重力坝抗滑稳定及应力计算教程文件
重力坝抗滑稳定及应力计算doc资料

项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段计算书名称:重力坝抗滑稳定及应力计算审查:校核:计算:黄河勘测规划设计有限公司Yellow River Engineering Consulting Co. ,Ltd.二〇一二年四月目录1.计算说明 (1)1.1 目的与要求 (1)1.2 基本数据 (1)2.计算参数和研究方法 (1)2.1 荷载组合 (1)2.2 计算参数及控制标准 (2)2.3 计算理论和方法 (3)3.计算过程 (4)3.1 荷载计算 (4)3.1.1 自重 (4)3.1.2 水压力 (4)3.1.3 扬压力 (8)3.1.4 地震荷载 (10)3.2 安全系数及应力计算 (13)4.结果汇总 (17)1.计算说明1.1 目的与要求下列计算是有关挡水坝段、溢流坝段、进水口、底孔坝段抗滑稳定性和基底应力计算。
1.2 基本数据正常蓄水位:110m;设计洪水位:112.94m;校核洪水位:113.30m;大坝设计洪水标准为100年一遇,校核洪水标准为1000年一遇;坝址区地震动峰值加速度为0.15g(g=9.81m/s²),地震动反应周期为0.25s,相应的地震基本烈度为7度,本工程抗震设计烈度为7度。
计算选取的挡水坝段坝顶高程114.00m,坝基底高程92.00m,坝高22m,坝顶宽5m。
上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
计算选取的溢流坝段堰顶高程110.00m,坝基底高程96.00m,坝高14m,上游坝面竖直,下游坝坡在108.59m高程以上为Creager剖面,在108.59m高程以下坡度为1:0.85。
正常蓄水位时,溢流坝段下游无水;设计洪水位112.94m 时,下游水位104.80m;校核洪水位113.30m时,下游水位105.42m。
进水口坝段顶高程114.00m,坝基底高程87.80m,坝高26.2m,顶宽13.06m,上游坝坡为1:0.25,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
重力坝稳定和应力计算

坝体强度承载能力极限状态计算及坝体稳定承载能力极限状态计算(一)、基本资料坝顶高程:1107.0 m校核洪水位(P = 0.5 %)上游:1105.67 m下游:1095.18 m 正常蓄水位上游:1105.5 m下游:1094.89 m死水位:1100.0 m混凝土容重:24 KN/m3坝前淤沙高程:1098.3 m泥沙浮容重:5 KN/m3混凝土与基岩间抗剪断参数值:f `= 0.5c `= 0.2 Mpa坝基基岩承载力:[f]= 400 Kpa坝基垫层混凝土:C15坝体混凝土:C1050年一遇最大风速:v 0 = 19.44 m/s多年平均最大风速为:v 0 `= 12.9 m/s吹程D = 1000 m(二)、坝体断面1、非溢流坝段标准剖面(1)荷载作用的标准值计算(以单宽计算)A 、正常蓄水位情况(上游水位1105.5m ,下游水位1094.89m ) ① 竖向力(自重)W 1 = 24×5×17 = 2040 KN W 2 = 24×10.75×8.6 /2 = 1109.4 KNW 3 = 9.81×(1094.5-1090)2×0.8 /2 = 79.46 KN ∑W = 3228.86 KNW 1作用点至O 点的力臂为: (13.6-5) /2 = 4.3 m W 2作用点至O 点的力臂为:m 067.16.83226.13=⨯- W 3作用点至O 点的力臂为:m 6.58.0)10905.1094(3126.13=⨯-⨯-竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OW1 = 2040×4.3 = 8772 KN·mM OW2 = -1109.4×1.067 = -1183.7 KN·mM OW3 = -79.46×5.6 = -445 KN·m∑M OW = 7143.3 KN·m②静水压力(水平力)P1 = γH12 /2 = 9.81×(1105.5-1090)2 /2= -1178.4 KNP2 =γH22 /2 =9.81×(1094.89-1090)2 /2 = 117.3KN∑P = -1061.1 KNP1作用点至O点的力臂为:(1105.5-1090)/3 = 5.167mP2作用点至O点的力臂为:(1094.89-1090)/3 = 1.63m静水压力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OP1 = 1178.4×5.167 = -6089 KN·mM OP2 = 117.3×1.63 = 191.2 KN·m∑M OP = -5897.8 KN·m③扬压力扬压力示意图请见下页附图:H1 = 1105.5-1090 = 15.5 mH2 = 1094.89-1090 = 4.89 m(H1 -H1) = 15.5-4.89 = 10.61 m计算扬压力如下:U1 = 9.81×13.6×4.89 = 652.4 KNU2 = 9.81 ×13.6×10.61 /2 = 707.8 KN∑U = 1360.2 KNU1作用点至O点的力臂为:0 mU2作用点至O点的力臂为:13.6 / 2-13.6 / 3 = 2.267m 竖向力对O点的弯矩(顺时针为“-”,逆时针为“+”):M OU1 = 0 KN·mM OU2 = -707.8×2.267 = -1604.6 KN·m∑M OU = -1604.6 KN·m④浪压力(直墙式)浪压力计算简图如下:由确定坝顶超高计算时已知如下数据:单位:m使波浪破碎的临界水深计算如下:%1%122ln 4h L h L L H m m m cr πππ-+=将数据代入上式中得到: 013.183.02644.783.02644.7ln 4644.7=-+=πππcr H 由判定条件可知,本计算符合⑴H ≥H cr 和H ≥L m /2,单位长度上的浪压力标准值按下式计算:)(41%1Z m W Wkh h L P +=γ 式中:γw ──水的重度 = 9.81 KN/m 3其余计算参数已有计算结果。
重力坝应力与稳定计算

10
9
校核洪水位
8
设计洪水位
7
正常水位
6
5 前填土 4
反弧段
后填土
3
2
1
0 -2 -1 0 1 2 3 4 5 6 7 8
-2 -1 0 1 2 3 4 5 6 7 8
0.000
0.000 0.900 0.330
0.100
0.006 1.000 0.401
0.200
0.020 1.100 0.478
淤沙压力(Kpa)
坝前土压力(Kpa)
37.39
37.39
37.39
37.39
坝后土压力(Kpa) -29.86 -29.86
-29.86 -29.86
浪压力(Kpa)
冰压力(Kpa)
反弧段离心分力
(Kpa)
地震荷载(Kpa)
2、 ∑W
垂直重力
坝自重
坝上水重
反弧段离心分力
扬压力
α
3 抗滑验算
4
抗剪断强度抗滑 安全系数(K')
-8.84 -3.86
0.00 221.67
-0.37 -0.73 -1.31 -0.13 -493.86
8.16 245.22
8.16 245.22
0.00 221.67
-0.37 -0.73 -1.31 -0.13 -497.73
7.23 246.14
7.23 246.14
式中:X----计算 点到中轴的距 离; J----计算截面的 惯心距
2.02
2.52 2.5
0.7
2110.33
2110.32 2110.3
2108.5
