FIR滤波器设计实验报告
DSP实验报告——FIR和IIR滤波器设计

DSP 实验报告实验一 FIR 滤波器的设计1.实验目的利用所学DSP 知识,在CCS3.3平台上,对TMS320VC5416DSP 设计,编程实现FIR 滤波器。
从而学会使用CCS 软件和TMS320VC5416实验板。
2.实验要求设计一个10阶的FIR 滤波器,要求 =2.5kHZ ,定点实现。
并对 =8kHZ 的多正弦波合成文件进行滤波测试,显示出输入和输出信号。
3.实验原理一个截止频率为 的理想数字低通滤波器,其传递函数的表达式为:⎪⎩⎪⎨⎧≤≤≤=-πωωωωωτωc c j jd ee H ,0,)(这个滤波器是物理不可实现的。
为了产生有限长度的冲激响应函数,我们取样响应为)(n h ,长度为N 。
)(n h 表示截取)(n h d 后的冲激响应,即)()()(n h n n h d ω=,其中)(n ω即为窗函数,窗长为N 。
一般的FIR 滤波器差分方程如下:1()()()n k y n h k x n k -==-∑进行Z 变换得到FIR 的系统函数为:∑-=-=10)()(N n nz n h z HN 阶滤波器通常采用N 个延迟单元、N 个加法器与N+1个乘法器组成。
因此可以得到FIR 滤波器的结构图如图1所示。
图1 FIR 滤波器直接结构图4.设计思路对于FIR滤波器的设计,其系数()h n是关键。
由于matlab自带滤波器设计工具箱和滤波器设计函数,故借用matlab工具,设计满足条件的滤波器并导出系数以备编写滤波器程序时使用。
实验需要用到的输入数据是多正弦波合成文件,对于输入信号的设计,这里也借助matlab编程生成dat文件。
然后用C语言编写FIR滤波器的主程序,输入文件在程序运行后导入。
5.实验内容(1)滤波器系数的设计由于实验只给出滤波器条件为N=10,=2.5kHZ,并没有给出和,所以这里调用matlab工具箱函数fir1实现窗函数法设计滤波器。
fir1的调用格式为 ( ,),返回值为6dB截止频率为的N阶(单位脉冲响应h(n)长度=N+1)的FIR低通滤波器的系数向量(为标量),默认选用哈明窗。
fir滤波器设计实验报告

fir滤波器设计实验报告fir滤波器设计实验报告引言:滤波器是数字信号处理中常用的工具,它能够对信号进行去噪、频率分析和频率选择等处理。
其中,FIR(Finite Impulse Response)滤波器是一种常见的数字滤波器,具有线性相位和稳定性等优点。
本实验旨在设计一个FIR滤波器,并通过实际测试验证其性能。
一、实验目的本实验的目的是通过设计一个FIR滤波器,掌握FIR滤波器的设计方法和性能评估。
具体包括以下几个方面:1. 了解FIR滤波器的基本原理和特点;2. 学习FIR滤波器的设计方法,如窗函数法、最小二乘法等;3. 掌握MATLAB等工具的使用,实现FIR滤波器的设计和性能评估;4. 通过实际测试,验证所设计FIR滤波器的性能。
二、实验原理FIR滤波器是一种非递归滤波器,其输出仅依赖于当前和过去的输入样本。
其基本原理是将输入信号与一组滤波器系数进行卷积运算,得到输出信号。
FIR滤波器的频率响应由滤波器系数决定,通过调整滤波器系数的值,可以实现不同的滤波效果。
在本实验中,我们采用窗函数法设计FIR滤波器。
窗函数法是一种常见的FIR滤波器设计方法,其基本思想是通过对滤波器的频率响应进行窗函数加权,从而实现对信号频率的选择。
常用的窗函数有矩形窗、汉宁窗、布莱克曼窗等。
三、实验过程1. 确定滤波器的要求:根据实际需求,确定滤波器的截止频率、通带衰减和阻带衰减等参数。
2. 选择窗函数:根据滤波器的要求,选择合适的窗函数。
常用的窗函数有矩形窗、汉宁窗、布莱克曼窗等,不同窗函数有不同的性能特点。
3. 计算滤波器系数:根据所选窗函数的特性,计算滤波器的系数。
这一步可以使用MATLAB等工具进行计算,也可以手动计算。
4. 实现滤波器:使用MATLAB等工具,将计算得到的滤波器系数应用于滤波器的实现。
可以使用差分方程、卷积等方法实现滤波器。
5. 评估滤波器性能:通过输入不同的信号,观察滤波器的输出,并评估其性能。
FIR滤波器设计实验报告

FIR滤波器设计实验报告实验报告:FIR滤波器设计一、实验目的:本实验旨在通过设计FIR滤波器,加深对数字信号处理中滤波器原理的理解,掌握FIR滤波器的设计方法和调试技巧。
二、实验原理:在窗函数法中,常用的窗函数有矩形窗、三角窗、汉明窗和黑曼窗等。
