2020年全国中考数学试卷分类汇编(一)专题32 正多边形与圆(含解析)
2020全国各地中考数学复习试卷复习试题分类汇编-正多边形与圆

20XX年全国各地中考数学试卷复习试题分类汇编第35章正多边形与圆24.(20XX广东中山,5,3分)正八边形的每个内角为()A.120°B.135°C.140°D.144°【答案】B12.(20XX江苏南通,24,8分)(本小题满分8分)比较正五边形与正六边形,可以发现它们的相同点与不同点.例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)▲(2)▲不同点:(1)▲(2)▲【答案】相同点(1)每个内角都相等(或每个外角都相等或对角线都相等…);(2)都是轴对称图形(或都有外接圆和内切圆…);.不同点(1)正五边形的每个内角是108°,正六边形的每个内角是120°(或…);(2)正五边形的对称轴是5条,正六边形的对称轴是6条(或…).24.(20XX广东中山,5,3分)正八边形的每个内角为()A.120°B.135°C.140°D.144°【答案】B12.(20XX江苏南通,24,8分)(本小题满分8分)比较正五边形与正六边形,可以发现它们的相同点与不同点.例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)▲(2)▲不同点:(1)▲(2)▲【答案】相同点(1)每个内角都相等(或每个外角都相等或对角线都相等…);(2)都是轴对称图形(或都有外接圆和内切圆…);.不同点(1)正五边形的每个内角是108°,正六边形的每个内角是120°(或…);(2)正五边形的对称轴是5条,正六边形的对称轴是6条(或…).24.(20XX广东中山,5,3分)正八边形的每个内角为()A.120°B.135°C.140°D.144°【答案】B12.(20XX江苏南通,24,8分)(本小题满分8分)比较正五边形与正六边形,可以发现它们的相同点与不同点.例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)▲(2)▲不同点:(1)▲(2)▲【答案】相同点(1)每个内角都相等(或每个外角都相等或对角线都相等…);(2)都是轴对称图形(或都有外接圆和内切圆…);.不同点(1)正五边形的每个内角是108°,正六边形的每个内角是120°(或…);(2)正五边形的对称轴是5条,正六边形的对称轴是6条(或…).24.(20XX广东中山,5,3分)正八边形的每个内角为()A.120°B.135°C.140°D.144°【答案】B12.(20XX江苏南通,24,8分)(本小题满分8分)比较正五边形与正六边形,可以发现它们的相同点与不同点.例如它们的一个相同点:正五边形的各边相等,正六边形的各边也相等.它们的一个不同点:正五边形不是中心对称图形,正六边形是中心对称图形.请你再写出它们的两个相同点和不同点.相同点:(1)▲(2)▲不同点:(1)▲(2)▲【答案】相同点(1)每个内角都相等(或每个外角都相等或对角线都相等…);(2)都是轴对称图形(或都有外接圆和内切圆…);.不同点(1)正五边形的每个内角是108°,正六边形的每个内角是120°(或…);(2)正五边形的对称轴是5条,正六边形的对称轴是6条(或…).。
中考数学圆与多边形专题含答案

【知识梳理】正多边形:各边相等、各角也相等的多边形叫做正多边形. 正多边形判定:“各边相等”、“各角相等”必须同时具备,缺一不可. 正多边形与圆的关系:正多边形和圆的关系非常密切,只要把一个圆分成相等的一些弧,就可以作出这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆.正多边形的中心:正多边形外接圆的圆心叫做正多边形的中心. 正多边形的半径:正多边形外接圆的半径叫做正多边形的半径.正多边形的中心角:正多边形每一边所对的圆心角叫做正多边形的中心角. 正多边形的边心距:正多边形的中心到正多边形的一边的距离叫做正多边形的边心距.与正多边形(正n 边形)有关的计算: 边长AB a半径OA R 周长 C=na面积 2AOB nar nS S ==△中心角∠AOBn ︒360 外角n︒360 内角∠CAB(1)180°-n︒360(2)nn ︒-180)2( 内角和︒-180)2(n边心距OH(1)nR OH ︒⨯=180cos(2)22)2(aR OH -=正三角形,正方形,正六边形的内外接圆半径与边长的关系。