坝前土高
autobank计算重力坝抗滑稳定计算

autobank计算重力坝抗滑稳定计算【原创实用版】目录1.重力坝抗滑稳定分析的背景和意义2.重力坝抗滑稳定分析的方法3.抗滑稳定计算公式4.提高重力坝抗滑稳定性的措施5.结论正文一、重力坝抗滑稳定分析的背景和意义随着水利工程的广泛应用,重力坝作为一种常见的大坝类型,其抗滑稳定性分析变得越来越重要。
重力坝的抗滑稳定是指在各种荷载作用下,坝体能够保持稳定,不发生滑动现象。
对于重力坝来说,抗滑稳定性是其设计和施工中最为关键的问题之一。
因此,研究重力坝抗滑稳定分析的方法和计算公式具有重要的现实意义和应用价值。
二、重力坝抗滑稳定分析的方法重力坝抗滑稳定分析的方法主要包括以下几种:1.定性分析法:通过对边坡的尺寸、坡形、地质结构、所处的地质环境、形成的地质历史、变形破坏形迹等方面的研究,判断边坡的稳定性。
2.极限平衡分析法:把可能滑动的岩、土体假定为刚体,通过分析可能滑动面,并把滑动面上的应力简化为均匀分布,进而计算抗滑稳定性。
3.抗剪断公式计算:当整个可能滑动面基本上都由软弱结构面构成时,采用抗剪断公式计算。
4.抗剪强度公式计算:可能滑动面仅一部分通过软弱结构面,其余部分切穿岩体或混凝土,有条件提供一定抗滑力的抗力体时,应采用抗剪强度公式计算。
三、抗滑稳定计算公式重力坝抗滑稳定计算公式主要包括以下两种:1.抗剪断公式:Fs = 0.8γH^2tan^2(α/2)其中,Fs 为抗剪断强度,γ为滑动面上的土体重度,H 为滑动面的深度,α为滑动面的倾角。
2.抗剪强度公式:Fs = 0.4γH^2tan^2(α/2) + 0.6σcH^2其中,Fs 为抗剪强度,γ为滑动面上的土体重度,H 为滑动面的深度,α为滑动面的倾角,σc 为混凝土的抗压强度。
四、提高重力坝抗滑稳定性的措施为了提高重力坝的抗滑稳定性,可以采取以下措施:1.选用优质的坝基岩石,要求微风化、新鲜,产状以倾向上游为佳。
2.对坝基进行处理,如固结灌浆,以提高承载力和应变能力。
重力坝抗滑稳定及应力计算

项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段计算书名称:重力坝抗滑稳定及应力计算审查:校核:计算:黄河勘测规划设计有限公司Yellow River Engineering Consulting Co. ,Ltd.二〇一二年四月目录1.计算说明 (1)1.1 目的与要求 (1)1.2 基本数据 (1)2.计算参数和研究方法 (2)2.1 荷载组合 (2)2.2 计算参数及控制标准 (2)2.3 计算理论和方法 (3)3.计算过程 (5)3.1 荷载计算 (5)3.1.1 自重 (5)3.1.2 水压力 (6)3.1.3 扬压力 (10)3.1.4 地震荷载 (14)3.2 安全系数及应力计算 (17)4.结果汇总 (22)1.计算说明1.1 目的与要求下列计算是有关挡水坝段、溢流坝段、进水口、底孔坝段抗滑稳定性和基底应力计算。
1.2 基本数据正常蓄水位:110m;设计洪水位:112.94m;校核洪水位:113.30m;大坝设计洪水标准为100年一遇,校核洪水标准为1000年一遇;坝址区地震动峰值加速度为0.15g(g=9.81m/s²),地震动反应周期为0.25s,相应的地震基本烈度为7度,本工程抗震设计烈度为7度。
计算选取的挡水坝段坝顶高程114.00m,坝基底高程92.00m,坝高22m,坝顶宽5m。
上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
计算选取的溢流坝段堰顶高程110.00m,坝基底高程96.00m,坝高14m,上游坝面竖直,下游坝坡在108.59m高程以上为Creager剖面,在108.59m 高程以下坡度为1:0.85。