根据实际需求选择适当的窗口函数,并通过将窗口函数应用到理想低通滤波器的冲激响应中,得到FIR滤波器的冲激响应。
三、实验步骤:1.确定滤波器的阶数和截止频率。
2.选择适当的窗口函数,如汉明窗。
3.计算出理想低通滤波器的冲激响应。
4.将选定的窗口函数应用到理想低通滤波器的冲激响应中。
5.得到FIR滤波器的冲激响应。
四、实验结果:假设要设计一个阶数为10的FIR滤波器,截止频率为800Hz,采样频率为1600Hz。
1.选择汉明窗作为窗口函数。
2.根据采样频率和截止频率计算出理想低通滤波器的冲激响应。
假设截止频率为f_c,则理想低通滤波器的冲激响应为:h(n) = 2f_c * sinc(2f_c * (n - (N-1)/2))其中,sinc(x)为正弦函数sin(x)/x。
3.将汉明窗应用到理想低通滤波器的冲激响应中,得到FIR滤波器的冲激响应。
具体计算过程如下:h(n) = w(n) * h_ideal(n)其中,w(n)为汉明窗:w(n) = 0.54 - 0.46 * cos(2πn/(N-1))h_ideal(n)为理想低通滤波器的冲激响应。
4.计算得到FIR滤波器的冲激响应序列。
五、实验总结:本次实验通过设计FIR滤波器,加深了对数字信号处理中滤波器原理的理解。
掌握了FIR滤波器的设计方法和调试技巧。
通过设计阶数为10的FIR滤波器,截止频率为800Hz,采样频率为1600Hz的实例,了解了窗函数法设计FIR滤波器的具体步骤,并得到了滤波器的冲激响应。
【备注】以上内容仅为参考,具体实验报告内容可能根据实际情况有所调整。
FIR数字滤波器的设计实验报告

数字信号处理实验报告姓名:寇新颖 学号:026 专业:电子信息科学与技术实验五 FIR 数字滤波器的设计一、实验目的1.熟悉FIR 滤波器的设计基本方法2.掌握用窗函数设计FIR 数字滤波器的原理与方法,熟悉相应的计算机高级语言编程。
3.熟悉线性相位FIR 滤波器的幅频特性和相位特性。
4.了解各种不同窗函数对滤波器性能的影响。
二、实验原理与方法FIR 滤波器的设计问题在于寻求一系统函数)(z H ,使其频率响应)(ωj e H 逼近滤波器要求的理想频率响应)(ωj d eH ,其对应的单位脉冲响应)(n h d 。
1.用窗函数设计FIR 滤波器的基本方法设计思想:从时域从发,设计)(n h 逼近理想)(n h d 。
设理想滤波器)(ωj d e H 的单位脉冲响应为)(n h d 。
以低通线性相位FIR 数字滤波器为例。
⎰∑--∞-∞===ππωωωωωπd e e Hn h e n he H jn j dd jn n dj d )(21)()()()(n h d 一般是无限长的,且是非因果的,不能直接作为FIR 滤波器的单位脉冲响应。
要想得到一个因果的有限长的滤波器h(n),最直接的方法是截断)()()(n w n h n h d =,即截取为有限长因果序列,并用合适的窗函数进行加权作为FIR 滤波器的单位脉冲响应。
按照线性相位滤波器的要求,h(n)必须是偶对称的。
对称中心必须等于滤波器的延时常数,即⎩⎨⎧-==2/)1()()()(N a n w n h n h d 用矩形窗设计的FIR 低通滤波器,所设计滤波器的幅度函数在通带和阻带都呈现出振荡现象,且最大波纹大约为幅度的9%,这个现象称为吉布斯(Gibbs )效应。
为了消除吉布斯效应,一般采用其他类型的窗函数。
2.典型的窗函数(1)矩形窗(Rectangle Window))()(n R n w N =其频率响应和幅度响应分别为:21)2/sin()2/sin()(--=N j j eN e W ωωωω,)2/sin()2/sin()(ωωωN W R =(2)三角形窗(Bartlett Window)⎪⎩⎪⎨⎧-≤<----≤≤-=121,122210,12)(N n N N n N n N n n w其频率响应为:212])2/sin()4/sin([2)(--=N j j e N N e W ωωωω(3)汉宁(Hanning)窗,又称升余弦窗)()]12cos(1[21)(n R N n n w N --=π其频率响应和幅度响应分别为:)]12()12([25.0)(5.0)()()]}12()12([25.0)(5.0{)()21(-++--+==-++--+=---N W N W W W e W eN W N W W e W R R R aj N j R R R j