正三角形 正方形 正六边形 内接 外接正多边形的边心距(正三角形,正方形,正六边形)【经典例题1】正多边形的中心到正多边形一边的距离叫做这个正多边形的边心距。
若等腰直角三角形的外接圆半径的长为 2,则其内切圆半径的长为()A.2B.22-2C.2-2D.2-1 【解析】∵等腰直角三角形外接圆半径为2,∴此直角三角形的斜边长为4,两条直角边分别为22,∴它的内切圆半径为:R=21(22+22−4)=22−2.故选B.练习1-1如图,已知⊙O 的内接正六边形 ABCDEF 的边心距 OM =2,则该圆的内接正三角形 ACE 的面积为( ) A .2 B .4 C .63 D .43【解析】如图所示,连接OC ,OB ,过O 作ON ⊥CE 于N , ∵多边形ABCDEF 是正六边形, ∴∠COB=60°, ∵OC=OB ,∴△COB 是等边三角形, ∴∠OCM=60°, ∴OM=OC•sin ∠OCM , ∴33460sin =︒=OM OC .∵∠OCN=30°, ∴ON=21OC=332,CN=2,∴CE=2CN=4,∴该圆的内接正三角形ACE 的面积=343324213=⨯⨯⨯, 故选:D .练习1-2如图,边长为a 的正方形ABCD 和边长为b 的等边△AEF 均内接于⊙O ,则ab的值是( ) A .2 B .3 C .2 D .62【解析】设其半径是r ,则其正三角形的边长是3r , 正方形的边长是2r ,则它们的比是2:3.则内接正方形的边长与内接正三角形的边长的比为:6:3.即则ab的值=26,故选:D.练习1-3如图,△ABC 是半径为1的⊙O 的内接正三角形,则圆的内接矩形BCDE 的面积为( )A .3B .32C 3D 3【解析】过点O 作OF ⊥BC 于点F ,连结BD 、OC ,∵△ABC 是 O 的内接等边三角形,AB=1,∴BF=21BC=21,∠OBC=30°, ∴OB=︒30cos BF=2321=33,CD=BC•tan30°=33,∴矩形BCDE 的面积=BC•CD=33. 故选C .练习1-4如图,正六边形ABCDEF 内接于☉O ,已知☉O 的半径为4,则这个正六边形的边心距OM 和弧BC 的长分别为 ( )A .2,3π B .23,π C .3,32π D .23,34π 【解析】解:如图所示,连接OC 、OB ∵多边形ABCDEF 是正六边形, ∴∠BOC=60°, ∵OA=OB ,∴△BOC 是等边三角形, ∴∠OBM=60°, ∴OM=OBsin ∠OBM=4×23=23, 弧BC 的长度=ππ34180460=⨯, 故选:A .练习1-5如图,等腰三角形ABC 的内切圆☉O 与AB ,BC ,CA 分别相切于点D ,E ,F ,且AB=AC=5,BC=6,则DE 的长是( )A .10103 B .5103 C .553 D .556 【解析】D练习1-6(2019·十堰中考)如图,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E ,若BA 平分∠DBE ,AD =5,CE =13,则AE =( )A .3B .3 2C .4 3D .2 3 【解析】如解图,连接AC ,∵BA 平分∠DBE , ∴∠ABE =∠ABD ,∵四边形ABCD 是⊙O 的内接四边形, ∴∠ABC +∠ADC =180°. ∵∠ABC +∠ABE =180°,∴∠ABE =∠ADC ,∴∠ADC =∠ABD , ∵∠ABD =∠ACD ,∴∠ADC =∠ACD ,∴AC =AD =5.∵AE ⊥CE ,CE =13,∴AE =2222)13(5-=-CE AC =23.练习1-7如图,有一个圆O 和两个正六边形T 1,T 2.T 1的6个顶点都在圆周上,T 2的6条边都和圆O 相切(我们称T 1,T 2分别为圆O 的内接正六边形和外切正六边形).(1)设T 1,T 2的边长分别为a ,b ,圆O 的半径为r ,求r ∶a 及r ∶b 的值; (2)求正六边形T 1,T 2的面积比S 1∶S 2的值.T 1T 2O【解析】(1)连接圆心O 和T 1的6个顶点可得6个全等的正三角形。
全国各地中考数学试题分类汇编(第三期)专题32正多边形与圆(含解析)

∵ AF∥ BE, ∴ S△ABF=S△AOF, ∴ 图中阴影部分的面积=
=.
