循环伏安法介绍

合集下载

循环伏安法

循环伏安法
并作循环伏安图,得 到三组峰,如图所示。 这表明该金属有机物 在电极上有氧化—还 图3. 原过程、而且其产物 均是稳定的
❖ 循环伏安法不仅可鉴定
电化学反应产物,还可鉴 定电化学—化学偶联反应 过程的产物。
❖ 例如,对—氨基苯酚的 电极反应过程,其循环伏
安图如图。开始由较负的 电位(图中起始点)沿箭头 方向作阳极扫描,得到一 个阳极峰1,而后作反向 阴极扫描,出现两个阴极 峰2和3,再作阳极扫描时 出现两个阳极峰4和5(图 中虚线表示)。其中峰5与 峰1的位置相同。
图3.1 循环伏安法中电位与时间的关系
❖ 其电流—电压曲线如图
图3.2 循环伏安图
❖ 阳、阴极峰电流之比值(设
)
❖ 严格地说,只有当电极反应产物可溶于溶液时, 上式的比值才为1。如电极产物形成汞齐,则由于 悬汞电极的体积很小,汞中还原形的浓度比溶液 中氧化形的浓度大得多,因而阳极峰电流比阴极 峰电流大。
极反应为
❖ 扫速越慢,阳极峰电流比阴极峰电流降低得更快,峰电流之 比ip,a/ip,c与v的关系如前图, ip,a/ip,c随v增加而增加,最后趋 于 发1生。水这化是反由应于电极还原产物Co(en)32+不稳定,在电极附近
❖ Co(en)32+可在阳极上氧化,而水化产物Co(en)2(OH)22+则不 能,因此,扫速越快,水化反应越来不及进行,生成的水化 物越少, ip,a/ip,c值越接近于1。反之,v越小,水化反应作用 越大,电流比值越小。
❖ 三种不同R1和R 2基的烯类比合物的反应是二聚化 反应的另一例子。其反应通式为
❖ 不同取代基的反应物的伏安图,如下图所示。
烯类化含物循环伏安图
c为
的循环伏安图,无阳极峰,表明二聚化反应很快,

电分析化学循环伏安法

电分析化学循环伏安法

电分析化学循环伏安法电分析化学循环伏安法(cyclic voltammetry, CV)是一种常用的电化学测量方法,主要用于研究电催化反应、电极传感器和电化学反应机理等方面。

