、BD 于点F 、G,连结AC 交BD 于O ,连结OF.求证:AB=2OF.四、拓展训练:1.已知:如图,在四边形ABCD 中,AD=BC,E,F 分别是AB,CD 的中点,AD,BC 的延长线分别与EF 的延长线交于点H,G.求证:∠H=∠BGE适当提示连AC ,取中点五、巩固练习:课本P.33习题3.4六、课后作业:1.顺次连结任意四边形各边中点所得到的四边形一定是( )O G F ED C B A ACH FGDB A A .平行四边形 B .矩形C .菱形D .正方形2.顺次连结四边形四条边的中点,所得的四边形是菱形,则原四边形一定是( )A .平行四边形B .对角线相等的四边形.C .矩形D .对角线互相垂直的四边形.3.已知:如图,四边形ABCD 中,AB=CD ,E 、F 分别是AD 、BC 的中点,G 、H 分别是对角线BD 、CA 的中点,通过观察,你可以发现EF 与GH 有怎样的关系?然后证明你的发现?EF 不一定与上下底垂直4.如图,在等腰梯形ABCD 中,AD ∥BC, M .N 分别是AD 、BC 的中点,E 、F 分别 是BM 、CM 的中点.(1)求证: △ABM ≌△DCM(2)猜想四边形MENF 是怎样的特殊四边形?证明你的结论.教学反思:虽然这节课经过了认真准备,但是由于在实施过程中基于自身的水平和能力,总不能做到十分完美,也正是这些存在的缺点,迫使我要进一步的去思考、去提高。

人教版八年级下册数学《期中检测试题》附答案解析

人 教 版 数 学 八 年 级 下 学 期期 中 测 试 卷学校________ 班级________ 姓名________ 成绩________第I 卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 下列各式:3,2x ,32,2)2(x x +≥-其中二次根式的个数为( )A. B. C. D.2. 下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. 1,2, 3 3. 下列计算正确是( )A. 239-=B. ()233=C. ()233-=-D. 239=4. 杨伯家小院子的四棵小树E 、F 、G 、H 刚好在其四边形院子ABCD 各边的中点上,若在四边形EFGH 内种上小草,则这块草地的形状是( )A. 平行四边形B. 矩形C. 正方形D. 菱形5. 下列命题中,真命题是( )A. 对角线互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线相等的四边形是矩形D. 对角线互相平分的四边形是平行四边形6. 如图,在▱ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A. 3B. 6C. 12D. 247. 如图,已知在Rt ABC 中,90,8ACB AB ∠=︒=,分别以,AC BC 为直径作半圆,面积分别记为12,S S ,则12S S +等于( )A. 2πB. 4πC. 6πD. 8π 8. 计算:()910232()3+⨯-=( ) A. 23+ B. 23- C. 23-+ D. 23--9. 用四张大小一样的长方形纸片拼成一个正方形ABCD (如图),它的面积是48,已知长方形的一边长33,AE =图中空白部分是一个正方形,则这个小正方形的周长为( )A. 23B. 43C. 83D. 310. 如图所示,在矩形ABCD 中,12,20AB AC ==,两条对角线相交于点.以OB OC 、为邻边作第个1OBB C ,对角线相交于点1A ,再以11A B 、1A C 为邻边作第个111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第个1121O B B C ……依此类推.则第个平行四边形的面积为( )A. B. C. D.第II 卷二、填空题(每题4分,满分24分,将答案填在答题纸上)11. 若二次根式x 2-有意义,则x 的取值范围是___.12. 若实数a 、b 满足240a b ++-=,则a b=_____. 13. 