循环伏安法的原理(PPT-42)
循环伏安法_厦大《实验电化学》课件

循环伏安法 (Cyclic voltammetry)
内容
相关概念简介 线性扫描伏安法简介 循环伏安法简介(用CHI获得循环伏安图的一个具体例子) 分类(电极反应类型 ,循环伏安图的不同特征,所涉及的参数) 一些注意事项
相关概念简介
研究对象:离子导体和电子导体的界面
电化学实验装置示意图
CE WE RE
O 和电极之间发生电荷转移
(faradaic)
R 从电极表面脱附(或发生化学反应)
(non-faradaic)
R 从电极表面向溶液本体传递(生成新相) (mass transport)
电极过程:电极反应、传质过程、相关化学反应
相关概念简介
O ne
扩散层
O* 溶液本体
电极 R
R*
双
电
层
~107 V/cm
重复以上过程,测量2,4,6,8,10mM K3Fe(CN)6 + 0.5 M H2SO4溶 液中的CV数据
可测量一个未知浓度溶液的CV数据
K3Fe(CN)6 溶液循环伏安曲线的测定以及实验数据的分析
测量氧化还原峰电位Epc、Epa 及峰电流Ipc、Ipa; Ep与扫描速度无关等数据,→ 可逆 Ep = Epa – Epc= 0.058/n 计算n 以氧化还原峰电流Ipc、Ipa 分别与扫速的平方根ν1/2 作图, 以ip = (2.69 x 105)n3/2 A D1/2 C V1/2 公式由斜率计算扩散系数( Ip ∝ v1/2) 作不同浓度的峰电流数据作标准曲线(相同扫描速度),可计算未知浓度溶液的 浓度
随后化学反应
E O+ e
R
可逆
CR
S
不可逆
根据电量估算, Cu的覆盖度θCu 约为2/3 在ECSTM的研究中,在UPD的第二阶段, 观察到(√3×√3)有序结构。此结构对应 的覆盖度仅为1/3 最初,由于不够重视CV图中峰电量的数据,文献中将这一结构 错误地指认为Cu原子形成的结构。
最新循环伏安及能级计算ppt课件

原理
标准氢电极(NHE)电位相对于真空能级为-4.5eV,所以由电化学结果计算能级的公式为:
EHOMO=Ip=eEox+4.5
ELUMO=EA=eEred+4.5
用饱和甘汞电极(SCE)作参比电极,它相对于NHE电位为0.24eV ,则计算能级的公式为:
测氧化时,尽量每扫描一次,打磨一次电极,测出的峰型较好。
测还原时,先通一段时间氮气,然后再测的时候最好保持通氮气,但是不要使溶液有波动,吹 到表面即可,保持小瓶内正压,避免水气进入。
扫描还原时,一次扫描的效果可能不太好,峰型不好,可以扫多次(不是循环扫描,要区别), 扫一次保存一次,然后选其中峰型较好的峰作图。
HOMO= -[ Eox - E(Fc/Fc+) + 4.8 ] eV; LUMO= -[ Ered - E(Fc/Fc+) + 4.8 ] eV。
实例一:
The HOMO level for Ir(disppy)3 was estimated on the basis of an oxidation potential of 4.8eV(below vacuum level) for Fc/Fc+ .The onset potential of oxidation for Ir(disppy)3 was determined to be 0.60V (vs Ag/AgCl), corresponding to 0.50V(vs Fc/Fc+)
RE处理方法:如果使用时间过长,更换Ag/AgNO3溶液(溶液量一般为电极长度的2/3),有 机溶剂将表面冲洗干净,凉干(不能使用超声超洗)。
循环伏安法原理及结果分析(图表相关)

循环伏安法原理及应用小结1 电化学原理1.1 电解池电解池是将电能转化为化学能的一个装置,由外加电源,电解质溶液,阴阳电极构成。
阴极:与电源负极相连的电极(得电子,发生还原反应)阳极:与电源正极相连的电极(失电子,发生氧化反应)电解池中,电流由阳极流向阴极。
1.2 循环伏安法1)若电极反应为O+e-→R,反应前溶液中只含有反应粒子O,且O、R在溶液均可溶,控制扫描起始电势从比体系标准平衡电势(φ平)正得多的起始电势(φi)处开始势作正向电扫描,电流响应曲线则如图0所示。
图0 CV扫描电流响应曲线2)当电极电势逐渐负移到(φ平)附近时,O开始在电极上还原,并有法拉第电流通过。
由于电势越来越负,电极表面反应物O的浓度逐渐下降,因此向电极表面的流量和电流就增加。
当O的表面浓度下降到近于零,电流也增加到最大值Ipc,然后电流逐渐下降。
当电势达到(φr)后,又改为反向扫描。