本文将对循环伏安法的原理、实验步骤和应用进行详细阐述。

一、原理循环伏安法是利用外加电压的正反向扫描,通过测量电流与电势之间的关系来研究溶液中的电化学反应。

在扫描过程中,电势以一个循环进行周期性变化,通常为从较负的起始电势线性扫描至较正的最大电势,然后再线性扫描回到起始电势。

电流与电势之间的关系可绘制出伏安图。

根据循环伏安曲线上出现的峰电流和峰电势,可以获取溶液中的电极反应的动力学和热力学信息。

峰电流的大小与反应速率成正比,而峰电势则反映了此反应的标准电势。

通过分析伏安图中的特征峰电流和峰电势,可以确定反应是否在电极表面发生,电化学反应的机理以及电极表面的反应活性等信息。

二、实验步骤1.准备实验样品和电化学池:将待测物溶解于合适的溶剂中,配制成一定浓度的电解液。

将工作电极(常用玻碳电极)、参比电极和计时电极放入电化学池中,确保其充分浸泡于电解液中。

2.建立电位扫描程序:选择适当的起始电位、终止电位和扫描速率。

起始电位为一般为较负值,终止电位为较正值。

扫描速率根据实验需求选择,通常为3-100mV/s。

3.进行循环伏安实验:在实验过程中,通常需要稳定电极电势一段时间,直到电流达到平衡。

然后开始正向扫描,直至到达终止电位。

接着进行反向扫描,回到起始电位。

整个循环过程称为一个循环。

4.记录电流-电势数据:记录正反向扫描过程中的电流与电势数据,通常以图形的形式记录,即伏安图。

按照实验需要的精度和时间,可以选择多次重复扫描,以提高实验结果的准确性。

三、应用1.电催化反应研究:循环伏安法可用于研究电催化剂的活性和稳定性,提供电催化反应的动力学和热力学参数。

通过优化电催化剂的结构和组成,可以提高电极催化剂的效能。

2.电极材料评估:通过对循环伏安曲线的分析,可以确定电极材料的氧化还原能力和稳定性。

循环伏安法原理及结果分析

循环伏安法原理及结果分析

循环伏安法原理及结果分析循环伏安法(cyclic voltammetry)是电化学分析技术中常用的手段之一,它通过对电极表面施加一定的电位范围,并观察电流随时间的变化,来研究电极的电化学反应动力学过程及物质的电化学性质。