若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝2. 14. 如图,在平行四边形ABCD 中,添加一个条件____,使平行四边形ABCD 是矩形.15. 如图,把矩形纸片ABCD 沿EF 折叠,使点落在边AD 上的点处,点落在点处,已知10,4,2AD CD B D =='=.则AE =____.16. 如图,小明在A 时测得某树的影长为2m,B 时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 17. 计算:(1)54520+- (2)()(227227)+-.18. 如图,ABCD 中,E 、F 分别在AD 、BC 上,且//EF AB .求证:EF CD =.19. 如图,在ABC 中,AB =BC ,D 、E 、F 分别是BC 、AC 、AB 边上的中点.(1)求证:四边形BDEF 是菱形.(2)若10,AB cm =求四边形BDEF 的周长.20. 如图所示的一块空地,已知4,3,90,13,AD m CD m ADC AB m ==∠=︒=12BC m =,求这块空地的面积.21. 如图所示,ABCD 是一个正方形花园,,是它的两个门,且DE CF =.要修建两条路BE 和AF ,这两条路等长吗?它们有什么位置关系?为什么?22. 问题背景:在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC 的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC 的面积.(2)在图2中画△DEF ,DE 、EF 、DF 三边的长分别为2、8、10①判断三角形形状,说明理由.②求这个三角形的面积.(直接写出答案)23. 如图,在四边形ABCD 中,连接AC 、BD ,已知90,ACB ADB ∠=∠=︒且点,E F 分别为AB 、CD 的中点,连接EF .(1)求证:EF CD ⊥.(2)若26AB CD ,求EF 的长.24. 先阅读下列材料,再解决问题:我们定义一组对边平行,另一组对边不平行的四边形叫做梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.如图,,E F 分别是梯形ABCD 的两腰AB 和CD 的中点,即EF 为梯形ABCD 的中位线.请同学们思考梯形的中位线与两底有何数量关系与位置关系?并给予证明.猜想:已知:求证:证明:25. 如图所示,在四边形ABCD 中,//,90AD BC A ∠=︒,12,21,16AB BC AD ===.动点从点出发,沿射线BC 方向以每秒个单位长度的速度运动,动点Q 同时从点出发,在线段AD 上以每秒个单位长度的速度向点运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为秒.(1)填空:AQ = ;BP = ;的取值范围是 .(2)设DPQ 的面积为,请用含的式子表示.(3)当t = 时,PD PQ =.(4)当为何值时,以点,,,P C D Q 为顶点的四边形是平行四边形.答案与解析第I卷一、选择题:本大题共10个小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.x≥-其中二次根式的个数为()2)A. B. C. D.[答案]C[解析][分析]根据二次根式的定义逐一进行判断即可得答案.[详解∵x2≥0,x≥-是二次根式,x≥-,∵x≥-2,∴x+2≥0,2)2)综上二次根式有三个,故选C.a≥的式子是二次根式是解题的关键.[点睛]本题考查了二次根式的判断,)02. 下列四组线段中,可以构成直角三角形的是( )A. 4,5,6B. 1.5,2,2.5C. 2,3,4D. , 3[答案]B[解析]试题分析:由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可:A、42+52=41≠62,不可以构成直角三角形,故本选项错误;B、1.52+22=6.25=2.52,可以构成直角三角形,故本选项正确;C、22+32=13≠42,不可以构成直角三角形,故本选项错误;D 、()2221233+=≠,不可以构成直角三角形,故本选项错误.