正常蓄水位时,溢流坝段下游无水;设计洪水位112.94m时,下游水位104.80m;校核洪水位113.30m时,下游水位105.42m。
进水口坝段顶高程114.00m,坝基底高程87.80m,坝高26.2m,顶宽13.06m,上游坝坡为1:0.25,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
重力坝浅层与深层抗滑稳定计算算稿(采用规范和手册分别计算)

果多水电站大坝浅层及深层抗滑稳定计算(采用规范和手册分别计算)一、采用规范计算(坝坡优化前)1、计算背景果多水电站位于西藏自治区昌都县境内,是扎曲河流域规划方案中的第二级水电站,坝址区位于昌都县柴维乡果多村附近,距柴维乡约5.8km(公路里程),距昌都地区约59km(公路里程)。
工程以发电为主,初拟正常蓄水位3418m,水库回水至关门山上游大同村附近一带,长约19.6km,最大坝高93m,总库容约0.8亿m3,装机容量165MW。
根据《水电枢纽工程等级划分及设计安全标准》(DL5180-2003),结合本工程装机容量、库容和工程任务,本电站工程等别为三等工程,工程规模为中型。
主要永久性建筑物(如挡泄水及引水发电系统)为3级建筑物;次要建筑物为4级。
永久性次要建筑物为4级,临时建筑物为5级。
2006年11月我院组织完成并提交了《西藏自治区扎曲水电规划报告》,2007年4月,水电水利规划设计总院、西藏自治区发改委及西藏自治区电力工业局共同主持审查并通过了该报告。
2008年7月,我院组织完成了果多水电站预可行性研究报告的编写工作,9月,由水电水利规划设计总院会同西藏自治区发改委、电力工业局在成都主持召开了《西藏自治区扎曲果多水电站预可行性研究报告》审查会议,审议并通过了该报告。
同时会议要求对于水工部分还应补充以下内容,用以验证坝体的稳定性:1)、坝基浅层抗滑稳定计算;2)、坝基深层抗滑稳定计算;本算稿主要进行坝基浅层及深层抗滑稳定计算为目的。
2、计算内容果多水电站采用碾压混凝土筑坝技术,大坝上游立视如下图2-1所示,最大坝高93m,坝轴线全长235m,从左岸到右岸分别是左岸挡水坝段、引水坝段、冲沙孔坝段、溢流坝段和右岸挡水坝段。
总库容约0.8亿m3,装机容量165MW。
为了研究整个大坝的稳定性,本次计算选取了具有代表性的几个剖面,各剖(1) 特征水位:校核洪水位:3418.84(P=0.1%),对应的下游校核洪水位3370.87(P=0.1%大坝)/3369.63(P=0.5%厂房);正常蓄水位:3418.00,对应的下游尾水位:3358.63m;死水位:3413.00m;泥沙淤积高程:3378.38m;(2) 材料容重:素混凝土容重:γc=24kN/m3;钢筋混凝土容重:γc=25kN/m3;基岩容重:γc=27kN/m3;水的容重:γw=9.81KN/m3;泥沙浮容重:γsb=8KN/m3;泥沙内摩擦角:φ=10°;(4) 作用分项系数、材料性能分项系数和结构系数分别见表3-1、表3-2和表3-3:表3-1 作用分项系数表4、边界条件1)坝基岩体以T3d2灰色厚层块状砂岩、粉砂岩夹泥岩、泥板岩为主,岩层倾向左岸偏上游,倾角35º~45º,泥岩层面、夹层、裂隙发育。
某工程重力坝抗滑稳定计算书及计算步骤教学教材

某工程重力坝抗滑稳定计算书及计算步骤技施设计浆砌石重力坝抗滑稳定计算书2004年12月说 明1.计算目的与要求对拟定的体型进行抗滑稳定计算,求出拟定体型在各种设计工况下的抗滑稳定安全系数。
同时对坝基面的应力进行计算,以论证是否满足规定的正常使用极限状态与承载能力极限状态要求。
2.计算基本依据1. 建筑体型结构尺寸见附图1;2. 主要地质参数见资料单;3. 材料容重: 浆砌块石:取3/0.23m kN s =γ;水:取3/8.9m kN w =γ; 土的饱和溶重3/12m kN =γ3.计算方法及计算公式 1. 基本假定 1) 坝体为均质、连续、各向同性的弹性材料; 2) 取单宽1米计算,不考虑坝体之间的内部应力。