2. (2019 ?浙江丽水 ?10 分)如图,在平面直角坐标系中,正六边形 ABCDEF 的对称中心 P 在 反比例函数 y= (k> 0,x> 0)的图象上, 边 CD 在 x 轴上,点 B 在 y 轴上, 已知 CD= 2.
EAB,根据等腰三角形的性质,三角形外角的
性质计算即可.
【解答】解:∵五边形 ABCDE 是正五边形,
∴∠ EAB=∠ ABC =
,
∵ BA= BC, ∴∠ BAC=∠ BCA= 36°, 同理∠ ABE= 36°, ∴∠ AFE =∠ ABF +∠ BAF= 36°+36°= 72°. 故答案为: 72 【点评】本题考查的是正多边形的内角与外角,掌握正多边形的内角的计算公式、等腰 三角形的性质是解题的关键. 2. ( 2019?海南省 ?4 分)如图, ⊙ O 与正五边形 ABCDE 的边 AB、 DE 分别相切于点 B、 D, 则劣弧 所对的圆心角 ∠ BOD 的大小为 144 度.
定理得到 ∠ 3= ∠ 1,然后利用三角形外角性质和角度的代换证明
∠ 4= ∠DBI ,从而可判
断 DI = DB.
【解答】解:连接 BI ,如图,
∵△ ABC 内心为 I ,
∴∠ 1= ∠ 2, ∠5= ∠ 6,
∵∠ 3= ∠ 1,
∴∠ 3= ∠ 2,
∵∠ 4= ∠ 2+∠ 6= ∠ 3+∠ 5,
);
(2)易求 D (3,0) ,E(4, ) ,待定系数法求出 DE 的解析式为 y= 例函数与一次函数即可求点 Q;
x-3
,联立反比
(3)E(4, ), F (3, 2 ),将正六边形向左平移两个单位后, 则点 E 与 F 都在反比例函数图象上; 【解答】 解: (1)过点 P 作 x 轴垂线 PG,连接 BP, ∵ P 是正六边形 ABCDEF 的对称中心, CD= 2,
中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)

中考数学复习----《正多边形与圆》知识点总结与练习题(含答案)知识点总结1.正多边形与圆的关系把一个圆分成n(n是大于2的自然数)等份,依次连接各分点所得的多边形是这个圆的内接正多边形,这个圆叫做这个正多边形的外接圆。
2.正多边形的有关概念①中心:正多边形的外接圆的圆心叫做正多边形的中心。
②正多边形的半径:外接圆的半径叫做正多边形的半径。
③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角。
④边心距:中心到正多边形的一边的距离叫做正多边形的边心距。
练习题1、(2022•长春)跳棋是一项传统的智力游戏.如图是一副跳棋棋盘的示意图,它可以看作是由全等的等边三角形ABC和等边三角形DEF组合而成,它们重叠部分的图形为正六边形.若AB=27厘米,则这个正六边形的周长为厘米.【分析】根据对称性和周长公式进行解答即可.【解答】解:由图象的对称性可得,AM=MN=BN=AB=9(厘米),∴正六边形的周长为9×6=54(厘米),故答案为:54.2、(2022•营口)如图,在正六边形ABCDEF中,连接AC,CF,则∠ACF=度.【分析】设正六边形的边长为1,正六边形的每个内角为120°,在△ABC中,根据等腰三角形两底角相等得到∠BAC=30°,从而∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,过点B作BM⊥AC于点M,根据含30°的直角三角形的性质求出BM,根据勾股定理求出AM,进而得到AC的长,根据tan∠ACF===即可得出∠ACF=30°.