本文将介绍循环伏安法的原理和结果分析。

一、循环伏安法原理循环伏安法是利用三电极体系或两电极体系,在电解液中施加一系列连续的电位变化,从而观察被测物质的电极过程和电分析过程。

其原理可以概括如下:1. 电位扫描循环伏安法通过对电极施加一定电位的扫描,看电流随着电位变化的趋势,了解电极上电化学反应的特性。

该扫描通常为正弦形状的波形,可以从一个起始电位逐渐扫描到反向电位,然后再返回起始电位。

2. 反应过程在电位扫描过程中,当电极达到某一特定电位时,电极上的溶液中的物质会发生氧化还原反应。

在电位的正向扫描中,电极吸附或生成物质发生氧化反应;在电位的反向扫描中,电极吸附或生成物质发生还原反应。

3. 极化曲线根据电流与电位之间的关系绘制出的曲线被称为循环伏安曲线(cyclic voltammogram)。

循环伏安曲线可以提供丰富的电化学信息,如峰电位、峰电流、反应速率等,通过分析这些参数可以了解被测物质的电化学性质。

二、循环伏安法结果分析循环伏安法作为一种定量分析技术,可以提供丰富的信息用于研究和分析。

下面是对循环伏安法结果的常见分析方法:1. 峰电位循环伏安曲线中的峰电位是指氧化还原反应发生的特定电位,它可以提供物质的氧化还原能力和反应速率信息。

通过比较不同物质的峰电位可以实现物质的定性分析。

2. 峰电流峰电流是循环伏安曲线中峰值对应的电流值,它可以反映物质的浓度和反应速率。

通过比较不同物质的峰电流可以实现物质的定量分析。

3. 氧化还原峰循环伏安曲线中的氧化峰和还原峰是氧化还原反应的关键指标。

通过对氧化峰和还原峰的面积进行定量分析,可以得到物质的电化学反应速率以及反应机理。

4. 电化学反应动力学循环伏安法还可通过对不同扫描速率下的曲线进行分析,得到电化学反应的动力学参数,比如转移系数、速率常数等。

(完整版)循环伏安法

(完整版)循环伏安法
解释对氨基苯酚的循环伏安图 又出现两个阴极峰2和3。
(1) 从起点S开始图,8-电19位往正方 向进行阳极扫描,得到阳极峰1。
(3) 再进行一次阳极扫描, 则又出现两个阳极峰4和5, 且峰5的电位值与峰1相同。
对-亚氨基苯 O
OH 苯醌在较负的 O
OH
醌又还原成 对-氨基苯酚
解释: + 2H++ 2e-
? c为不可逆,因为它只有一个还原峰,反方向扫描时虽 然有连续的电流衰减但是没有得到氧化峰, ipc与电压 扫描速度√ v成正比。当电压扫描速度明显增加时, φpc明显变负 。
(二)电极反应机理的研究
? 循环伏安法可用于电化学 -化学 偶联过程的研究,即在电极反应过 程中还伴随着化学反应的产生。
(2) 然后反向向阴极扫描,
一、循环伏安法
?
以快速线性扫描的形式施加三角波电压 ,一
次三角波扫描完成一个还原过程和氧化过程的循环,
然后根据 i—φ曲线进行分析的方法称为循环伏安
法。
二、工作原理
(一) 基本装置
?同普通极谱法。
1. 三角波电压
将线性扫描电压施加到电极上,
从起始电压Ui开始沿某一方向扫描到 终止电压Us后,再以同样的速度反方
向扫至起始电压,加压线路成等腰 三角形,完成一次循环。根据实际 需要,可以进行连续循环扫描。
图8-17
(二)工作原理
? 1. 当三角波电压增加时,(即电位从正向负 扫描时)溶液中氧化态电活性物质会在电极上 得到电子发生还原反应,产生还原峰。 O + ne- ? R
? 2. 当逆向扫描时,在电极表面生成的还原性 物质R又发生氧化反应,产生氧化峰。 R ? O + ne-

循环伏安法介绍

循环伏安法介绍

循环伏安法原理

当工作电极被施加的扫描电压 激发时,其上将产生响应电流。 以该电流(纵坐标)对电位 (横坐标)作图,称为循环伏 安图。典型的循环伏安图如 (Fig.1b)所示。
Fig.1(b) 循环伏安谱
循环伏安法原理

循环伏安图中的重要参数
阳极峰电流(ipa); 阴极峰电流(ipc) 阳极峰电位(φpa); 阴极峰电位(φpc);





确定 i p 的方法是:沿基线 做切线外推至峰下,从峰 顶做垂直线至切线,其间 高度即为ip ,φp可直接从 横轴与封顶对应处读取。
Fig.2
循环伏安法原理

峰电流方程式:
i p 2.6910 n AD v c
5 32 12 12

( 1 )
峰电势方程式:
RT φ p φ1 2 1.1 nF

而苯醌在较负的电位上被 还原为对苯二酚形成峰 3 。
循环伏安法的应用

再一次阳极扫描时,对苯二酚被氧化为苯醌,形成峰 4; 而峰5与峰1的过程相同,即对-氨基苯酚被氧化为对-亚氨 基苯醌。

为证明峰 3和峰 4是苯醌和对苯二酚的还原和氧化过程, 可制备对苯二酚的溶液作循环伏安图加以证实。
循环伏安法的应用
循环伏安法原理

Fig.1(a) 循环电位扫描
循环伏安法是以线性扫描 伏安法的电位扫描到头后,再 回过头来扫描到原来的起始电 位值,所得的电流-电压曲线为 基础的分析方法。其电位与扫 描时间的关系,如 (Fig.1a) 所 示,由图可知,扫描电压呈等 腰三角形。如果前半部扫描 (电压上升部分)为电活性组 分在电极上被还原的阴极过程, 则后半部扫描(电压下降部分) 为还原产物重新被氧化的阳极 过程。因此,一次三角波扫描 完成一个还原过程和氧化过程 的循环,故称为循环伏安法。