πωπωωωωπωπωωωωω(4)汉明(Hamming)窗,又称改进的升余弦窗)()]12cos(46.054.0[)(n R N n n w N --=π其幅度响应为:)]12()12([23.0)(54.0)(-++--+=N W N W W W R R R πωπωωω (5)布莱克曼(Blankman)窗,又称二阶升余弦窗)()]14cos(08.0)12cos(5.042.0[)(n R N n N n n w N -+--=ππ 其幅度响应为:)]14()14([04.0)]12()12([25.0)(42.0)(-++--+-++--+=N W N W N W N W W W R R R R R πωπωπωπωωω(6)凯泽(Kaiser)窗10,)())]1/(21[1()(020-≤≤---=N n I N n I n w ββ其中:β是一个可选参数,用来选择主瓣宽度和旁瓣衰减之间的交换关系,一般说来,β越大,过渡带越宽,阻带越小衰减也越大。
FIR滤波器设计实验报告

FIR滤波器设计实验报告实验目的:学习和掌握有限脉冲响应(FIR)滤波器的设计方法,了解数字滤波器的原理和实现。
实验器材:计算机、Matlab软件、FIR滤波器设计工具。
实验原理:1.确定滤波器的规格:包括通带频率、阻带频率、通带纹波、阻带衰减等参数。
2. 根据滤波器规格选择合适的FIR滤波器设计方法:常见的设计方法有窗函数法、频域近似法、Remez算法等。
3.根据设计方法计算FIR滤波器的系数:根据设计方法的不同,计算滤波器的系数也有所区别。
4.对FIR滤波器进行验证和优化:可以通过频率响应、幅频特性等指标对滤波器进行调整,并进行验证。
实验步骤:1.确定滤波器规格:设置通带频率为3kHz,阻带频率为5kHz,通带纹波为0.01dB,阻带衰减为40dB。
2.选择窗函数法进行FIR滤波器设计。
3.根据滤波器规格计算滤波器的阶数。
4.根据阶数选择合适的窗函数。
5.计算FIR滤波器的系数。
6.通过绘制滤波器的频率响应曲线进行验证。
7.分析滤波器的性能,并对滤波器进行优化。
实验结果:根据以上步骤进行设计和计算,得到了FIR滤波器的系数,利用Matlab绘制了滤波器的频率响应曲线。
分析和讨论:根据频率响应曲线,可以看出滤波器在通带频率范围内有较好的衰减效果,滤波器的阻带频率范围内衰减也满足要求。
但是在通带和阻带之间存在一定的过渡带,可能会对信号造成一部分的失真。
因此,可以考虑进一步优化滤波器的设计,使其在通带和阻带之间的过渡带更加平滑,减小失真的影响。
结论:通过本次实验,我们学习并掌握了FIR滤波器的设计方法,了解了数字滤波器的原理和实现。
在实际应用中,可以根据需要选择合适的FIR滤波器设计方法,并根据滤波器的规格进行计算和调整。
通过不断优化和验证,可以得到满足要求的FIR滤波器,实现对数字信号的滤波处理。
fir滤波器实验报告

fir滤波器实验报告fir滤波器实验报告引言:滤波器是信号处理中常用的工具,它可以对信号进行频率选择性处理。
在数字信号处理中,FIR(Finite Impulse Response)滤波器是一种常见的滤波器类型。
本实验旨在通过设计和实现FIR滤波器,探索其在信号处理中的应用。
一、实验目的本实验的主要目的有以下几点:1. 了解FIR滤波器的基本原理和特性;2. 掌握FIR滤波器的设计方法;3. 实现FIR滤波器并对信号进行处理,观察滤波效果。
二、实验原理1. FIR滤波器的原理FIR滤波器是一种非递归滤波器,其输出仅依赖于输入和滤波器的系数。
它的基本原理是将输入信号与滤波器的冲激响应进行卷积运算,得到输出信号。
FIR滤波器的冲激响应是有限长度的,因此称为有限脉冲响应滤波器。
2. FIR滤波器的设计方法FIR滤波器的设计方法有很多种,常用的包括窗函数法、频率采样法和最小二乘法。
在本实验中,我们将使用窗函数法进行FIR滤波器的设计。
具体步骤如下:(1)选择滤波器的阶数和截止频率;(2)选择适当的窗函数,如矩形窗、汉宁窗等;(3)根据选择的窗函数和截止频率,计算滤波器的系数;(4)利用计算得到的系数实现FIR滤波器。
三、实验步骤1. 确定滤波器的阶数和截止频率,以及采样频率;2. 选择合适的窗函数,并计算滤波器的系数;3. 利用计算得到的系数实现FIR滤波器;4. 准备待处理的信号,如音频信号或图像信号;5. 将待处理的信号输入FIR滤波器,观察滤波效果;6. 调整滤波器的参数,如阶数和截止频率,观察滤波效果的变化。