故选B .考点:勾股定理的逆定理.3. 下列计算正确的是( )A. 239-=B. ()233=C. ()233-=-D. 239=[答案]B[解析][分析]根据二次根式运算法则即可求解.[详解]A .23-,二次根号下不能为负,故A 选项错误B .()233=,故B 选项正确 C .()233-=,故C 选项错误D .233=,故D 选项错误故选:B[点睛]本题考查了二次根式的运算法则,二次根式的性质,被开方数要大于零.4. 杨伯家小院子的四棵小树E 、F 、G 、H 刚好在其四边形院子ABCD 各边的中点上,若在四边形EFGH 内种上小草,则这块草地的形状是( )A. 平行四边形B. 矩形C. 正方形D. 菱形 [答案]A[解析][分析]连接BD 、AC ,根据中位线定理可得四边形是平行四边形,即可得到结果;[详解]如图所示,连接AC 、BD ,∵E 、F 、G 、H 是四边形ABCD 各边的中点,∴∥∥EH BD FG ,12EH FG BD ==, ∴四边形EFGH 是平行四边形,故答案选A .[点睛]本题主要考查了中点四边形的知识点,准确构造三角形,借助中位线求解是解题的关键. 5. 下列命题中,真命题的是( )A. 对角线互相垂直的四边形是菱形B. 对角线互相垂直平分的四边形是正方形C. 对角线相等的四边形是矩形D. 对角线互相平分的四边形是平行四边形[答案]D[解析][分析]根据平行四边形、矩形、菱形、正方形的判定定理进行判断即可.[详解]对角线互相垂直且平分的四边形是菱形,故A 是假命题;对角线互相垂直平分且相等的四边形是正方形,故B 是假命题;对角线相等且平分的四边形是矩形,故C 是假命题;对角线互相平分的四边形是平行四边形,故D 是真命题.故选D .[点睛]本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6. 如图,在▱ABCD 中,AC 、BD 为对角线,BC =6,BC 边上的高为4,则阴影部分的面积为( )A. 3B. 6C. 12D. 24[答案]B[解析][分析] 根据平行四边形的性质可得出阴影部分的面积为平行四边形面积的14,再由平行四边形的面积得出答案即可.[详解]∵四边形ABCD 为平行四边形,∴OA =OC ,OB =OD ,∴111646244BOC ABC ABCD S S S ===⨯⨯=, 故选:B .[点睛]本题考查了平行四边形的面积和性质,解题的关键是掌握平行四边形的性质:对角线互相平分. 7. 如图,已知在Rt ABC 中,90,8ACB AB ∠=︒=,分别以,AC BC 为直径作半圆,面积分别记为12,S S ,则12S S +等于( )A. 2πB. 4πC. 6πD. 8π[答案]D[解析][分析]根据半圆面积公式结合勾股定理,知S 1+S 2等于以斜边为直径的半圆面积问题得解.[详解]∵在Rt ABC 中,90ACB ∠=︒,8AB =,∴22264AC BC AB +==, ∵22111228AC S AC ππ⎛⎫== ⎪⎝⎭,22211228BC S BC ππ⎛⎫== ⎪⎝⎭, ∴()2222212111188888S S AC BC AC BC AB πππππ+=+=+==. 故选:D .[点睛]本题主要考查了勾股定理的应用,关键是掌握在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.8. 计算:(91022(+⨯-=( )A. 2B. 2C. 2-D. 2-[答案]B[解析][分析]逆用同底数幂的乘法法则把(102-转化成((922-⨯-,然后运用积的乘方运算法则以及平方差公式计算即可.[详解](91022(⨯99((222(=+⨯⨯ 9(222(⎡⎤=+⨯-⎣⎦2=-故选:B .[点睛]本题考查了同底数幂的乘法,积的乘方,二次根式,平方差公式的应用,逆用同底数幂的乘法法则把()1023-转化成()()92323-⨯-是解题的关键. 9. 用四张大小一样的长方形纸片拼成一个正方形ABCD (如图),它的面积是48,已知长方形的一边长33,AE =图中空白部分是一个正方形,则这个小正方形的周长为( )A. 23B. 43C. 3D. 3[答案]C[解析] [分析] 通过正方形的面积求出边长为48,根据图形之间的联系求出空白小正方形的边长3-233即可求解.