3)本工程规模小,只计算坝体的抗滑稳定,不对坝体剖面进行浅层与深层抗滑稳定分析以及坝基面应力分析。
2. 地基应力计算按偏心受压公式计算应力:σmax=W M AG ∑∑+ σmin =WMAG∑∑-式中 ∑G —坝体本身的重力,kN ;A ——坝基的受力面积,m 2;∑M —坝体各部分的重力对形心的弯距,kN.M;W —作用在计算截面的抗弯截面系数;3.抗滑稳定坝受到铅直力和水平力的共同作用下,要求沿坝基底面的抗滑力必须大于作用在坝结构水平向的滑动力,并有一定的安全系数。
计算公式为:K C =∑∑Hf G * 式中K c —结构的抗滑稳定安全系数;∑G —坝的基底总铅直力,kN ; ∑H —坝的水平方向总作用力,kN ; f —坝基底的摩擦系数。
4.计算结果总表5.结论经由计算可知,该方案,结构能够满足浆砌石坝在不同运用时期的地基应力和抗滑稳定要求,不会发生地基沉陷和滑动变形,并满足经济适用的原则。
6.主要参考书目a )《浆砌石坝设计规范(SL25-91》;b )《水工建筑物荷载设计规范(DL5077—1997)》;c)天津大学祁庆和《水工建筑物(上册)》(水利电力出版社—1992)溢流坝的稳定计算1基本资料由于坝体受力为平面结构,取单位宽度坝体进行计算。
讲座-3-1重力坝抗滑稳定分析学习文档

(3)等安全系数法
• 等安全系数法就是假定K1=K2,分别由两个极 限平衡方程求解K、Q。
• 由于第一滑动面一般为断层、泥化夹层,产生 塑性破坏,变形较大;第二滑动面一般处于完 整岩体中,破坏形式为脆性破坏,变形较小即 破坏,因此两滑动面上的安全系数实际上并不 相同。
地质模型试验,几何比尺1:130,模型长达 11m,100个测点,198只仪表,精度 0.001mm,全自动测量。
提高坝体抗滑稳定性的措施
• (1)利用水重。将坝体上游面做成倾斜,利 用水重增加向下的垂直力。对上游应力有不利 影响。
• (2)开挖时将坝基面向上游倾斜,对抗滑稳 定有利。
• (3)在坝基面设置防渗排水设施,减少扬压 力。或在坝前设置防渗板,将帷幕和排水前移。
• • 式中:∑P为作用于坝基面以上的合力在水平
方向投影的代数和。
• ∑W为作用于坝基面以上的合力在垂直方向投 影的代数和。
• U 为作用于坝基面上的扬压力。 • f 为坝基面上的摩擦系数。 • [K] 为设计规范规定的抗滑安全系数。
• 当坝基面为倾斜时
• 坝基面上阻滑力为:
• 坝基面上滑动力为: • • 坝基面上的抗滑安全系数为: •
关于[K]、[K']的取值
• [K]、[K']的取值与工程等级、荷载组合、计算 方法有关。根据《混凝土重力坝设计规程等级和荷载组合确定,一般 在1.0~1.1范围内选取,而将混凝土与基岩间 的凝聚力作为安全储备。
• [K']主要根据荷载组合确定,基本荷载组合为 3.0 ,特殊荷载组合为2.3~2.5 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重力坝抗滑稳定及应力计算项目名称:几内亚凯勒塔(KALETA)水电站工程项目阶段:复核阶段计算书名称:重力坝抗滑稳定及应力计算审查:校核:计算:黄河勘测规划设计有限公司Yellow River Engineering Consulting Co. ,Ltd.二〇一二年四月目录1.计算说明 (1)1.1 目的与要求 (1)1.2 基本数据 (1)2.计算参数和研究方法 (1)2.1 荷载组合 (1)2.2 计算参数及控制标准 (1)2.3 计算理论和方法 (2)3.计算过程 (3)3.1 荷载计算 (3)3.1.1 自重 (3)3.1.2 水压力 (4)3.1.3 扬压力 (6)3.1.4 地震荷载 (8)3.2 安全系数及应力计算 (10)4.结果汇总 (13)1.计算说明1.1 目的与要求下列计算是有关挡水坝段、溢流坝段、进水口、底孔坝段抗滑稳定性和基底应力计算。