3)随着电极电势逐渐变正,电极附近可氧化的R粒子的浓度较大,在电势接近并通过(φ平)时,表面上的电化学平衡应当向着越来越有利于生成R的方向发展。
于是R开始被氧化,并且电流增大到峰值氧化电流Ipa,随后又由于R的显著消耗而引起电流衰降。
整个曲线称为“循环伏安曲线”1.3 经典三电极体系经典三电极体系由工作电极(WE)、对电极(CE)、参比电极(RE)组成。
在电化学测试过程中,始终以工作电极为研究电极。
其电路原理如图1,附CV图(图2):扫描范围-0.25-1V,扫描速度50mV/S,起始电位0V。
图1 原理图图2 CBZ的循环伏安扫描图图2所示CV扫描结果为研究电极上产生的电流随电位变化情况图。
1)横坐标Potential applied(电位)为图1中电压表所测,即Potential applied=P(WE)-P(RE)所有的电位数值都是相对于氢离子的电位值,规定在标准情况下,氢离子的电位为0。
当恒电位仪向工作电极提供负的电位时,其电源连接情况如图1所示,即工作电极与电源的负极相连,作为阴极工作发生还原反应;反之则作为阳极发生氧化反应。
1-循环伏安法

数据处理
• 1.从K3 [Fe(CN)6]溶液的循环伏安图,读出ipa、ipc、Epa、 Epc的值。 • 2.分别以ipa、ipc对K3 [Fe(CN)6]溶液的浓度作图,说明峰电 流与浓度的关系。 • • 3.分别以ipa、ipc对v1/2作图,说明峰电流与扫描速率间的关 系。 • 4.计算ipa/ipc的值,Eo′值和ΔE值;说明K3 [Fe(CN)6]在KNO3 溶液中电极过程的可逆性。
1.判断电极过程的可逆性
(1)可逆电极过程
峰电流为:
(通过循环伏安图) 上下两条曲线是对称的
ip 2.69 105 n3/ 2 ACD1/ 2v1/ 2
ipa ipc
ip为峰电流(A,安培);n为电子转移数;D为扩散系数(cm2· s-1);v为电压扫描速 度(V· s-1);A为电极面积(cm2);c为被测物质浓度(mol· L-1)
• 4.不同浓度 K3 [Fe(CN)6] 溶液的循环伏安图
• 以0.1 V/s作为扫描速率,分别作上述配置的不同浓度的[Fe(CN)6]3-溶液循环 伏安图。
• 5.不同扫描速率 K3 [Fe(CN)6]溶液的循环伏安图
• 在2.0×10-2 mol· L-1 K3 [Fe(CN)6]溶液中,以0.05、0.10、0.15、0.20、0.25 、 0.30 V/s V/s在-0.2至+0.6 V电位范围内扫描,分别记录循环伏安图。
28.25
峰电位与半波电位关系为:
Ep E1/ 2 1.1
RT 29 E1/ 2 mV(25C ) nF n
RT 56.5 mV(25C ) nF n
Ep Epa Epc 2.2
(2)不可逆电极过程 峰电流为:
循环伏安法PPT课件

内容提要
实验原理 实验内容 仪器及其操作
3
一、实验原理 电化学分析法
电位分析法(E-c)
电分析 化学方法
伏安分析法(i-E) 电解和库仑分析法(Q-c) 电导分析法(R-c)
方法特点及应用
。。。。。。
根据溶液或 其它介质中 物质的电化 学性质及其 变化规律来 进行分析的
方法
4
一、实验原理
12
电化学电池(electrochemical cell)
定义:化学能与电能互相转变的装置。 分类:通常分为产生电能的原电池和消
耗外电源的电解池两类。 组成:电极、电解质溶液和电解池。
13
1. 电极
按用途分:
参比电极(reference electrode): 保持恒定参考电位
辅助电极(auxilary electrode): 提供电流
25
感谢聆听
不足之处请大家批评指导
Please Criticize And Guide The Shortcomings
演讲人:XXXXXX 时 间:XX年XX月XX日
26
工作电极(working electrode): 确定被研究界面
14
参比电极
要 求: 具有稳定的电位和在实验期间实
质上不受极化。
常见种类:饱和甘汞电极(SCE)、Ag/AgCl
电 极、Hg/Hg2SO4电极
饱和甘汞电极
1——Hg 2——Hg2Cl2 3——饱和KCl溶液
15
辅助电极
要 求:不对测量到的数据产生任 何特征性的影响, 相对大的面积
常用电极:铂丝/网/片电极
16
工作电极的要求
不与溶剂或溶液组分进行化学反应 面积相对较小(<0.25 cm2) 表面最好平滑(确定几何特性和传质
循环伏安法的原理42

ipa ? 1 ipc
??
