页岩气水平井水力压裂技术
国外页岩气水力压裂技术及工具一览

国外页岩气水力压裂技术及工具一览页岩储层具有超低孔低渗特性,钻完井后需要压裂改造后才得到经济产量。
国外油田服务公司最新工具达到了很高水平,水平井裸眼封隔器投球滑套分段压裂技术用高强度低密度球级差达到1/16in,封隔器耐压差达到70MPa,TAM公司自膨胀封隔器最高可达302 °C ;泵送桥塞射孔分段压裂技术所用桥塞可分为:堵塞式、单流阀式和投球式复合桥塞,桥塞耐压差达103.4MPa,耐温232 °C ;哈里伯顿CobraMax H连续油管喷射工具系统,目前最多达到44段。
这些为国内页岩气水力压裂完井方式与压裂工具的选用打下基础。
从应用工具角度看,分段压裂工艺方面主要包括:水平井裸眼封隔器投球滑套分段压裂技术,泵送桥塞分段压裂技术,水力喷射分段压裂技术。
从压裂工具方面分析,目前页岩气压裂技术有可膨胀封隔器/裸眼封隔器+滑套多级压裂,泵送桥塞射孔压裂联作多级压裂,水力喷射压裂等。
在美国的页岩气开发技术中,可膨胀封隔器/裸眼封隔器+滑套多级压裂,泵送桥塞射孔压裂联作多级压裂技术比较成熟,使用比较广泛,可适用于较长的水平段;水力喷射压裂可实现准确定位喷射,无需机械封隔,节省作业时间,非常适合用于裸眼井、筛管井以及套管中井。
1、水平井裸眼封隔器投球滑套多级压裂系统封隔器投球滑套多级压裂技术一般采用可膨胀封隔器或者裸眼封隔器分段封隔。
根据页岩气储层开发的需要,使用封隔器将水平井段分隔成若干段,水力压裂施工时水平段最趾端滑套为压力开启式滑套,其它滑套通过投球打开,从水平段趾端第二级开始逐级投球,进行有针对性的压裂施工。
水平裸眼井多级压裂目前已经是北美页岩气压裂开采主要技术手段,并越来越受到作业者的欢迎。
水平井多级压裂技术关键在于封隔器(压裂封隔器和可膨胀封隔器)和滑套可靠性和安全性能,尤其是管外封压裂管柱的可膨胀封隔器和开启滑套的高强度低密度球材料决定技术的成功与否。
目前国外油田服务公司都有自己成熟的工具,高强度低密度球级差达到1/16in,封隔器耐压差达到70MPa,TAM公司耐高温自膨胀封隔器最高可达30 °C 。
水力压裂技术在页岩气开发中的应用

水力压裂技术在页岩气开发中的应用近年来,页岩气开发一直备受关注。
作为一种非常重要的天然气资源,它可以很好地满足我们的能源需求。
然而,页岩气的开采并不是一件简单的事情。
它的开发需要依靠一些高端技术,其中最重要的就是水力压裂技术。
本文将从这一技术的应用角度,来探讨水力压裂在页岩气开发中的应用。
一、水力压裂技术简介水力压裂技术是一种通过高压水将岩石裂开的技术。
它是一种用于提高天然气、石油或其他矿物质开采率的方法。
该技术利用高压液体对岩石施加压力,从而形成裂缝,并将油气释放出来。
这些油气沿着裂缝移动,最终被收集起来。
二、水力压裂在页岩气开发中的应用1. 提高采收率页岩气的开采过程比较困难,因为天然气储存在岩石裂缝中,而且岩石的质地也很硬。
水力压裂技术可以帮助解决这个问题。
它可以通过高压水的作用,裂开岩石,形成裂缝,从而释放出页岩气,提高开采率。
2. 减少环境污染水力压裂技术可以比较好地减少环境污染。
它是一种非常干净的技术,不需要使用化学药品。
相比于常规开采方法,它可以极大地减少地面的废弃物和水污染。
3. 提高经济效益水力压裂技术可以大大提高页岩气的开采效率。
这将对经济效益产生积极的影响。
通过减少投入,提高产出,水力压裂技术可以带来可观的利润。