1-循环伏安法

1-循环伏安法

数据处理
• 1.从K3 [Fe(CN)6]溶液的循环伏安图,读出ipa、ipc、Epa、 Epc的值。 • 2.分别以ipa、ipc对K3 [Fe(CN)6]溶液的浓度作图,说明峰电 流与浓度的关系。 • • 3.分别以ipa、ipc对v1/2作图,说明峰电流与扫描速率间的关 系。 • 4.计算ipa/ipc的值,Eo′值和ΔE值;说明K3 [Fe(CN)6]在KNO3 溶液中电极过程的可逆性。
1.判断电极过程的可逆性
(1)可逆电极过程
峰电流为:
(通过循环伏安图) 上下两条曲线是对称的
ip 2.69 105 n3/ 2 ACD1/ 2v1/ 2
ipa ipc
ip为峰电流(A,安培);n为电子转移数;D为扩散系数(cm2· s-1);v为电压扫描速 度(V· s-1);A为电极面积(cm2);c为被测物质浓度(mol· L-1)
• 4.不同浓度 K3 [Fe(CN)6] 溶液的循环伏安图
• 以0.1 V/s作为扫描速率,分别作上述配置的不同浓度的[Fe(CN)6]3-溶液循环 伏安图。
• 5.不同扫描速率 K3 [Fe(CN)6]溶液的循环伏安图
• 在2.0×10-2 mol· L-1 K3 [Fe(CN)6]溶液中,以0.05、0.10、0.15、0.20、0.25 、 0.30 V/s V/s在-0.2至+0.6 V电位范围内扫描,分别记录循环伏安图。
28.25
峰电位与半波电位关系为:
Ep E1/ 2 1.1
RT 29 E1/ 2 mV(25C ) nF n
RT 56.5 mV(25C ) nF n
Ep Epa Epc 2.2
(2)不可逆电极过程 峰电流为:

循环伏安法概念-简

循环伏安法概念-简

1.循环伏安法是指在电极上施加一个线性扫描电压,以恒定的变化速度扫描,当达到某设定的终止电位时,再反向回归至某一设定的起始电位,循环伏安法电位与时间的关系为(见图a ),其中ϕr -ϕi 为扫描范围(电势窗口,通常水体系为-1V~+1V ),其正斜率为扫描速率,简称扫速,单位mV/s ,常用50mV/s 。

若电极反应为O +e R ,反应前溶液中只含有反应粒子O 、且O 、R 在溶液均可溶,控制扫描起始电势从比体系标准平衡电势正得多的起始电势处开始势作正向电扫描,电流响应曲线则如图b 所示。

当电极电势逐渐负移到附近时,O 开始在电极上还原,并有电流通过。

由于电势越来越负,电极表面反应物O 的浓度逐渐下降,因此向电极表面的流量和电流就增加。

当O 的表面浓度下降到近于零,电流也增加到最大值Ipc(还原峰电流),对应的电压为还原峰电压E pc ,然后电流逐渐下降。

当电势达到ϕr 后,又改为反向扫描。

随着电极电势逐渐变正,电极附近可氧化的R 粒子的浓度较大,在电势接近并通过时,表面上的电化学平衡应当向着越来越有利于生成R 的方向发展。

于是R 开始被氧化,并且电流增大到峰值氧化电流Ipa(氧化峰电流) ,对应的电压为氧化峰电压E pa (一般作为it 实验的工作电压),随后又由于R的显著消耗而0平ϕ0平ϕ引起电流衰降。

整个曲线称为“循环伏安曲线”。

图3、电极在0.05 mol饱和的PBS 中不同扫速的循环伏安图,扫速由内到外依次为0.02、0.05、0.1、0.15、和0.2 V/s,插图为峰电流和扫速的校正曲线,扫描速率与电流呈线性,表明电极过程受表面控制(或称反应控制)(若扫描速率的方根与电流呈线性,表明电极过程受扩散控制)。

循环伏安法原理

循环伏安法原理

循环伏安法原理
循环伏安法(Cyclic voltammetry,CV)是一种常用于电化学
研究的实验技术,用于研究电化学反应动力学、电极表面的电化学性质以及电极材料的电化学特性。

该方法的原理基于对电极上施加一系列线性变化的电位,通过测量所施加电位下的电流响应来获取样品的电化学信息。

CV
实验通常在三电极电极池中进行,包含工作电极、参比电极和计量电极。

首先,通过施加一个起始电位,使得工作电极与参比电极之间建立起一个起始电位差。

然后,通过改变电位来引发电化学反应,这导致在电极表面上发生氧化和还原反应。

这些反应会引起从工作电极到计量电极的电流流动。

随后的实验过程中,电位逐渐改变,使得电化学反应在每个电位值上进行。

电位的变化速率称为扫描速率,可用于控制反应速率。

在每个电位上,会测量到一个对应的电流响应,并绘制成循环伏安曲线。

通过分析循环伏安曲线,可以获取有关电化学反应的许多信息,例如反应的峰电位(峰电位代表了氧化还原反应的电位值)、峰电流(峰电流与反应速率有关)、氧化还原峰之间的电位差(反映反应的可逆性质)、氧化还原峰的峰形等。