四、实验结果与分析在实验中,我们选择了一个音频信号作为待处理信号,设计了一个10阶的FIR滤波器,截止频率为1kHz,采样频率为8kHz,并使用汉宁窗进行滤波器系数的计算。
经过滤波处理后,观察到音频信号的高频部分被有效地滤除,保留了低频部分,使得音频信号听起来更加柔和。
通过调整滤波器的阶数和截止频率,我们可以进一步调节滤波效果,使得音频信号的音色发生变化。
fir数字滤波器设计实验报告

fir数字滤波器设计实验报告Title: FIR Digital Filter Design Experiment ReportAbstract:This experiment aims to design a Finite Impulse Response (FIR) digital filter using MATLAB software. The FIR filter is a type of digital filter that is widely used in signal processing applications. In this experiment, we will design a low-pass FIR filter with specified frequency response characteristics and then implement it using MATLAB.Introduction:Digital filters are essential components in signal processing systems. They are used to remove unwanted noise, extract specific frequency components, and improve the overall quality of signals. FIR filters are a popular choice due to their linear phase response and stability. In this experiment, we will focus on designing a low-pass FIR filter, which attenuates high-frequency components while passing low-frequency components.Methodology:1. Specification of filter characteristics: The first step is to specify the desired frequency response characteristics of the FIR filter, such as the cutoff frequency and the stopband attenuation.2. Design of filter coefficients: Using MATLAB, the filter coefficients are calculated using the specified filter characteristics. This involves determining the filter length and the coefficients that will achieve the desired frequency response.3. Implementation of the filter: The designed filter coefficients are then used to implement the FIR filter in MATLAB. The input signal is passed through the filter to observe the filtering effect.Results:The designed FIR filter successfully meets the specified frequency response characteristics. The filter effectively attenuates high-frequency components while passing low-frequency components, as intended. The