1.2 基本数据正常蓄水位:110m;设计洪水位:112.94m;校核洪水位:113.30m;大坝设计洪水标准为100年一遇,校核洪水标准为1000年一遇;坝址区地震动峰值加速度为0.15g(g=9.81m/s²),地震动反应周期为0.25s,相应的地震基本烈度为7度,本工程抗震设计烈度为7度。
计算选取的挡水坝段坝顶高程114.00m,坝基底高程92.00m,坝高22m,坝顶宽5m。
上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m高程以下坡度为1:0.75。
计算选取的溢流坝段堰顶高程110.00m,坝基底高程96.00m,坝高14m,上游坝面竖直,下游坝坡在108.59m高程以上为Creager剖面,在108.59m高程以下坡度为1:0.85。
正常蓄水位时,溢流坝段下游无水;设计洪水位112.94m 时,下游水位104.80m;校核洪水位113.30m时,下游水位105.42m。
进水口坝段顶高程114.00m,坝基底高程87.80m,坝高26.2m,顶宽13.06m,上游坝坡为1:0.25,下游坝坡在107.33m高程以上竖直,在107.33m 高程以下坡度为1:0.75。
底孔坝段顶高程114.00m,坝基底高程83.50m,坝高30.5m,顶宽10.0m,上游坝面竖直,下游坝坡在107.33m高程以上竖直,在107.33m高程以下坡度为1:0.75。
2.计算参数和研究方法2.1 荷载组合作用在坝上的主要荷载包括:坝体自重、上下游水压力、扬压力、地震力。
基本组合:正常蓄水位情况(上游水位110.0m)设计洪水位情况(上游水位112.94m)特殊组合:校核洪水位情况(上游水位113.30m)地震情况(正常蓄水位+地震荷载)2.2 计算参数及控制标准水容重γw:9.81KN/m3混凝土容重γc:24KN/m3坝址区岩体主要为坚硬的辉绿岩和砂岩,大坝的建基面基本上分布在弱风化的辉绿岩和砂岩上。
坝基面抗滑稳定计算的岩体及混凝土物理力学参数按表1-1取值,坝基面抗滑稳定安全系数和坝基应力应满足表1-2规定的数值。
由于碾压混凝土坝的碾压层面的结合质量受材料性质、混凝土配合比、施工工艺、施工管理水平以及施工现场气候条件等许多因素的影响,容易成为坝体的薄弱环节,所以需要核算沿坝体混凝土碾压层面的抗滑稳定,坝体碾压层面的抗滑稳定计算采用抗剪断公式,安全系数值的控制标准应符合表1-2的要求。
根据国内经验,碾压层面的抗剪断参数可取:f ’=1.0,c ’=1.0MPa 。
表1-1 抗滑稳定计算岩体及混凝土力学参数表1-2 抗滑稳定安全系数和坝基容许应力重力坝坝基面坝踵、坝趾的垂直应力在运用期的各种荷载组合下(地震荷载除外),坝踵垂直应力不应出现拉应力,坝趾垂直应力应小于坝基容许压应力。
2.3 计算理论和方法混凝土重力坝坝体稳定采用刚体极限平衡法计算,分别计算各坝段不同水平截面(包括坝体混凝土碾压层面、坝体混凝土-基岩结合面)上的外加荷载及应力,并计算出抗剪和抗剪断稳定安全系数,以及坝基截面的垂直应力。
为了确保结构即使在排水系统失效时也能安全运行,本次设计时扬压力考虑全水头。
PW f K ∑∑=(抗剪强度计算公式)PAC W f K ∑'+∑'='(抗剪断强度计算公式)式中:K ’—按抗剪断强度计算的抗滑稳定安全系数; f —坝体混凝土与坝基接触面的抗剪摩擦系数; f ’—坝体混凝土与坝基接触面的抗剪断摩擦系数;C ’—坝体混凝土与坝基接触面的抗剪断凝聚力,KPa ; A —坝基接触面截面积,m 2;ΣW —作用于坝体上的全部荷载对于计算滑动面的法向分值,KN ; ΣP —作用于坝体上的全部荷载对于计算滑动面的切向分值,KN ; 坝基截面的垂直应力按下式计算:J xM A W y ⋅∑±∑=σ 式中:σy —坝踵、坝趾垂直应力,KPa ;ΣW —作用于坝段上或1m 坝长上的全部荷载在坝基截面上法向力总和,KN ;ΣM —作用于坝段上或1m 坝长上的全部荷载对坝基截面形心轴的力矩总和,KN.m ;A —坝段或1m 坝长的坝基截面积,m ²; x —坝基截面上计算点到形心轴的距离,m ;J —坝段或者1m 坝长的坝基截面对形心轴的惯性矩,m 4。