4. 实现能源安全随着全球化的发展,能源安全越来越受到关注。
水力压裂技术可以帮助实现能源安全。
它可以大大提高我们对国内矿产资源的依赖,减少对进口矿物质的需求。
三、水力压裂技术面临的挑战尽管水力压裂技术在页岩气开发中有很多好处,但它也面临着一些挑战。
这些挑战包括:1. 高成本水力压裂技术的成本非常高。
要使用这种技术,必须购买昂贵的压裂设备和材料。
对于一些没有足够预算和技术支持的企业来说,这可能会限制它们的发展。
2. 水资源紧缺水力压裂技术需要大量的水资源。
岩石裂隙需要用水冲洗,以便释放天然气。
考虑到一些地方水资源极为紧缺,使用水力压裂技术可能会让当地面临水资源短缺的风险。
页岩气开采原理

页岩气开采原理
页岩气开采原理是通过水平钻井和水力压裂技术将水和添加剂注入页岩岩层,使岩层裂缝扩大并释放出内部储存的天然气。
具体步骤如下:
1. 水平钻井:首先,在地表选择合适的位置进行垂直钻井,当钻杆到达目标页岩层时,钻井工程师会改变钻头方向,将钻孔延伸成水平方向。
这样可以增加页岩岩层与钻孔的接触面积,提高天然气的开采效率。
2. 水力压裂:完成水平钻井后,高压水和添加剂(如砂岩颗粒)被泵送到井中,进入页岩岩层。
压力和添加剂的作用下,岩石发生裂缝和断裂,从而使天然气能够逸出。
水力压裂也可以同时增加岩石孔隙的连接性,便于天然气在岩层内流动和采集。
3. 采集天然气:一旦页岩层被水力压裂,天然气开始从岩石毛细孔隙中释放出来,并通过新形成的裂缝流向水平井筒。
然后,运用抽油泵等装置将天然气输送到地面设备进行储存和处理。
4. 环境保护:在整个开采过程中,需要严格控制水和添加剂的使用,以减少对地下水资源的污染。
此外,储存和处理阶段也要采取相应的措施,以确保环境不受污染。
以上就是页岩气开采的基本原理。
通过水平钻井和水力压裂技术,能够充分利用页岩岩层内部的天然气资源,提高天然气开采效率,促进能源产业的发展。
水力压裂采油技术在页岩气开发中的应用研究

水力压裂采油技术在页岩气开发中的应用研究随着石油资源的逐渐枯竭,石油行业开始向新能源领域转型,其中页岩气开发成为了近年来备受瞩目的领域。
水力压裂采油技术,作为页岩气开发的主要手段之一,已经成为工业节能、环保和经济发展的重要推动力量。
本文将从水力压裂采油技术的定义、原理、优势和应用等方面,对其在页岩气开发中的应用研究进行探讨。
一、水力压裂采油技术的定义和原理水力压裂采油技术,也称为液压裂缝压裂技术,是利用高压液体对岩石等地层进行破裂,以增加地层渗透率,从而提取油气资源的一种技术。
其原理就是在深部地层注入高压流体,由于岩层的破裂和变形,使得原先密闭的地层可以释放出大量的油气等资源。
二、水力压裂采油技术的优势水力压裂采油技术具有以下优势:1、页岩气开采难度大,水力压裂采油技术能够突破地层渗透性低的难题,提高页岩气的产量和开采效率。
2、该技术可靠性高,施工成本较低,可以提高开采效益,并减少资源浪费,减少地质环境的破坏。
3、技术的改进和创新,不断提升了水力压裂采油技术的施工和监测能力,进一步提升了其开采效率和成功率。
三、水力压裂采油技术在页岩气开发中的应用水力压裂采油技术在页岩气开发中有着广泛的应用,其主要应用有以下几个方面:1、水平井设计和建造优化,在水力压裂完后,可以使井身尽量横向延伸,从而提高投资回报率。
2、节约成本和提高产量,通过水力压裂采油技术,可以有效地提高生产井稳产时间、节约成本,达到更高的单井产量。