此外,CV
还可以用于确定电极表面的有效面积、测量电极表面上的电荷转移速率等参数。

总之,循环伏安法通过改变电位来引发电化学反应,并通过测量电流响应来获取电化学信息。

它是一种简单有效的电化学检测方法,被广泛应用于材料科学、化学分析、电池研究等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

极化现象
浓差极化: 浓差极化: 由于电解过程中电极表面离子浓度与溶液本体浓度不同而使电极电位 偏离平衡电位的现象。
电化学极化: 电化学极化: 因电化学反应本身的迟缓而造成电极电位偏离可逆平衡电位的现象 称为电化学极化。
注意: 注意:由于电解过程中电极表面的浓差极化是不可避免的现象,外加电压要严格控 制工作电极上的电位大小就要求另一支电极为稳定电位的参比电极,实际上由于电 解池的电流很大,一般不易找到这种参比电极,故只能再加一支辅助电极组成三电 极系统来进行伏安分析。
Fig.1 循环伏安法原理:(a) 循环电位扫描 (b) 循环伏安谱
Fig.2 电解过程的伏安曲线
电极表面的传质过程
电极表面存在三种传质过程, 电极表面存在三种传质过程, 分别是: 分别是: 1) 扩散 ) 2.)电迁移 ) 3) 对流 ) 若电解采用微铂电极为工作电极、 且溶液不充分搅拌时,会促使耗 竭区提前出现。这种现象称极化 现象。