3.计算过程3.1 荷载计算 3.1.1 自重各种工况下,建筑物的自重均相同。
挡水坝段:单宽坝段(1m 坝长)断面面积A 1=198.167m 2单宽坝段断面自重G 1=4756.0KN (向下为正方向)单宽坝段断面形心对坝基中点的力臂L 1=-2.93m (向右为正方向) 力矩M G1=-13945.54KN.m (顺时针方向为正) 溢流坝段:单宽坝段(1m 坝长)断面面积A 1=123.73m 2单宽坝段断面自重G 1= 2969.53KN (向下为正方向)单宽坝段断面形心对坝基中点的力臂L 1=-1.486m (向右为正方向)力矩M G1= -4413.025KN.m (顺时针方向为正) 进水口坝段:单宽坝段(1m 坝长)断面面积A 1=586.74m 2单宽坝段断面自重G 1=14081.76KN (向下为正方向)单宽坝段断面形心对坝基中点的力臂L 1=0.05m (向右为正方向)力矩M G1=704.09KN.m(顺时针方向为正)底孔坝段:单宽坝段(1m坝长)断面面积A1=518.01m2单宽坝段断面自重G1=12432.24KN(向下为正方向)单宽坝段断面形心对坝基中点的力臂L1=-3.22m(向右为正方向)力矩M G1=-40031.81KN.m(顺时针方向为正)3.1.2 水压力水压力分为水平向静水压力、竖向水压力(溢流坝段泄洪时)、地震情况下的动水压力(此荷载为地震荷载)。
1、水平向静水压力(1)挡水坝段正常蓄水位情况:上游水深H u1=18.0m上游水压力P u1=1587.6KN力臂L u1=6m力矩M Pu1=9525.6KN.m设计洪水位情况:上游水深H u2=20.94m上游水压力P u2=2148.57KN力臂L u2=6.98m力矩M Pu2=14997.0KN.m校核洪水位情况:上游水深H u3=21.3m上游水压力P u3=2223.08KN力臂L u3=7.1m力矩M Pu3=15783.87KN.m(2)溢流坝段正常蓄水位情况:上游水深H u1=14.0m上游水压力P u1=960.4KN力臂L u1=4.67m力矩M Pu1=4481.87KN.m设计洪水位情况:上游水深H u2=16.94m上游水压力P u2=1406.12KN力臂L u2=5.65m力矩M Pu2=7939.9KN.m下游水深H d2=8.8m下游水压力P d2=-379.456KN力臂L d2=2.93m力矩M Pd2=-1113.07KN.m校核洪水位情况:上游水深H u3=17.3m上游水压力P u3=1466.52KN 力臂L u3=5.77m力矩M Pu3=8456.94KN.m下游水深H d3=9.42m下游水压力P d3=-434.81KN 力臂L d3=3.14m力矩M Pd3=-1365.30KN.m (3)进水口坝段正常蓄水位情况:上游水深H u1=22.2m上游水压力P u1=2417.38KN 力臂L u1=7.4m力矩M Pu1=17888.61KN.m 设计洪水位情况:上游水深H u2=25.14m上游水压力P u2=3100.06KN 力臂L u2=8.38m力矩M Pu2=25978.50KN.m 校核洪水位情况:上游水深H u3=25.5m上游水压力P u3=3189.48KN 力臂L u3=8.5m力矩M Pu3=27110.58KN.m (4)底孔坝段正常蓄水位情况:上游水深H u1=26.5m上游水压力P u1=3444.54KN 力臂L u1=8.83m力矩M Pu1=30415.29KN.m 设计洪水位情况:上游水深H u2=29.44m上游水压力P u2=4251.23KN 力臂L u2=9.81m力矩M Pu2=41704.57KN.m 校核洪水位情况:上游水深H u3=29.8m上游水压力P u3=4355.84KN 力臂L u3=9.93m力矩M Pu3=43253.49KN.m 2、竖向水压力竖向水压力是在溢流坝段泄洪时作用在溢流坝面上的水压力,水面线按堰上水深和下游水深的平均初估。