3、精细管理,通过合理设计实验参数,实时监测及调控采油工艺,精细管理页岩气的开采过程,从而提高采储效率。
4、环保,水力压裂采油技术大大减少对地下水资源的压迫和污染。
四、水力压裂采油技术的应用研究现状虽然水力压裂采油技术在页岩气开采中应用广泛,但其所面临的挑战和困境也很明显。
目前,针对水力压裂采油技术的应用研究主要有以下几个方面:1、深入研究水力压裂技术中的微观机理和影响因素,以更精细的实验参数调控为技术指导,提高技术应用成功率。
页岩气井压裂技术

特点:适用套管(31/2″、41/2″、51/2″、7″);适合
大排量、大型施工、封隔可靠性高、压裂层位精确、分层
压裂的段数不受限制。
三、压裂施工设计技术
井号
岩性
水平段长 压裂
(m) 段数 隔离+射孔方式
压裂工艺
压裂液
支撑剂
涪页 HF-1 页岩、夹薄层灰岩 1136.75 10 桥塞+射孔联作 滑溜水+冻胶
拉强度比
B=26.7-40, 脆性
强
B=14.5~26.7, 脆
性中等
B<14.5, 脆性弱
脆性
地层
低粘度
复合压裂液
网络裂缝
线性胶
高砂比
泡沫
双翼裂缝
凝胶
塑性
地层
低排量
高排量
三、压裂工艺技术
3、页岩气压裂主要工艺技术
1)水平井桥塞分段压裂工艺:
通过水力泵送桥塞方式实现坐封、射孔联作、并沿水平段
方向实现逐级封隔、射孔和压裂的工艺。
7.0
压后返出液
1.20
1.10
1.004
7.0
二、压裂液返排液的回收利用技术
对威201-H1井返出液放置1个月后进行处理后基本
性能测试结果如下:
类别
粘度,
mPa.s
密度,
g/cm3
表张,
mN/m
接触角,
降阻率,%
原配方
5.60
1.001
26.23
63.12
67
返排液
1.20
1.004
32.42
38.12
页岩气井压裂技术
汇报内容
➢概述
➢压裂液技术
深层页岩气水平井体积压裂技术

深层页岩气水平井体积压裂技术一、本文概述随着全球能源需求的不断增长,页岩气作为一种重要的清洁能源,正逐渐在能源领域中占据重要地位。
其中,深层页岩气资源的开发更是当前石油天然气工业面临的重要挑战和机遇。
深层页岩气储层具有低孔、低渗、非均质性强的特点,传统的开发技术难以满足其高效开发的需求。
因此,本文重点探讨了深层页岩气水平井体积压裂技术,旨在通过该技术提高页岩气储层的改造体积和导流能力,从而实现深层页岩气的高效开发。
本文首先介绍了深层页岩气储层的特点和开发难点,阐述了体积压裂技术在深层页岩气开发中的重要性。
随后,详细阐述了深层页岩气水平井体积压裂技术的原理、工艺流程、关键技术和装备,以及在实际应用中的效果分析。
总结了深层页岩气水平井体积压裂技术的发展趋势和未来研究方向,为相关领域的科研人员和技术人员提供参考和借鉴。
通过本文的研究,旨在为深层页岩气的高效开发提供有力的技术支持,推动页岩气产业的可持续发展,为实现全球清洁能源转型做出积极贡献。
二、深层页岩气地质特征深层页岩气储层通常位于地下数千米的深处,其地质特征相较于浅层页岩气储层具有显著的不同。
深层页岩气储层的地层压力普遍较高,这增加了钻井和压裂作业的难度。
深层页岩气储层的岩石矿物成分、有机质含量、热成熟度等参数也会随着深度的增加而发生变化,从而影响页岩气的生成和聚集。
深层页岩气储层中的裂缝系统通常更加复杂,裂缝密度和走向多变,这给体积压裂技术的实施带来了挑战。