?
? pc
? ? pa
?
0.059 n
U外 ∝ i
U外- Ud= iR
U外代表外加电压、 R代表电路
(Cd2+)
阻抗、 Ud代表分解电压
循环伏安法原理
在一个典型的循环伏安实验中,工作电极一般为浸在溶液中的固定电极。 为了尽可能降低欧姆电阻,最好采用三电极系统。在三电极系统中,电 流通过工作电极和对电极。工作电极电位是以一个分开的参比电极(如 饱和甘汞电极,SCE)为基准的相对电位。在循环伏安测试实验中,工 作电极的电位以10 mV/s 到 200 mV/s 的扫描速度随时间线性变化 (Fig.1a),在此同时记录在不同电位下的电流(Fig.1b)。.
分类:
极谱法
伏安法
滴定伏安法
溶出伏安法 循环伏安法
控制电位极谱法
控制电流极谱法
电流滴定伏安法 永停滴定伏安法 阳极溶出伏安法 阴极溶出伏安法 计时电位溶出伏安法
直流极谱法 方波极谱法 脉冲极谱法 单扫描示波极谱法 交流示波极谱法 计时电流极谱法
2020/5/23
伏安分析法的基本原理:
以待测物质溶液、工作电极、参比电极构成一个电解池, 通过测定电解过程中电压-电流参量的变化来进行定量、 定性分析的电化学分析方法称为伏安法。
E ? E??? RT ln cO (0, t) nF cR (0, t)
(1)
? 可逆反应的线性扫描图谱的峰电位服从下面方程:
Ep
?
E1/2 ??
/?
1.109
RT nF
(2)
式中,E1/2为极谱的半波电位,半波电位值很接近标准电极电位E°。 式(2)中的正号(+)适用于阳极反应峰(Epa),负号适用于阴极峰(Epc)。
循环伏安法详解PPT课件

实验步骤
• 3.以10mV·s-1的扫描速率分别对20mmol•L-1、10mmol•L-1、5mmol•L-1、 2mmol•L-1、1mmol•L-1的K3Fe(CN)6溶液进行循环伏安扫描,了解Ipc、Ipa、 Δp与浓度的关系。
• 实验完毕,清洗电极、电解池,将仪器恢复原位,桌面擦拭干净。
实验目的
1.掌握循环伏安法的基本原理和测量技术。 2.通过对体系的循环伏安测量,了解如何根据峰电流、峰电势及峰电势差和扫描
速度之间的函数关系来判断电极反应可逆性,以及求算有关的热力学参数和动力学 参数 。
第1页/共18页
实验原理
• 循环伏安法是指在电极上施加一个线性扫描 电压,以恒定的变化速度扫描,当达到某设 定的终止电位时,再反向回归至某一设定的 起始电位,循环伏安法电位与时间的关系为 (见图a)
第14页/共18页
数据处理
• 从循环伏安图上读出Ipc、Ipa、Δp,作Ipc和Ipc~CO图。 第15页/共18页
注意事项
(1)测定前仔细了解仪器的使用方法。 (2)每一次循环伏安实验前,必须严格按照步骤1中所述,处理电极。
第16页/共18页
思考题
1.在三电极体系中,工作电极、辅助电极和参比电极各起什么作用。 2.按1式,当υ→0时,Ip→0,据此可以认为采用很慢的扫描速度时不出现
第12页/共18页
实验步骤
(3)分别以5mV•s-1、10mV·s-1、20 mV•s-1、50 mV•s-1、80 mV•s-1、100 mV•s-1的扫描速率对5mmol•L-1K3Fe(CN)6+0.5 mol•L-1KCl体系进行循环伏安实验, 求出Δp、Ipc、Ipa,了解Ipc、Ipa、Δp与扫描速率的关系。
循环伏安法ppt课件

(2) 然后反向向阴极扫描,又出现 两个阴极峰2和3。