设计洪水位情况:单宽坝段上水体面积A2=38.23m2单宽坝段上水重G2= 374.68KN力臂L2=-0.12m力矩M G2= -46.35KN.m校核洪水位情况:单宽坝段上水体面积A3=46.81m2单宽坝段上水重G3=458.77KN力臂L3=-0.11m力矩M G3= -50.60KN.m进水口坝段斜断面上水重正常蓄水位情况:上游水深H u1=22.2m上游水压力G w1=647.90KN力臂L u1=12.69m力矩M w1=8221.85KN.m设计洪水位情况:上游水深H u2=25.14m上游水压力G w2=831.12KN力臂L u2=12.69m力矩M w2=10546.91KN.m校核洪水位情况:上游水深H u3=25.5m上游水压力G w3=854.28KN力臂L u3=12.69m力矩M w3=10840.81KN.m3.1.3 扬压力为了确保结构即使在排水系统失效时也能安全运行,本次设计时扬压力考虑全水头。
坝底面上游处的扬压力作用水头为H u(上游水深),下游处为H d(下游水深),其间以直线连接。
(1)挡水坝段正常蓄水位情况:上游水深H u1=18.0m扬压力U1=-1455.3KN力臂L u1=-2.75m力矩M U1=4002.08KN.m设计洪水位情况:上游水深H u2=20.94m扬压力U2=-1693KN力臂L u2=-2.75m力矩M U2=4655.75KN.m 校核洪水位情况:上游水深H u3=21.3m扬压力U3=-1722.1KN力臂L u3=-2.75m力矩M U3=4375.79KN.m (2)溢流坝段正常蓄水位情况:上游水深H u1=14.0m下游水深H d1=0m扬压力U1=-891.8KN力臂L u1=-2.17m力矩M U1=1932.23KN.m 设计洪水位情况:上游水深H u2=16.94m下游水深H d2=8.8m扬压力U2=-1639.6KN力臂L u2=-0.67m力矩M U2=1099.87KN.m 校核洪水位情况:上游水深H u3=17.3m下游水深H d3=9.42m扬压力U3=-1702.1KN力臂L u3=-0.64m力矩M U3=1087.62KN.m (3)进水口坝段正常蓄水位情况:上游水深H u1=22.20m扬压力U1=-3275.44KN力臂L u1=-5.01m力矩M U1=16409.95KN.m 设计洪水位情况:上游水深H u2=25.14m扬压力U2=-3709.22KN力臂L u2=-5.01m力矩M U2=18583.19KN.m 校核洪水位情况:上游水深H u3=25.50m扬压力U3=-3762.33KN力臂L u3=-5.01m力矩M U3=18849.27KN.m(4)底孔坝段 正常蓄水位情况: 上游水深H u1=26.5m 扬压力U 1=-3623.91KN 力臂L u1=-4.65m力矩M U1=16851.18KN.m 设计洪水位情况:上游水深H u2=29.44m 扬压力U 2=-4025.96KN 力臂L u2=-4.65m力矩M U2=18720.71KN.m 校核洪水位情况: 上游水深H u3=29.8m 扬压力U 3=-4075.19KN 力臂L u3=-4.65m力矩M U3=18949.63KN.m3.1.4 地震荷载一般情况下,混凝土重力坝在抗震设计中可以只计入顺水流向的水平向地震作用。