为了有效开发深层页岩气资源,需要对储层的地质特征进行深入研究和精细描述,包括储层的厚度、埋深、岩石类型、有机质丰度、成熟度、含气性、物性特征、应力场特征以及裂缝系统等。
还需要对深层页岩气储层的温压系统进行准确预测,以确保钻井和压裂作业的安全和有效。
在此基础上,结合地质特征和工程技术要求,制定适合深层页岩气储层的体积压裂技术方案,包括压裂液的选择、压裂参数的优化、裂缝监测和评估等,以实现深层页岩气的高效开发。
水力压裂技术在页岩气开采中的应用前景分析

水力压裂技术在页岩气开采中的应用前景分析引言:近年来,页岩气作为一种非常有前景的新型能源逐渐受到人们的关注。
为了实现高效率的页岩气开采,水力压裂技术成为了一种不可或缺的手段。
本文将对水力压裂技术在页岩气开采中的应用前景进行分析。
一、水力压裂技术的基本原理水力压裂技术是一种通过高压注水将岩石破碎并形成裂缝,以便释放清洁燃料的方法。
具体而言,该技术采用高压水射流将勘探井中的页岩破碎,使得天然气能够更容易地从岩石中释放出来。
水力压裂技术通常包括以下几个关键步骤:首先,需要选择合适的液体注入井中,常见的液体包括水、砂和添加剂。
其次,通过高压注水,将液体注入至井中,形成裂缝。
最后,释放压力后,裂缝中的水会返回地表,而页岩中的天然气则会逐渐流出,被收集起来。
二、水力压裂技术的优势1. 提高页岩气产量:通过水力压裂技术,可以破碎页岩岩石,增加气体透气性,从而提高天然气的产量。
2. 拓宽开采范围:水力压裂技术可以有效地增加页岩气的开采范围。
由于破碎岩石形成的裂缝,天然气可以更容易地流入井筒中,方便采集。
3. 降低开采成本:水力压裂技术可以通过一次性注入大量液体,一次性压裂多个产气层,从而减少开采周期,降低开采成本。
4. 环保可持续:相比传统开采方法,水力压裂会产生较少的排放物和二氧化碳,具有较好的环保可持续性。
三、水力压裂技术在页岩气开采中的应用前景1. 技术不断成熟:随着技术研究和实践经验的积累,水力压裂技术已经取得了显著进展,实现了从试验研究到商业应用的转变。
预计未来会有更多创新的水力压裂技术被应用于页岩气开采中,进一步提高开采效率。
2. 巨大的页岩气资源:全球范围内存在大量的页岩气资源,其中包括美国、中国等国家的潜在巨大储量。
水力压裂技术的应用可以帮助实现这些储量的有效开发,为能源市场提供更多清洁能源。
3. 技术改进的空间:目前的水力压裂技术仍然存在一些挑战,包括水资源消耗、地震风险等。
未来的研究将更加注重技术改进,解决上述挑战,并且提高技术的安全性和环保性。
页岩气水平井分段压裂增产技术

一、水力喷射分段压裂技术案例分析
割缝管完井水平井喷射分段压裂-NDP2井 割缝管完井水平井喷射分段压裂-NDP2井
NDP2井是吐哈三塘湖盆地一口割缝管 水平井,割缝管长度596m。施工前产液 不足 2.0 m3/d /d。难以实施常规压裂。 水力喷射分段加砂压裂,分别在210321032103 2105m、1989.6-1991.6m两层段加入陶 2105m、1989.6-1991.6m 粒18.1m3和17.8m3,日产油13-19m3,是 18.1m 17.8m 1313 6.5倍以上。 压裂施工前的6.5 6.5
一、水力喷射分段压裂技术
7.应用规模与经济效益 7.应用规模与经济效益
西南 辽河 南海油田
2 1 2 2 9
大庆 中原 江汉 江苏 中石化华北
7
吐哈 克拉玛依
18
新疆油田
中原油田
16 20 24
大牛地气田