[详解]解:∵正方形ABCD 的面积是48,∴3∵3∴333∴空白小正方形的边长333∴小正方形的周长为3故选C .[点睛]本题考查了正方形的面积与边长;解题的关键是能够观察出图形之间的联系. 10. 如图所示,在矩形ABCD 中,12,20AB AC ==,两条对角线相交于点.以OB OC 、为邻边作第个1OBB C ,对角线相交于点1A ,再以11A B 、1A C 为邻边作第个111A B C C ,对角线相交于点1O ;再以11O B 、11O C 为邻边作第个1121O B B C ……依此类推.则第个平行四边形的面积为( )A.B. C. D.[答案]C[解析][分析] 首先分别求得几个平行四边形的面积,即可得到规律:第n 个平行四边形的面积为1922n ,继而求得答案. [详解]解:∵在矩形ABCD 中,AB=12,AC=20,∴22201216-=,∴S 矩形ABCD =AB•BC=192,OB=OC ,∵以OB ,OC 为邻边作第1个平行四边形OBB 1C ,∴平行四边形OBB 1C 是菱形,OA 1是△ABC 的中位线, 可知111122OA AB OB ==, ∴112OB AB ==, ∴111116129622OBB C S BC OB ==⨯⨯=, 111111111612482222A B C C S BC OB ==⨯⨯⨯=, ∴第n 个平行四边形面积为:1922n , ∴第6个平行四边形的面积是:619232=, 故选:C .[点睛]此题考查了平行四边形的性质以及矩形的性质,通过计算找到规律是解题的关键.第II 卷二、填空题(每题4分,满分24分,将答案填在答题纸上)11. 若二次根式x 2-有意义,则x 的取值范围是___.[答案]x 2≥[解析][详解]试题分析:根据题意,使二次根式2x -有意义,即x ﹣2≥0,解得x≥2.故答案是x≥2.[点睛]考点:二次根式有意义的条件.12. 若实数a 、b 满足240a b ++-=,则a b =_____. [答案]﹣12 [解析]根据题意得:a+2=0,b-4=0,解得:a=-2,b=4,则a b =﹣12.故答案是﹣12. 13. 若菱形的两条对角线长分别是6㎝和8㎝,则该菱形的面积是㎝2. [答案]24[解析]已知对角线的长度,根据菱形的面积计算公式即可计算菱形的面积.解:根据对角线的长可以求得菱形的面积,根据S=12ab=12×6×8=24cm 2, 故答案为24.14. 如图,在平行四边形ABCD 中,添加一个条件____,使平行四边形ABCD 是矩形.[答案]90A ∠=︒ (答案不唯一)[解析][分析]根据矩形的判定条件进行添加即可;[详解]根据判定条件:有一个角是90︒的平行四边形是矩形,只要有一个内角是90︒即可得出答案, 故90A ∠=︒(答案不唯一).[点睛]本题主要考查了矩形的判定,准确理解判定条件是解题的关键.15. 如图,把矩形纸片ABCD 沿EF 折叠,使点落在边AD 上的点处,点落在点处,已知10,4,2AD CD B D =='=.则AE =____.[答案][解析][分析]根据折叠的性质可得AE=A′E ,AB=A′B′,在Rt △A′B′E 中,根据勾股定理即可得到AE 的长.[详解]∵四边形ABCD 矩形,∴AB=CD=4,∠B=90,由折叠性质可得AE=A′E ,AB=A′B′=4,∠B′A′E=∠B=90,在Rt △A′B′E 中,A′B′2+A′E 2=B′E 2,42+A′E2=(10-2-A′E)2,解得A′E=3,即AE的长为3.故答案为:3.[点睛]本题考查了折叠的性质,矩形的性质以及勾股定理的应用,熟练掌握折叠的性质是关键.16. 如图,小明在A时测得某树的影长为2m,B时又测得该树的影长为8m,若两次日照的光线互相垂直,则树的高度为_____m.[答案]4[解析][分析]根据题意,画出示意图,易得:Rt△EDC∽Rt△CDF,进而可得EDDC=DCFD;即DC2=ED•FD,代入数据可得答案.