5.电极过程可逆性判断
电极反应机理研究
首先阳极扫描, 首先阳极扫描,对-胺基苯酚被氧化产 生了峰1的阳极波 的阳极波。 生了峰 的阳极波。
反向阴极扫描,得到峰 、 的阴极波 的阴极波, 反向阴极扫描,得到峰2、3的阴极波, 是由于前面阳极扫描的氧化产物对 是由于前面阳极扫描的氧化产物对-亚 胺基苯醌在电极表面上发生化学反应 在电极表面上发生化学反应, 胺基苯醌在电极表面上发生化学反应, 部分对-亚胺基苯酚转化为苯醌: 部分对-亚胺基苯酚转化为苯醌:
循环伏安法原理
在一个典型的循环伏安实验中,工作电极一般为浸在溶液中的固定电极。 为了尽可能降低欧姆电阻,最好采用三电极系统。在三电极系统中,电 流通过工作电极和对电极。工作电极电位是以一个分开的参比电极(如 饱和甘汞电极,SCE)为基准的相对电位。在循环伏安测试实验中,工 作电极的电位以10 mV/s 到 200 mV/s 的扫描速度随时间线性变化 (Fig.1a),在此同时记录在不同电位下的电流(Fig.1b)。.
对-亚胺基苯醌及苯醌均在电极上还原 , 分别产生对- 分别产生对-胺基苯酚和对苯二酚
形成峰2 形成峰
形成峰3 形成峰
• 再次阳极扫描时,对苯二酚又被氧 再次阳极扫描时, 形成峰4 而对- 化为苯醌 ,形成峰 ,而对-胺基 苯酚又被氧化为对-亚胺基苯醌, 苯酚又被氧化为对-亚胺基苯醌, 形成与峰1完全相同的峰 形成与峰 完全相同的峰5。 完全相同的峰
主要内容: 主要内容:
• 循环伏安法的原理 • • • • 循环伏安技术的应用 (1)可逆反应 ) 2) (2)峰电位的确定 (3)峰电流的计算 )
• 循环伏安测试中的注意事项
1922 年 捷克科学家 海洛夫斯基 J.Heyrovsky 创立极谱法,1959年获Nobel奖 1934 年 尤考维奇 Ilkovic, 提出扩散电流理 论,从理论上定量解释了伏安曲线。 20世纪40年代以来 提出了各种特殊的伏安技 术。主要有:交流极谱法(1944年)、方波极 谱法(1952年)、脉冲极谱法(1958年)、卷 积伏安法(1970年) 20世纪40年代以来 主要采用特殊材料制备的 固体电极进行伏安分析。包括微电极、超微阵列 电极、化学修饰电极、纳米电极、金刚石电极、 生物酶电极、旋转圆盘电极等,结合各种伏安技 术进行微量分析、生化物质分析、活体分析。
Fig.3 典型可逆体系的循环伏安图。 典型可逆体系的循环伏安图。
Fig.4典型准可逆体系和不可逆体系的循环伏安图。 典型准可逆体系和不可逆体系的循环伏安图。 典型准可逆体系和不可逆体系的循环伏安图
Fig.5 线性扫描曲线
反应可逆性的判断
对一个可逆反应,峰电位与扫描速度和浓度无关。 Epa与Epc 之差
∆E p = E pa − E pc
也可用来判断电极反应的可逆程度。
∆E p = E pa − E pc
2.3RT 59 = = mV nF n
(at 25°C) (3)
对于不可逆体系, ∆ Ep > 59/n(mV), ipa / ipc < 1。 ∆Ep越大, 阴阳峰电流比值越小,则该电极体系越不可逆。对于不可逆电 。 极电程来说,反向电压扫描时不出现阳极波。
循环伏安曲线中提供的信息
从循环伏安图上读取以下数据
ipc
计算
ipa ϕpc
ϕ pa
ϕ =
0'
(ϕ pc + ϕpa ) 2
ipa ipc
≈1
0.059 ∆ϕ = ϕ pc − ϕ pa = n 作图并验证以下公式
ip ~ C
ip ~ v1/ 2
ip = 2.69 × 10 5 n 3 / 2 ACD 1 / 2 v 1 / 2
以待测物质溶液、工作电极、参比电极构成一个电解池 电解池, 电解池 通过测定电解过程中电压-电流 电压电压 电流参量的变化来进行定量、 定性分析的电化学分析方法称为伏安法。
极谱法:使用滴汞电极 滴汞电极或其它表面能够周期性 极谱法: 滴汞电极 更新的液体电极 液体电极为工作电极,称为极谱法。 液体电极 伏安法: 表面静止的液体或固体电极 伏安法:使用表面静止的液体 固体电极 表面静止的液体 固体电极为工作电极,称 为伏安法。
循环伏安法的应用
循环伏安法除了作为定量分析方 法外,更主要的是作为电化学研究 法外,更主要的是作为电化学研究 的方法, 的方法,可用于研究电极反应的性 质、机理及电极过程动力学参数等。 机理及电极过程动力学参数等。
电极过程可逆性的判断-------对 ⊙电极过程可逆性的判断----对 于可逆电极过程来说, 于可逆电极过程来说,循环伏 安法阴极支和阳极支的峰电位 Epa 和Epc分别为
峰电位的确定
• 一般情况下,伏安图谱上的峰比较宽,因而难以确定峰电位。所以,有时以 0.5 ip的电位(称为半峰电位EP/2)来对电极反应进行表征更方便。理论上, 半峰电位与半波电位的关系为