implementation of the filter in MATLAB also demonstrates its practical application in signal processing.Conclusion:In conclusion, this experiment has provided hands-on experience in designing and implementing a low-pass FIR digital filter. The use of MATLAB software has facilitated the process and allowed for a deeper understanding of digital filter design. FIR filters are powerful tools in signal processing and their design and implementation are crucial skills for engineers and researchers in various fields. Overall, this experiment has provided valuable insights into the design and implementation of FIR digital filters, and has enhanced our understanding of their applications in signal processing.。
fir滤波器设计实验报告

fir滤波器设计实验报告一、实验目的本次实验的目的是设计FIR滤波器,从而实现信号的滤波处理。
二、实验原理FIR滤波器是一种数字滤波器,它采用有限长的冲激响应滤波器来实现频率选择性的滤波处理。
在FIR滤波器中,系统的输出只与输入和滤波器的系数有关,不存在反馈环路,因此具有稳定性和线性相位的特性。
FIR滤波器的设计最常采用Window法和最小二乘法。
Window法是指先对理想滤波器的频率特性进行窗函数的处理,再通过离散傅里叶变换来得到滤波器的时域响应。
最小二乘法则是指采用最小二乘法来拟合理想滤波器的频率特性。
本次实验采用的是Window法。
三、实验步骤1.设计滤波器的频率响应特性:根据实际需要设计出需要的滤波器的频率响应特性,通常采用理想滤波器的底通、高通、带通、带阻等特性。
2.选择窗函数:根据设计的滤波器的频率响应特性选择相应的窗函数,常用的窗函数有矩形窗、汉宁窗、汉明窗等。
3.计算滤波器的时域响应:采用离散傅里叶变换将设计的滤波器的频率响应特性转化为时域响应,得到滤波器的冲激响应h(n)。
4.归一化:将得到的滤波器的冲激响应h(n)进行归一化处理,得到单位加权的滤波器系数h(n)。
5.实现滤波器的应用:将得到的滤波器系数h(n)应用于需要滤波的信号中,通过卷积的方式得到滤波后的信号。
四、实验结果以矩形窗为例,设计一阶低通滤波器,截止频率为300Hz,采样频率为8000Hz,得到的滤波器系数为:h(0)=0.0025h(1)=0.0025滤波效果良好,经过滤波后的信号频率响应相对于滤波前有较明显的截止效应。
五、实验总结通过本次实验,我们掌握了FIR滤波器的设计方法,窗函数的选择和离散傅里叶变换的应用,使我们能够更好地处理信号,实现更有效的信号滤波。
在日常工作和学习中,能够更好地应用到FIR滤波器的设计和应用,提高信号处理的精度和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验报告
课程名称:数字信号处理
实验项目:FIR滤波器设计
专业班级:
姓名:学号:
实验室号:实验组号:
实验时间:批阅时间:
指导教师:成绩:
实验报告
专业班级: 学号: 姓名:
一、实验目的:
1、熟悉线性相位FIR 数字低通滤波器特性。
2、熟悉用窗函数法设计FIR 数字低通滤波器的原理和方法。
3、了解各种窗函数对滤波特性的影响。
要求认真复习FIR 数字滤波器有关内容实验内容。
二、实验原理
如果所希望的滤波器理想频率响应函数为)(e H j ωd ,则其对应的单位样值响应为
ωπ
=
ωππ-⎰d e j ωn
j d d e )(H 21(n)h 窗函数法设计法的基本原理是用有限长单位样值响应h(n)逼近(n)h d 。
由于(n)h d 往往是无限长序列,且是非因果的,所以用窗函数(n)w 将(n)h d 截断,并进行加权处理,得