[详解]如图:过点C作CD⊥EF,由题意得:△EFC是直角三角形,∠ECF=90°, ∴∠EDC=∠CDF=90°,∴∠E+∠ECD=∠ECD+∠DCF=90°,∴∠E=∠DCF,∴Rt△EDC∽Rt△CDF,有EDDC=DCFD;即DC2=EDFD,代入数据可得DC 2=16,DC =4;故答案为4.[点睛]本题考查了相似三角形的应用,能够将实际问题转化为相似三角形的问题是解题的关键.三、解答题(本大题共9小题,共86分.解答应写出文字说明、证明过程或演算步骤.) 17. 计算:(1)54520+- (2)()(227227)+-.[答案](1)25;(2)1[解析][分析](1)根据二次根式的加减运算法则计算即可;(2)根据二次根式的乘法运算法则结合平方差公式计算即可.[详解]解:()1原式53525=+- 4525=-25=.()2原式()()22227=- 87=-1=. [点睛]本题考查二次根式的运算,熟练掌握二次根式四则运算的法则是解题的关键.18. 如图,在ABCD 中,E 、F 分别在AD 、BC 上,且//EF AB .求证:EF CD =.[答案]证明见解析.[解析][分析]根据平行四边形的性质可得//,//AD BC AB CD ,再通过//EF AB 可判定四边形ABFE 是平行四边形,可得EF=CD .[详解]证明:四边形ABCD 是平行四边形,//,//AD BC AB CD ∴//,EF AB//,EF CD ∴四边形CDEF 是平行四边形EF CD ∴=.[点睛]此题主要考查了平行四边形的判定和性质,关键是掌握平行四边形对边平行且相等,两组对边分别平行的四边形是平行四边形.19. 如图,在ABC 中,AB =BC ,D 、E 、F 分别是BC 、AC 、AB 边上的中点.(1)求证:四边形BDEF 是菱形.(2)若10,AB cm =求四边形BDEF 的周长.[答案](1)证明见解析;(2)菱形BDEF 的周长为20cm .[解析][分析](1)由D 、E 、F 分别是BC 、AC 、AB 边上的中点,根据三角形中位线的性质,可得EF ∥BC ,ED ∥AB ,EF=12BC ,DE=12AB ,又由AB=BC ,即可证得四边形BDEF 是菱形; (2) 由三角形中位线的性质,可求得BF 的长,进而求得周长为4BF .[详解]解:(1)证明:D E F 、、分别是BC AC AB 、、边上的中点,// ,//,EF BC DE AB ∴ 11,22EF BC DE AB ==, 四边形BDEF 是平行四边形,又,AB BC =,DE EF ∴=平行四边形BDEF 是菱形.(2)10,AB =且是AB 边上的中点,15,2BF AB cm ∴== 由(1)知,四边形BDEF 是菱形,菱形BDEF 的周长为44520=⨯=BF cm .故答案为:20cm .[点睛]此题考查了菱形的判定与性质以及三角形中位线的性质.注意掌握三角形中位线定理的应用是解此题的关键.20. 如图所示的一块空地,已知4,3,90,13,AD m CD m ADC AB m ==∠=︒=12BC m =,求这块空地的面积.[答案]这块空地的面积是224m .[解析][分析]连接AC ,先利用勾股定理求出AC ,再根据勾股定理的逆定理判定△ABC 是直角三角形,那么△ABC 的面积减去△ACD 的面积就是所求的面积.[详解]连接AC ,90ADC ∠=︒,222224325AC AD DC ∴=+=+=12,13BC m AB m ==,22222251216913AC BC AB ∴+=+===,90ACB ∴∠=︒,()211512342422ACB ACD S S m ∴-=⨯⨯-⨯⨯= 这块空地的面积是224m .[点睛]本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC 是直角三角形是解题的关键,同时考查了直角三角形的面积公式.21. 如图所示,ABCD 是一个正方形花园,,是它的两个门,且DE CF =.要修建两条路BE 和AF ,这两条路等长吗?它们有什么位置关系?为什么?[答案]相等,BE AF ⊥,理由见解析[解析][分析]由DE =CF 可得AE =DF ,则可得△DAF ≌△ABE ,然后根据全等三角形的对应角相等可得出BE 与AF 的关系.