【解答】解:设正六边形的边长为1,正六边形的每个内角=(6﹣2)×180°÷6=120°,∵AB=BC,∠B=120°,∴∠BAC=∠BCA=×(180°﹣120°)=30°,∵∠BAF=120°,∴∠CAF=∠BAF﹣∠BAC=120°﹣30°=90°,如图,过点B作BM⊥AC于点M,则AM=CM(等腰三角形三线合一),∵∠BMA=90°,∠BAM=30°,∴BM=AB=,∴AM===,∴AC=2AM=,∵tan∠ACF===,∴∠ACF=30°,故答案为:30.3、(2022•呼和浩特)如图,从一个边长是a的正五边形纸片上剪出一个扇形,这个扇形的面积为(用含π的代数式表示);如果将剪下来的扇形围成一个圆锥,圆锥的底面圆直径为.【分析】先求出正五边形的内角的度数,根据扇形面积的计算方法进行计算即可;扇形的弧长等于圆锥的底面周长,可求出底面直径.【解答】解:∵五边形ABCDE是正五边形,∴∠BCD==108°,∴S扇形==;又∵弧BD的长为=,即圆锥底面周长为,∴圆锥底面直径为,故答案为:;.4、(2022•绥化)如图,正六边形ABCDEF和正五边形AHIJK内接于⊙O,且有公共顶点A,则∠BOH的度数为度.【分析】求出正六边形的中心角∠AOB和正五边形的中心角∠AOH,即可得出∠BOH的度数.【解答】解:如图,连接OA,正六边形的中心角为∠AOB=360°÷6=60°,正五边形的中心角为∠AOH=360°÷5=72°,∴∠BOH=∠AOH﹣∠AOB=72°﹣60°=12°.故答案为:12.5、(2022•梧州)如图,四边形ABCD是⊙O的内接正四边形,分别以点A,O为圆心,取大1OA的定长为半径画弧,两弧相交于点M,N,作直线MN,交⊙O于点E,F.若OA 于2=1,则BE⌒,AE,AB所围成的阴影部分面积为.【分析】连接OE、OB.由题意可知,∴△AOE为等边三角形,推出S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE ﹣S△AOB,即可求出答案.【解答】解:连接OE、OB,由题意可知,直线MN垂直平分线段OA,∴EA=EO,∵OA=OE,∴△AOE为等边三角形,∴∠AOE=60°,∵四边形ABCD是⊙O的内接正四边形,∴∠AOB=90°,∴∠BOE=30°,∵S弓形AOE=S扇形AOE﹣S△AOE,∴S阴影=S扇形AOB﹣S弓形AOE﹣S△AOB=S扇形AOB﹣(S扇形AOE﹣S△AOE)﹣S△AOB=S扇形AOB﹣S扇形AOE+S△AOE﹣S△AOB=S扇形BOE+S△AOE﹣S△AOB=+﹣=.故答案为:.6、(2022•宿迁)如图,在正六边形ABCDEF中,AB=6,点M在边AF上,且AM=2.若经过点M的直线l将正六边形面积平分,则直线l被正六边形所截的线段长是.【分析】设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l 将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M作MH ⊥OF于点H,连接OA,由正六边形的性质得出AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,进而得出△OAF是等边三角形,得出OA=OF=AF=6,由AM=2,得出MF=4,由MH⊥OF,得出∠FMH=30°,进而求出FH=2,MH=2,再求出OH=4,利用勾股定理求出OM=2,即可求出MN的长度,即可得出答案.【解答】解:如图,设正六边形ABCDEF的中心为O,过点M、O作直线l交CD于点N,则直线l将正六边形的面积平分,直线l被正六边形所截的线段长是MN,连接OF,过点M 作MH⊥OF于点H,连接OA,∵六边形ABCDEF是正六边形,AB=6,中心为O,∴AF=AB=6,∠AFO=∠AFE=×=60°,MO=ON,∵OA=OF,∴△OAF是等边三角形,∴OA=OF=AF=6,∵AM=2,∴MF=AF﹣AM=6﹣2=4,∵MH⊥OF,∴∠FMH=90°﹣60°=30°,∴FH=MF=×4=2,MH===2,∴OH=OF﹣FH=6﹣2=4,∴OM===2,∴NO=OM=2,∴MN=NO+OM=2+2=4,故答案为:4.。