(1) 从起点S开始,电图位8-往19正方向进行阳极
扫描,得到阳极峰1。
13
(3) 再进行一次阳极扫描,则又出现两 个阳极峰4和5,且峰5的电位值与峰1 相同。
对-亚氨基苯醌又 还原成对-氨基苯
酚
O + 2H++2e-
NH
OH 苯醌在较负的电位 O
1
循环伏安法是最重要的电分析化学研究方法之一。在电化学、 无机化学、有机化学、生物化学等研究领域有着广泛的应用。用于 研究电极反应的性质、机理和电极过程动力学参数等。循环伏安法 还可用于电化学-化学偶联过程的研究,即在电极反应过程中,还伴 随有其他化学反应的发生。
2
一、循环伏安法
以快速线性扫描的形式施加三角波电压,一次三角波扫描完成一个还原过
OH
被还原成对苯二酚 解释:
+ 2H++ 2e-
NH2
O
OH
(2)此时,部分反应产物(对亚氨 基苯醌)由于不稳定,在电极表 面发生化学反应,生成苯醌。
O K
+ H3O+
峰5:同峰1
对苯二酚又氧 OH 化成苯醌
OH
O
+2H++ 2e-
O
NH
OH
(1)对氨基苯酚
O
此时溶液中含有:
的氧化峰
+ 2H++2e-
程和氧化过程的循环,然后根据i—φ曲线进行分析的方法称为循环伏安法。
3
(一) 基本装置
二、工作原理
同普通极谱法。 1. 三角波电压
将线性扫描电压施加到电极上,从起始电压 Ui开始沿某一方向扫描到终止电压Us后,再以同 样的速度反方向扫至起始电压,加压线路成等腰 三角形,完成一次循环。根据实际需要,可以进 行连续循环扫描。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电化学极化: 因电化学反应本身的迟缓而造成电极电位偏离可逆平衡电位的现象 称为电化学极化。
注意:由于电解过程中电极表面的浓差极化是不可避免的现象,外加电压要严格控 制工作电极上的电位大小就要求另一支电极为稳定电位的参比电极,实际上由于电 解池的电流很大,一般不易找到这种参比电极,故只能再加一支辅助电极组成三电 极系统来进行伏安分析。
A- 电极面积 D - 扩散系数 c- 浓度 n- 交换电子数 v - 扫描速率 k - Randles-Sevcik 常数(2.69*105 As/V m mol)
循环伏安曲线中提供的信息
从循环伏安图上读取以下数据
ipc ipa pc pa 0 ' (pc pa )
2 计算
ipa 1 ipc
59 mV n
(at 25°C)
(3)
对于不可逆体系, Δ Ep > 59/n(mV), ipa / ipc < 1。 ΔEp越大, 阴阳峰电流比值越小,则该电极体系越不可逆。对于不可逆电 极电程来说,反向电压扫描时不出现阳极波。
峰电位的确定
• 一般情况下,伏安图谱上的峰比较宽,因而难以确定峰电位。所以,有时以 0.5 ip的电位(称为半峰电位EP/2)来对电极反应进行表征更方便。理论上,
U外 ∝ i
U外- Ud= iR
U外代表外加电压、R代表电路
(Cd2+)
阻抗、 Ud代表分解电压
循环伏安法原理
在一个典型的循环伏安实验中,工作电极一般为浸在溶液中的固定电极。 为了尽可能降低欧姆电阻,最好采用三电极系统。在三电极系统中,电 流通过工作电极和对电极。工作电极电位是以一个分开的参比电极(如 饱和甘汞电极,SCE)为基准的相对电位。在循环伏安测试实验中,工 作电极的电位以10 mV/s 到 200 mV/s 的扫描速度随时间线性变化 (Fig.1a),在此同时记录在不同电位下的电流(Fig.1b)。.