全国10几个主要油田规模应用, 全国10几个主要油田规模应用, 10 占全国油田总数的60%以上 占全国油田总数的60%以上 60%
二、国内外其它分段压裂技术
TAP*压裂技术 (套管阀投飞标压裂技术) 套管阀投飞标压裂技术)
二、国内外其它分段压裂技术
水力泵入桥塞/ 水力泵入桥塞/射孔联作分级压裂技术
压裂时间13天15级 所有桥塞用一个钻头一趟钻完,用时40小时 压裂时间13天15级,所有桥塞用一个钻头一趟钻完,用时40小时 13 40
一、水力喷射分段压裂技术
3.技术参数 3.技术参数
套管孔径15套管孔径15-25mm 喷砂压力30MPa,排量 喷砂压力30MPa,排量2.5-3.6m3/min 排量2.5
技术 参数
环空压力20MPa, 排量0.6环空压力20MPa, 排量0.6-1.2m3/min 地面泵压40地面泵压40-90MPa
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
页岩气水平井水力压裂技术
【摘要】中国的页岩气资源量非常丰富,但页岩气的开发起步比较晚,目前还处于最初阶段。
本文详细的介绍了页岩气压裂改造机理,以及目前页岩气开发中常用水平井压裂工艺的原理和主要做法,包括水平井复合桥塞多段分簇压裂技术、连续油管水力喷射分段压裂技术、水平井多井同步体积压裂技术,通过对各种工艺详细分析,在页岩气开发上又取得了一些新的认识。
【关键词】页岩气水平井缝网压裂体积压裂
页岩气赋存于富含有机质的泥页岩及其夹层状的泥质粉砂岩、砂岩、灰岩、白云岩混合岩相地层中,主要由吸附气和游离气两部分组成。
页岩气藏的烃源岩多为沥青质或富含有机质的暗色泥页岩和高碳的泥页岩类,储层厚度一般为15~100m,孔渗条件差,通常需要压裂改造才能获得工业产量。
我国页岩气十分发育,资料显示,中国的页岩气资源量约为(21.5~45)×1012 m3,中值为30.7×1012 m3。
1 压裂机理
页岩气资源丰度低,最大限度增加储层的改造体积是压裂的主要目的。
为达到储量的体积动用,主要采用“缝网压裂”技术,机理为:当裂缝延伸净压力大于两个水平主应力的差值与岩石的抗张强度之和时,容易产生分叉缝,多个分叉缝就会形成“缝网”系统,其中以主裂缝为“缝网”系统的主干,分叉缝在距离主缝延伸一定长度后,又恢复到原来的裂缝方位,最终形成以主裂缝为主干的纵横“网状缝”系统。
页岩气储层要实现体积动用,主要取决于页岩的可压性。
页岩的脆性越大,越容易形成网状裂缝;而脆性越小,则形成网状裂缝的可能性越小。
脆性指数主要由矿物成分[2]和埋藏深度决定。
水力压裂在富含硅质、钙质的页岩中要比在富含粘土质页岩中更容易形成缝网,一般要求石英、长石、方解石矿物含量大于30%,粘土含量<25%。
脆性指数与埋深呈负相关关系,埋深变浅,脆性增加。
2 水平井复合桥塞多段分簇体积压裂
体积压裂通过优化段间距,采用“分段多簇”射孔、加密布缝,利用缝间应力干扰,促使裂缝转向,形成缝网。
缝间距的优化是水平井体积压裂技术的关键,若缝间距离过大,影响页岩气单井产量,缝间距离过小,裂缝延伸困难,当缝间干扰恰当时,才能实现天然微裂缝大量开启、人工裂缝转向延伸与穿过延伸,实现页岩气的体积开发。
水平井套管固井后,第一级使用连续油管传输带射孔,后续各段采用泵入式电缆传输桥塞与射孔联作工艺。
桥塞与射孔枪的下入过程主要分为两个阶段,直井段工具串依靠自重下入,水平段采用泵注方式推到指定位置。