[详解]解:BE =AF ,BE ⊥AF ;理由:∵四边形ABCD是正方形,∴AD=CD,DE=CF,∴AE=DF,又∠BAE=∠D=90°,AB=AD,∴△BAE≌△ADF∴BE=AF,∠ABE=∠F AD,∵∠ABE+∠AEB=90°,∴∠F AD+∠AEB=90°,∴BE⊥AF.故BE=AF,BE⊥AF.[点睛]本题考察了正方形的性质,全等三角形的判定与性质,主要利用了正方形的四条边都相等,每一个角都是直角的性质,同角的余角相等的性质,利用三角形全等证明相等的边是常用的方法之一,要熟练掌握并灵活运用.22. 问题背景:在△ABC中,AB、BC、AC三边的长分别为5、10、13,求这个三角形的面积小辉同学在解答这道题时,先建立一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC(即△ABC 三个顶点都在小正方形的顶点处),如图1所示.这样不需求△ABC的高,而借用网格就能计算出它的面积.(1)请你利用上述方法求出△ABC的面积.(2)在图2中画△DEF,DE、EF、DF2、810①判断三角形的形状,说明理由.②求这个三角形的面积.(直接写出答案)[答案](1)72;(2)画图见解析;①△DEF 是直角三角形,理由见解析;②2 [解析] 试题分析:(1)根据题目设置的问题背景,结合图形进行计算即可;(2)根据勾股定理,找到DE 、EF 、DF 的长分别为2、8、10,由勾股定理的逆定理可判断△DEF 是直角三角形.解:(1)S △ABC =3×3﹣12×1×2﹣12×2×3﹣12×1×3=72; (2)如图所示:∵DE =2,EF =22,DF =10,∴DE 2+EF 2=DF 2,∴△DEF 是直角三角形.△DEF 的面积=111231122132222⨯-⨯⨯-⨯⨯-⨯⨯=. 点睛:本题考查了勾股定理及作图的知识,解答本题关键是仔细理解问题背景,构图法求三角形的面积是经常用到的,同学们注意仔细掌握.23. 如图,在四边形ABCD 中,连接AC 、BD ,已知90,ACB ADB ∠=∠=︒且点,E F 分别为AB 、CD 的中点,连接EF .(1)求证:EF CD ⊥.(2)若26AB CD ,求EF 的长.[答案](1)证明见解析;(2)332EF =.[解析][分析](1)如图(见解析),先根据直角三角形的性质可得12CE AB =,12DE AB =,从而可得CE DE =,再根据等腰三角形的判定可得CDE △是等腰三角形,然后根据等腰三角形的三线合一即可得证;(2)先分别求出CE 、CF 的长,再结合(1)的结论,利用勾股定理即可得.[详解](1)如图,连接EC 和ED点是AB 的中点,90ACB ADB ∠=∠=︒在Rt ABC 中,12CE AB = 在Rt ABD △中,12DE AB = CE DE ∴=CDE ∴是等腰三角形又点是CD 的中点,即EF 是等腰CDE △的底边CD 上的中线EF CD ∴⊥;(2)26AB CD ==3CD ∴= 由(1)已证:132CE AB == 又点是CD 的中点1322CF CD ∴== 则在Rt CEF 中,由勾股定理得:22332EF CE CF =-=.[点睛]本题考查了直角三角形的性质、等腰三角形的判定与性质、勾股定理等知识点,掌握理解等腰三角形的三线合一是解题关键.24. 先阅读下列材料,再解决问题:我们定义一组对边平行,另一组对边不平行的四边形叫做梯形,其中平行的两边叫梯形的底边,不平行的两边叫梯形的腰,连接梯形两腰中点的线段叫梯形的中位线.如图,,E F分别是梯形ABCD的两腰AB和CD的中点,即EF为梯形ABCD的中位线.请同学们思考梯形的中位线与两底有何数量关系与位置关系?并给予证明.猜想:已知:求证:证明:[答案]猜想:12EF AD BC;////EF AD BC;已知:如图,,E F分别是梯形ABCD的两腰AB和的中点;求证:12EF AD BC;////EF AD BC;证明见解析.[解析][分析]根据题意写出猜想、已知和求证.连接AF并延长交BC于点G,则△ADF≌△GCF,可以证得EF是△ABG 的中位线,利用三角形的中位线定理即可证得.[详解]猜想:12EF AD BC;////EF AD BC已知:如图,,E F分别是梯形ABCD的两腰AB和的中点.