RT + 1 .09 nF
(4)
E p/2 = E 1/2
• Ep 和 Ep/2的差别为
Ep − Ep/2
二、电解池的伏安行为
当外加电压达到镉离子的电解 还原电压时,电解池内会发生 如下的氧化还原反应。 阴极还原反应:
Cd2+ + 2e
阳极氧化反应:
Cd
H2O + 1/2 O2 U外- Ud= iR
(Cd2+)
2OH- -2e U外 ∝ i
U外代表外加电压、R代表电路 代表外加电压、 代表电路 阻抗、 阻抗、 Ud代表分解电压
2.2 RT 56.5 = = mV nF n
(5)
峰电流的计算
可逆反应的线性扫描的峰电流ip可有以下Randles-Sevcik方程给出:
i p = kn AD cv
3/2 1/ 2
Байду номын сангаас
1/ 2
(6)
A- 电极面积 D - 扩散系数 c- 浓度 n- 交换电子数 v - 扫描速率 k - Randles-Sevcik 常数(2.69*105 As/V m mol)
RT cO (0, t ) E = E° + ln nF c R (0, t )
• 可逆反应的线性扫描图谱的峰电位服从下面方程:
(1)
E p = E 1/2
RT + / − 1.109 nF
(2)
式中,E1/2为极谱的半波电位,半波电位值很接近标准电极电位E°。 式(2)中的正号(+)适用于阳极反应峰(Epa),负号适用于阴极峰(Epc)。
Hg
(iii) Easy to remove diffusion microelectrodeson mercury drop surface layer when the drop falls
(螺线管)
(活塞)
(聚氨酯) (金属垫圈))
0.05~ 0.5mm diameter
可逆体系
• 如果电极表面上的电子转移过程的速率很快,电极表面上氧化态和还原态试 样的浓度的比率服从Nernstian方程。在这种条件下,电极反应式为可逆的反 应。:
分类:
直流极谱法 方波极谱法 脉冲极谱法 单扫描示波极谱法 交流示波极谱法 计时电流极谱法
控制电位极谱法 极谱法 控制电流极谱法 伏安法 滴定伏安法 电流滴定伏安法 永停滴定伏安法 阳极溶出伏安法 阴极溶出伏安法 计时电位溶出伏安法
溶出伏安法 循环伏安法
2011-12-12
伏安分析法的基本原理: 伏安分析法的基本原理:
仍正比于 。准可逆电极电程的循环伏 安法曲线如4.17B 4.17B图所示 安法曲线如4.17B图所示
对于不可逆电极电程来说, 对于不可逆电极电程来说, 反向电压扫描时不出现阳极波, 反向电压扫描时不出现阳极波, 变大时E 仍正比于 ,v 变大时Epc 明显变负。 Ep与 的关系, 明显变负。根据 Ep与v的关系, 还可以计算准可逆和不可逆电 极反应的速率常数。 极反应的速率常数。不可逆过 程的循环伏安法曲线如图4.17 程的循环伏安法曲线如图4.17 所示。 C所示。
可逆电极过程的循环伏安法曲线图
对于部分可逆(也称准可逆) 对于部分可逆(也称准可逆)电极过程来 极化曲线与可逆程度有关, 说,极化曲线与可逆程度有关,一般来 说, △Ep >59/n mV,且峰电位随电压扫 描速度ν的增大而变大,阴极峰变负, 描速度ν的增大而变大,阴极峰变负,阳 极峰边正 。
ipc/ipa可能大于1,也可能小于或等于1, 可能大于1 也可能小于或等于1
Epa=E ½+1.1RT / nF Epc=E ½-1.1RT / nF △ Ep= Epa- Epc = 2.2RT / nF =56.5/n (mV)
△Ep与循环电压扫描中换向时的电位有 E 关,也与实验条件有一定的关系,其值 也与实验条件有一定的关系, 会在一定范围内变化。一般认为当△ 会在一定范围内变化。一般认为当△Ep 55/nmV至 为55/nmV至65/nmV 时,该电极反应是可 逆过程。应该注意: 逆过程。应该注意:可逆峰电流与电压 扫描速率ν有关, 扫描速率ν有关,且
相关文档
最新文档