正多边形和圆(解析版)九年级数学-下册

27.4正多边形和圆姓名:_______班级_______学号:________题型1直角三角形周长、面积与内切圆半径的关系1.(2023上·江苏苏州·九年级校联考阶段练习)三角形两边的长分别是8和6,第三边的长是方程212200x x -+=的一个实数根,则三角形的内切圆半径是()A .1B .2C .3D .4【答案】B【分析】本题主要考查了三角形内切圆,勾股定理的逆定理,解一元二次方程,先利用因式分解法求出方程的两根,根据构成三角形的条件确定这个三角形的三边长为6、8、10,由此利用勾股定理的逆定理证明该三角形是直角三角形,根据等面积法得到求出OD 的长即可得到答案.【详解】解:212200x x -+=,()()2100x x --=,10x ∴=或2,当2x =时,268+=,不能组成三角形,不符合题意;10x ∴=,当第三边为10时,2226810+= ,此三角形是直角三角形,如图所示,在Rt ABC △中,点O 是Rt ABC △的内接圆,分别与,,AB BC AC 相切于D 、E 、F ,,,OD OE OF OD AB OE ∴==⊥ABC ABO ACO BCO S S S S ∴=++ 111222AB BC AB OD BC ∴⋅=⋅+1683452OD OE OF ∴⨯⨯=++2OD ∴=,∴圆O 的半径为2,【答案】()5,1()8093,1【分析】作PD OA ⊥交OA 于D ,PF OB ⊥交OB PB ,由A 、B 的坐标得出4OA =,3OB =,由勾股定理可得点A的坐标为()3,0,0,4,点B的坐标为()OA=,∴=,43OB2222∴=+=+=,AB OA OB435点P是Rt OAB内切圆的圆心,PD OA⊥⊥,PF OB【答案】3cm【分析】此题主要考查了直角三角形内切圆的性质及半径的求法.根据已知得出1()2CD CF AC BC AB ==+-是解题关键.设易证得四边形OFCD 是正方形;那么根据切线长定理可得:在Rt ABC △,90C ∠=︒,9cm BC =根据勾股定理2215(cm)AB AC BC =+=四边形OECF 中,OD OF =,ODC ∠∴四边形OFCD 是正方形,题型2圆外切四边形模型5.(2022上·河北邯郸·九年级校考期中)如图,O 是四边形ABCD 的内切圆.若70AOB ∠=︒,则COD ∠=()A .110︒B .125︒C .140︒D .145︒【答案】A 【分析】根据内切圆得到四条角平分线,结合四边形内角和定理求解即可得到答案;【详解】解:∵O 是四边形ABCD 的内切圆,∴OAB OAD ∠=∠,ODA ODC ∠=∠,OCD OCB ∠=∠,OBC OBA ∠=∠,∵360OAB OAD ODA ODC OCD OCB OBC OBA ∠+∠+∠+∠+∠+∠+∠+∠=︒,∴180OAB OBA ODC OCD OAD ODA OCB OBC ∠+∠+∠+∠=∠+∠+∠+∠=︒,∵70AOB ∠=︒,180OAB OBA AOB ∠+∠+∠=︒,180ODC OCD DOC ∠+∠+∠=︒,∴18070110COD ∠=︒-︒=︒,故选:A ;【点睛】本题考查圆内切四边形及四边形的内角和定理,解题的关键是得到180OAB OBA ODC OCD ∠+∠+∠+∠=︒.6.