求证:12EF AD BC;////EF AD BC.证明:如图,连接AF并延长交BC于点G.∵AD∥BC,点F是CD中点,∴∠DAF=∠G,DF=FC,在△ADF和△GCF中,DAF G DFA CFG DF FC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△GCF (AAS ),∴AF=FG ,AD=CG .又∵点E 是AB 中点,∴EF 是ABG 的中位线,∴EF ∥BG ,EF=12BG , 即EF ∥AD ∥BC ,EF=12(AD+BC). [点睛]本题是通过猜想并且证明梯形的中位线定理,考查了三角形中位线定理,全等三角形的判定和性质,通过辅助线转化成三角形的中位线的问题是解题的关键.25. 如图所示,在四边形ABCD 中,//,90AD BC A ∠=︒,12,21,16AB BC AD ===.动点从点出发,沿射线BC 方向以每秒个单位长度的速度运动,动点Q 同时从点出发,在线段AD 上以每秒个单位长度的速度向点运动,当其中一个动点到达端点时另一个动点也随之停止运动.设运动的时间为秒.(1)填空:AQ = ;BP = ;的取值范围是 .(2)设DPQ 的面积为,请用含的式子表示.(3)当t = 时,PD PQ =.(4)当为何值时,以点,,,P C D Q 为顶点的四边形是平行四边形.[答案](1),2,016t t t ≤≤;(2)966S t =-;(3)163t =;(4)当5t =或373时,以点,,,P C D Q 为顶点的四边形是平行四边形.[解析][分析](1)按照路程等于速度乘以时间,求解AQ ,BP ;时间最小为0,最大为点Q 动到点D 所花费的时间;(2)通过做垂直辅助线,根据已知条件并结合三角形面积公式求解本题(3)根据等腰三角形以及矩形的性质,结合三线合一以及路程公式求解本题;(4)本题需要根据动点情况分类讨论,并结合平行四边形性质列方程求解.[详解](1)∵距离=速度时间,Q 的运动速度为1,P 的运动速度为2,运动时间为t ,∴AQ=t ,BP=2t .∵AD=16,当点Q 运动到点D 时,动点停止运动,∴t 最大值为16,最小值为0,故016t ≤≤.(2)如图,过点作PM QD ⊥,∵//,90AD BC A ∠=︒,∴四边形ABPM 矩形,∴PM=AB=12.又∵AQ=t∴16QD t =-.()11161296622QDP S QD PM t t =••=⨯-⨯=-△. (3)由上一问可知四边形ABPM 是矩形,2AM BP t ∴==.又PD PQ =,2DM QM AM AQ BP AQ t t t ∴==-=-=-=,216AD AM DM t t =+=+=即316t =,163t ∴=. (4)当在线段BC 上时,因为平行四边形PCDQ ,则DQ PC =,∵16DQ t =-,212PC t =-,16212t t ∴-=-,解得:5t =;当在BC 延长线上时,同理:DQ=PC ,221PC t =-,16221t t ∴-=-, 解得:373t =; 综上所述:当5t =或373时,以点,,,P C D Q 为顶点的四边形是平行四边形. [点睛]本题考查几何动点问题,首先需要对运动路径有清晰理解,并且利用未知数表示未知线段,求解时具体问题具体分析,如本题主要利用面积公式,平行四边形性质求解,动点问题通常需要分类讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§1.5.2中点四边形(九年级上数学009)——研究课
主备:李维明班级________姓名________ 一.学习目标:
1.了解中点四边形的概念以及探索特殊四边形的中点四边形特征;
2.探寻中点四边形的形状与原四边形对角线的关系.
二.学习重点:探究各类四边形的中点四边形的形状与原四边形的对角线关系.学习难点:用逆向思维的方法推出特殊形状的中点四边形的原四边形的形状.
三.教学过程
知识探究:
1.前一节的学习我们知道,顺次连接三角形三边的中点形成的三角形我们叫中点三角形,那同
学们想一想:顺次连接四边形各边中点的四边形叫
.................