通过分级点火装
置,座封桥塞,再上提射孔枪到达上段射孔位置进行射孔作业。
在分段压裂过程中通过逐级下入桥塞、射孔枪,实现水平井分段压裂改造。
分层压裂改造完成后用连续油管快速钻磨桥塞。
压裂时采用“大液量、大排量、小粒径、低砂比、段塞式”滑溜水注入方式。
前期使用酸液溶解矿物质来沟通裂缝,与大排量滑溜水构建远井复杂裂缝网络,后期采用低浓度胍胶,提高近井主缝导流能力。
压裂液主要为滑溜水和低浓度胍胶液,滑溜水成本低,可以在不减产的前提下节约30%的成本。
同时,滑溜水是一种低粘度流体,表现为剪切特性,剪切力使2个裂缝粗糙面产生剪切滑移,停泵后粗糙面使它们不能再滑回到原来的位置,保持裂缝较高的导流能力。
3 水平井连续油管水力喷射分段压裂
水力喷射压裂是集水力射孔、压裂、隔离一体化的水力压裂技术,适用于套管、衬管、裸眼等完井方式,主要用于需要定点压裂的水平井分段压裂。
利用连续油管进行水力喷砂射孔,然后再通过油套合压提高施工排量,实现射孔-压裂联作。
连续油管压后上提进行多层压裂,大大提高了工作效率,降低了施工成本。
理论上不受完井方式限制,可实施定点、分段、分簇改造,改造后井内无工具残留。
管柱结构主要有安全接头、不同形式的水力锚、喷枪、封隔器、单流阀、筛管和导向头构成。
压裂时油管、套管同时注液增压,喷射处的孔眼内裂缝最先起裂、扩展,通过油套环空加砂,支撑剂将沿起裂的裂缝进入地层,实现裂缝仅在水力喷射形成的孔眼位置处破裂和扩展,而在其它层位处的环空压力低于地层起裂压力,裂缝不再扩展,达到分簇射孔体积压裂效果。
4 水平井多井同步体积压裂
同时对配对井进行压裂,使压裂液及支撑剂在高压下从1口井向另1口井运移距离最短,促使水力裂缝扩展过程中相互作用相互影响,以产生更复杂的缝网,增加裂缝密度,增加改造体积,提高单井产量。
同步压裂最初是两口距离小,且深度大致相同的水平井的同时压裂,目前已发展到3口、甚至4口井的同时压裂。
5 结论
(1)压裂增产技术是开发成功的关键,针对页岩气储层特性采用了水平井复合桥塞多段分簇体积压裂、连续油管水力喷射分段压裂、同步压裂等,且北美已普遍应用套管阀分段压裂、“快速压裂系统”、多种分段工艺组合压裂等,应加快技术的引进与转化。
(2)工厂化压裂模式可加快施工进程、降低压裂成本,大规模改造技术对压裂材料低成本、高性能、储层的良好配伍性及回收利用提出了更高需求,应针
对大规模改造研发新型压裂材料及添加剂。
参考文献
[1] Dan Jarvie.Evaluation of hydrocarbon generation and storage in the Barnett shale,Ft.Worth basin,Texas[R].Texas:Humble Geochemical Services Division,2004
[2] BOWKER K A.Recent development of the Barnett Shale play,Fort Worth basin[J].West Texas Geological Society Bulletin,2003,42(6):1-11
[3] 刘洪林,王红岩,刘人和等.中国页岩气资源及勘探潜力分析[J].地质学报,2010,84(9):1374-1377
[4] 陈守雨,杜林麟,贾碧霞等.多井同步体积压裂技术研究[J].石油钻采工艺,2011,33(6):59-65
主要从事压裂增产改造技术研究及现场应用工作。