(2021·九年级课时练习)下面图形中,一定有内切圆的是()A .矩形B .等腰梯形C .菱形D .平行四边形【答案】C【分析】根据内切圆的定义以及特殊四边形的性质进行分析,从而可得答案.【详解】角平分线上的点到角的两边距离相等,角平分线的交点是内切圆的圆心,菱形的对角线平分对角,所以菱形的两条对角线的交点到菱形的各边的距离相等,以交点为圆心,交点到菱形的边为半径的圆就是菱形的内切圆,选项中只有菱形,对角线平分对角.故选C【点睛】本题考查了内切圆的定义,菱形的性质,掌握内切圆的定义是解题的关键.7.(2019上·浙江温州·九年级校考期末)如图,正方形EBFI ,正方形MFCG 和正方形HLGD 都在正方形ABCD 内,且=BF HD .O 分别与AE ,EI ,HL ,AH 相切,点M 恰好落在【答案】1682-【分析】连接AC ,由题意可知【详解】解:如图所示,连接∵正方形EBFI ,正方形MFCG ∴45ACD MCD DAC ∠=∠=∠=∵O 分别与AE ,EI ,HL ,∴四边形AQOP 是正方形,∴AC 过点O ,M ,四边形ABCD 为正方形,题型3三角形内心有关应用9.(2023上·四川绵阳·九年级校联考阶段练习)下列语句中正确的是()A.平分弦的直径垂直于弦B.三点确定一个圆A .12B .【答案】B 【分析】过内心向正三角形的一边作垂线,【详解】解:过O 点作OD ∵O 是正ABC 的内切圆,A.100︒B.【答案】D【分析】此题主要考查了三角形内心的性质以及三角形内角和定理.利用内心的性质得出1【答案】52-/2-+【分析】在AB 的下方作等腰直角三角形过点K 作KT DB ⊥交DB ∵点P 是ACB △的内心,∠∴12PAB CAB ∠=∠,PBA ∠=∴(12PAB PBA CAB ∠+∠=∠∴18045135APB ∠=︒-︒=︒,∴点P 在以K 为圆心,KA 为半径的圆上运动,∵2AB =,AK BK =,AKB ∠设这个三角形内切圆的半径为r ,则11145222S ar br cr =++=,即()1452r a b c ++=,∵三角形的三边a ,b ,c 分别为7,6,∴()1763452r ++=,则:DAC DBC ∠=∠,∵I 是ABC 内心,∴,ABD DBC CAI ∠=∠∠=∴DAC DBA ∠=∠,∴DAC CAI DBA ∠+∠=∠+则:222CH AC AH =-=即:(222141315x -=--解得:425x =,∴22CH AC AH =-=设AD x =,则2BD =-由勾股定理得:2CD AC =222243(2)x x ∴-=--.解得: 2.75x =.【答案】4【分析】首先利用勾股定理求出斜边切线长定理求出内切圆半径,进而求出周长.【详解】如图,连接OD 、在Rt ABC △中,AC AB =设内切圆半径为r ,AB 、BC ∴OD AB ⊥,OE BC ⊥,∵AB BC ⊥,OD OE =,∴四边形ODBE 为正方形,∴OD OE BD BE r ====,由切线长定理得,8AF AD r ==-,6CE CF r ==-,MD MP =,NE NP =,∴8610AC AF CF r r =+=-+-=,解得2r =,则的周长为BM BN MN++BM BN MP NP=+++BM BN MD NE=+++BD BE=+2BD=2r=4=.故答案为:4.【点睛】本题考查了三角形的内切圆,切线的性质定理,切线长定理,解题关键是判断四边形ODBE 为正方形,再依据切线长定理把三角形的周长化为两条切线长,再转化为半径进行求解.题型5三角形内切圆与外接圆综合18.