分类:
极谱法
伏安法
滴定伏安法
溶出伏安法 循环伏安法
控制电位极谱法
控制电流极谱法
电流滴定伏安法 永停滴定伏安法 阳极溶出伏安法 阴极溶出伏安法 计时电位溶出伏安法
直流极谱法 方波极谱法 脉冲极谱法 单扫描示波极谱法 交流示波极谱法 计时电流极谱法
2021/4/9
伏安分析法的基本原理:
以待测物质溶液、工作电极、参比电极构成一个电解池, 通过测定电解过程中电压-电流参量的变化来进行定量、 定性分析的电化学分析方法称为伏安法。
Introduction of Cyclic Voltammetry Technolgy
By : Dong Mei Han
主要内容:
• 循环伏安法的原理
• 循环伏安技术的应用 • (1)可逆反应 • (2)峰电位的确定 • (3)峰电流的计算
• 循环伏安测试中的注意事项
1922 年 捷克科学家 海洛夫斯基 J.Heyrovsky
极谱法:使用滴汞电极或其它表面能够周期性 更新的液体电极为工作电极,称为极谱法。
伏安法:使用表面静止的液体或固体电极为工作电极,称 为伏安法。
二、电解池的伏安行为
当外加电压达到镉离子的电解 还原电压时,电解池内会发生 如下的氧化还原反应。
阴极还原反应:
Cd2+ + 2e Cd
阳极氧化反应:
2OH- -2e H2O + 1/2 O2
E E RT ln cO (0, t) nF cR (0, t)
(1)
• 可逆反应的线性扫描图谱的峰电位服从下面方程:
Ep
E1/2
/ 1.109
RT nF
(2)
式中,E1/2为极谱的半波电位,半波电位值很接近标准电极电位E°。 式(2)中的正号(+)适用于阳极反应峰(Epa),负号适用于阴极峰(Epc)。
Fig.1 循环伏安法原理:(a) 循环电位扫描 (b) 循环伏安谱
Fig.2 电解过程的伏安曲线
电极表面的传质过程
电极表面存在三种传质过程, 分别是:
1) 扩散 2.)电迁移 3) 对流
若电解采用微铂电极为工作电极、 且溶液不充分搅拌时,会促使耗 竭区提前出现。这种现象称极化 现象。
极化现象
Fig.3 典型可逆体系的循环伏安图。
Fig.4典型准可逆体系和不可逆体系的循环伏安图。
Fig.5 线性扫描曲线
反应可逆性的判断
对一个可逆反应,峰电位与扫描速度和浓度无关。
Epa与Epc 之差
也可用来判断电极反应的可逆程度。
Ep Epa Epc
E p E pa E pc
2.3RT nF
创立极谱法,1959年获Nobel奖
1934 年 尤考维奇 Ilkovic, 提出扩散电流理
论,从理论上定量解释了伏安曲线。
20世纪40年代以来 提出了各种特殊的伏安技 术。主要有:交流极谱法(1944年)、方波极 谱法(1952年)、脉冲极谱法(1958年)、卷 积伏安法(1970年)
20世纪40年代以来 主要采用特殊材料制备的 固体电极进行伏安分析。包括微电极、超微阵列 电极、化学修饰电极、纳米电极、金刚石电极、 生物酶电极、旋转圆盘电极等,结合各种伏安技 术进行微量分析、生化物质分析、活体分析。
pc
pa
0.059 n
作图并验证以下公式
ip ~ C
ip ~ v1/2
ip 2.69105 n3/ 2 ACD1/ 2v1/ 2
(iii) Easy to remove diffusion
Hg microelectroladyeerson mercury drop线管)
(聚氨酯)
0.05~ 0.5mm diameter
(活塞)
(金属垫圈))
可逆体系
• 如果电极表面上的电子转移过程的速率很快,电极表面上氧化态和还原态试 样的浓度的比率服从Nernstian方程。在这种条件下,电极反应式为可逆的反 应。:
: 半峰电位与半波电位的关系为
E p/2
E1/2 1.09
RT nF
• Ep 和 Ep/2的差别为
(4)
Ep Ep/2
2.2RT nF
56.5 mV n
(5)
峰电流的计算
可逆反应的线性扫描的峰电流ip可有以下Randles-Sevcik方程给出:
ip kn3/2AD1/ 2cv1/ 2
(6)