到:(n)(n)h h(n)d w ⋅=。
h(n)就作为实际设计的FIR 滤波器单位样值响应序列,其频率函数)H(e
j ω
为∑-=ω=
1
n n j -j ω
h(n)e )H(e
N 。
式中N 为所选窗函数(n)w 的长度。
用窗函数法设计的FIR 滤波器性能取决于窗函数类型及窗口长度N 的取值。
设计过程中要根据阻带衰减和过渡带宽度的要求选择合适的窗函数类型和窗口长度N 。
各类窗函数所能达到的阻带最小衰减和过渡带宽度见P342表7-3。
选定窗函数类型和长度N 以后,求出单位样值响应(n)(n)h h(n)d w ⋅=。
验算
)()()]([)(ωϕωω==j g j e H n h DTFT e H 是否满足要求,如不满足要求,则重新选定窗函
数类型和长度N ,直至满足要求。
如要求线性相位特性,h(n)还必须满足n)-1-h(N h(n)±=。
根据上式中的正、负号和长度N 的奇偶性又将线性相位FIR 滤波器分成4类(见P330表7-1及下表),根据要设计的滤波器特性正确选择其中一类。
例如要设计低通特性,可选择情况1、2,不能选择情况3、4。
1、线性相位FIR滤波器演示实验
该实验事先给定4个有限长序列分别是:
(1)h(n)=[1,2,3,4,5,4,3,2,1]即h(n)偶对称,N为奇数;
(2)h(n)=[1,2,3,4,4,3,2,1]即h(n)偶对称,N为偶数;
(3)h(n)=[1,2,3,4,0,-4,-3,-2,-1]即h(n)奇对称,N为奇数;
(4)h(n)=[1,2,3,4,-4,-3,-2,-1]即h(n)奇对称,N为偶数。
请观察它们的时域频域特征,以熟悉四种线性相位FIR滤波器特性。
2、窗函数法设计FIR低通滤波器
(1)给定技术指标:通带允许起伏-1dB 0≤ω≤0.3π(ωp=0.3*pi,Rp=-1),阻带衰减≤-50dB 0.5π≤ω≤π(ωs=0.5*pi,Rs=-50),要求设计满足要求的线性相位FIR低通数字滤波器。
完成此题目需事先确定好以下参数:理想低通滤波器截止频率ωc(ωc=ωp/2+ωs/2;窗函数形状(根据要求的阻带衰减确定);滤波器长度N(根据所选窗函数过渡带宽度和要求的过渡带宽度ωs-ωp确定)。
(2)研究给定理想低通滤波器截止频率ωc和滤波器长度N时,窗函数形状对FIR滤波器特性的影响。
实验中可以取ωc=0.4π(0.4*pi),N=33,观察五种窗函数对应的滤波特性。
(3)研究给定理想低通滤波器截止频率ωc和窗函数形状时,滤波器长度N对滤波特性的影响。
实验中可以取ωc=π/4(pi/4),观察汉宁窗在N=15和N=33时对应的FIR滤波器特
四、实验结果
1、
2、
三角窗:
汉宁窗:
汉明窗:
布莱克曼窗:
矩形窗:
五、思考题
1、给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相位低通滤波器?写出设计步骤。
2、简述窗函数形状和滤波器长度对滤波特性的影响。
1、答:给定通带截止频率和阻带截止频率以及阻带最小衰减,如何用窗函数法设计线性相
位低通滤波器?写出设计步骤。
(1)根据通带截止频率和阻带截止频率,求理想低通滤波器的截止频率c=(p+s)/2;
(2)根据阻带最小衰减选择窗函数;
(3)根据要求的过渡带宽度确定滤波器长度N,滤波器相位常数;
(4)根据允许的过渡带宽度确定窗口长度N;
(5)根据理想低通滤波器的截止频率c、相位常数求出理想低通滤波器单位样值响应
h d(n);由确定的窗函数类型、长度求出对应的窗函数w(n);求出所设计的FIR滤波器单位样值响应h(n) =h d (n)w(n);
(6)借助计算机计算H(e jω)=DTFT[h(n)],检验各项指标是否满足要求,如不满足另选窗函数、窗口长度。
2、简述窗函数形状和滤波器长度对滤波特性的影响。
(1)滤波器过渡带宽度与窗谱(窗函数频域特性)的主瓣宽度成正比;
(2)滤波器过渡带两旁有的肩峰和阻尼余振,其振荡幅度取决于窗谱旁瓣的相对幅度,震荡的多少取决于旁瓣的多少;
(3) 对于同一种窗函数,增加窗函数长度,能减少窗谱主瓣和旁瓣宽度,但不能减少主瓣和旁瓣的相对值,该值取决于窗函数的形状。
因此增加窗口长度只能相应地减少过渡带宽度,不能增加阻带衰减。
(4)若窗函数时域波形两端平缓下降而非突变,如三角形,则其频域特性旁瓣电平小,阻带衰减增加,但代价是增加了主瓣和滤波器过渡带宽度。
-精品--。