(2023上·河北邢台·九年级校联考期中)已知O 是ABC 的内心,70BAC ∠=︒,P 为平面上一点,点O 恰好又是BCP 的外心,则BPC ∠的度数为()A .50︒B .55︒C .62.5︒D .65︒【答案】C 【分析】本题考查了三角形的内心和三角形外心的性质,三角形内角和定理,利用三角形内心的性质得OB OC 、分别是ABC ACB ∠∠、的角平分线,进而求出BOC ∠的大小,再利用三角形外心的性质得出BPC ∠等于BOC ∠的一半,即可得出答案,牢记以上知识点得出各角之间的关系是解题的关键.∵O是ABC的内心,,∴12OBC ABC ∠=∠,∴12 OBC OCB∠+∠=∠【答案】65︒/65度【分析】本题考查三角形的内心和外心、角平分线的定义、三角形的内角和定理、圆周角定理,连接OB、OC,根据三角形的内心是三角形的内角平分线的交点,结合三角形的内角和定理求得BOC∠,再根据圆周角定理得到∵80BAC ∠=︒,∴180ABC ACB ∠+∠=︒-∵O 是ABC 的内心,∴12OBC ABC ∠=∠,OCB ∠【答案】58【分析】作AD BC ⊥于点D ,作PF 且AD 垂直平分BC ,及BD CD ==得BQ 、PF 和DQ ,由PCF ≌ R R t 答案.则90ADB ADC ∠=∠=︒,∵5AB AC ==,∴AD 平分BAC ∠,且AD 垂直平分∵6BC =,∴1=32BD CD BC ==,【答案】40︒/40度【分析】本题考查三角形内切圆、切线长定理,根据内切圆的定义和切线长定理,可以计算出COB ∠的度数和OGE ∠【详解】解:连接,OD OE【答案】5【分析】连接OA 、OB 、OC 、33BE BD OE ===,进而得出【详解】解:如图,连接OA 、OB ∵ABC 的内切圆半径3r =,30ABO CBO ∴∠=∠=︒,33BE BD OE ∴===,8BC = ,A.72°【答案】A【分析】根据正n边形的中心角的度数为【答案】2【分析】本题考查圆内接正多边形的性质、形的中心角36060AOB︒∠==︒,进而证明由题意,360 AOB∠=∴AOB为等边三角形,【答案】72︒/72度【分析】本题考查的是正多边形和圆;根据正五边形的性质可得解.【详解】∵五边形ABCDE1【答案】72︒/72【分析】本题考查圆周角定理,正多边形与圆,求出正五边形的中心角的度数,掌握圆周角定理是正确解答的前提.求出正五边形的中心角的度数,再根据圆周角定理进行计算即可.【详解】解:如图,连接∵五边形ABCDE 是O 的内接正五边形,∴3605AOB BOC ︒∠=∠=∴7272144AOC ∠=︒+︒=∴1722AFC AOC ∠=∠=A.4B【答案】B【分析】本题考查了正多边形和圆,正六边形的性质,垂径定理,勾股定理,等边三角形的性质,熟练掌握正六边形的性质,证明三角形是等边三角形,运用垂径定理求出60BOC ∠=︒,OB OC =∴BOC 是等边三角形,∴6OB BC ==,OM BC ⊥,1A .2B .确定,所以CMP S △的值不确定【答案】A【分析】本题考查了正多边形与圆,三角形的面积,根据正六边形的性质,得出1S S =则2MN OM =,∵12COD S CD OM = ,PCM S ∴COD PCM S S = ,∵16COD ABCDEF S S = 正六边形,34.(2023上·浙江温州记ACE △的周长为1C ,正六边形为【答案】32【分析】本题主要考查了正六边形的性质,含长为a ,利用含30︒角的直角三角形的性质求出【详解】解:设正六边形的边长为∵六边形ABCDEF 是∴DC DE a ==,CDE ∠∴60,EDH DEH ∠=︒∠∴12DH a =,(1)在方格纸中画出以AC为对角线的正方形小正方形的顶点上;∠为顶角的等腰三角形(2)在方格纸中画出以GFE格点上,连接AG,并直接写出线段【答案】(1)见详解;∠为顶角的等腰三角形(2)解:以GFE22AG=+=.5334【点睛】本题考查作图−应用与设计、勾股定理、等腰直角三角形的性质等知识,解题的关键是理解题意,学会利用数形结合的思想思考问题,属于中考常考题型.36.