2.四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EGFH是平行四边形.
结论:任意四边形的
.......
......中点四边形是
练一练:如图:点E、F、G、H分别是线段AB、BC、CD、AD的中点.
则四边形EFGH是什么图形?并说明理由.
探究一:四边形ABCD中,对角线AC=BD,E、F、G、H分别是AB、BC、CD、DA的中点.判断:四边形EFGH是何种特殊四边形?请你证明.
结论:对角线相等的四边形的中点四边形是
.................S中点四边形=S原四边形面积
证明:等腰梯形的中点四边形是.
探究二:已知菱形ABCD,E、F、G、H分别是AB、BC、CD、DA的中点.
求证:四边形EFGH是矩形.
你能猜出正方形的中点四边形是吗?
根据以上结论你能说出中点四边形的形状与原四边形的有关吗?
结论:的中点四边形
.....是矩形.
归纳总结并完成下表:
反馈练习
1.( 10 德州)在四边形ABCD中,点E,F,G,H分别是边AB,BC,CD,DA的中点,如果四边形EFGH为菱形,那么四边形ABCD是(只要写出一种即可).
2.(11襄阳)顺次连接四边形ABCD各边的中点所得四边形是矩形,则四边形ABCD一定是()
A. 菱形
B. 对角线互相垂直的四边形
C. 矩形
D. 对角线相等的四边形
3. 已知:O 是ΔABC 所在平面内一动点,连接OB ,OC ,并将AB ,OB ,OC ,AC 的中点D ,E ,F ,G 依次连接,如果DEFG 能构成四边形:
(1)如图,当O 点在ΔABC 内部时,证明四边形DEFG 是平行四边形。

(2)当O 点移动到ΔABC 外部时,(1)的结论是否还成立?画出图形并说明理由。

(3)若四边形DEFG 为矩形,O 点所在位置应满足什么条件?试说明理由.
4.如图,四边形ABCD 中,AC =6,BD =8,且AC ⊥BD ,顺次连接四边形ABCD 各边中点得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2,…如此继续下
去得到四边形A n B n C n D n
(1)证明四边形A 1B 1C 1D 1是矩形.
(2)写出四边形A 1B 1C 1D 1和四边形A 2B 2C 2D 2的面积.
(3)写出四边形A n B n C n D n 的面积.
变式1:(11江津)如图,四边形ABCD 中,AC =a ,BD =b ,且AC ⊥BD ,顺次连接四边形ABCD 各边中点,得到四边形A 1B 1C 1D 1,再顺次连接四边形A 1B 1C 1D 1各边中点,得到四边形A 2B 2C 2D 2…如此进行下去,得到四边形A n B n C n D n .下列结论正确的有 个.
①四边形A 2B 2C 2D 2是矩形; ②四边形A 4B 4C 4D 4是菱形;
③四边形A 5B 5C 5D 5的周长a +b 4; ④四边形A n B n C n D n 的面积是ab 2
n +1
变式2:(11 兰州)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。

已知第一个矩形的面积为1,则第n 个矩形的面积为 .
5.如图1,在正方形ABCD 中,点E 、F 分别是BC 、CD 的中点,AF 、DE 相交于点G ,则可得得结论:①AF =DE ;②AF ⊥DE .(不需要证明).
(1)如图2,若点E 、F 不是正方形ABCD 的边的中点,但满足CE =DF ,则上面的结论①、②是否仍然成立?(请直接回答“成立”或“不成立”)
(2)如图3,若点E 、F 分别在正方形ABCD 的边CB 的延长线上,且CE =DF ,此时上面的结论①、②是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由.
(3)如图4,在(2)的基础上,连结AE 和EF ,若点M 、N 、P 、Q 分别为AE 、EF 、FD 、AD 的中点,请判断四边形MNPQ 是“矩形、菱形、正方形、等腰梯形”中的哪一种?并写出证明过程.
……
图1 图2 图3 图4。

相关文档
最新文档