(2022·陕西·陕西师大附中校考模拟预测)如图,已知的内接正方形ABCD法,作出O【答案】见解析【分析】作AC的垂直平分线交⊙【详解】解:如图,正方形ABCD的直径,∵BD垂直平分AC,AC为O的直径,∴BD为O∴BD⊥AC,OB=OD,OA=OC,的内接正方形.∴四边形ABCD是O【点睛】本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了圆的基本性质,正方形的判定.37.(2020下·山东青岛·九年级统考学业考试)请用圆规和直尺作图,不写作法,但要保留作图痕迹.已知:⊙O,点A在圆上.求作:以A为一顶点作圆内接正方形ABCD.【答案】见解析【分析】作直径AC,过点O作BD⊥AC交⊙O于B,D,连接AB,BC,CD,AD即可.【详解】如图,四边形ABCD即为所求作.【点睛】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.38.(2022上·江西景德镇·九年级统考期末)已知正六边形ABCDEF,请仅用无刻度直尺,按要求画图:(1)在图1中,画出CD的中点G;(2)在图2中,点G为CD中点以G为顶点画出一个菱形.【答案】(1)见解析(2)见解析【分析】(1)如图1,分别连接AD、CF交于点H,分别延长线段BC、线段ED于点I,连接HI与线段CD交于点G,点G即为所求;(2)如图2,延长线段IH与线段AF交于点J,连接BG、GE、EJ、JB,四边形BGEJ即为所求.【详解】(1)如图1,分别连接AD、CF交于点H,分别延长线段BC、线段ED于点I,连接HI与线段CD交于点G,点G即为所求;(2)如图2,延长线段IH与线段AF交于点J,连接BG、GE、EJ、JB,四边形BGEJ即为所求.【点睛】本题考查了无刻度直尺作图的问题,掌握正六边形的性质、中线的性质、菱形的性质是解题的关键.39.(2023上·江苏盐城【答案】(1)3;(2)21316AN≤≤;(3)9373222r-≤≤【分析】(1)由折叠的性质即可得出结果;(2)当MNA'的外接圆与线段DC相交,且点N与D重合时,此时AN外接圆与线段DC相切时,此时AN最小,利用勾股定理构建方程求解即可;由折叠的性质得:A D AD'=,当MNA ' 的外接圆与线段DC 相交,且点N 与D 重合时,此时AN 最大,即3AN =,当MNA ' 的外接圆与线段DC 相切时,设半径为r ,则3,OF r AO r =-=,则1924AF AM ==,∴()222934r r ⎛⎫-+= ⎪⎝⎭,当N 与D 重合时r 最大,3,6,6A F r MF r MA ''∴=-=-=,Rt FA M ' 中,()()222366r r -+-=,1r =9372+(舍),29372r -=,故答案为:93732r -≤≤.。
中考数学专题复习之 32 正多边形与圆(含解析)1 精编

32 正多边形与圆(含解析)一、选择题1.(2分)(2016•南京)已知正六边形的边长为2,则它的内切圆的半径为( )A .1B .3C .2D .32【考点】正多边形和圆;切线的性质.【分析】根据题意画出图形,利用正六边形中的等边三角形的性质求解即可.【解答】解:如图,连接OA 、OB ,OG ;∵六边形ABCDEF 是边长为2的正六边形,∴△OAB 是等边三角形,∴OA=AB=2,∴OG=OA•sin60°=2×23=3, ∴边长为2的正六边形的内切圆的半径为3.故选B .【点评】本题考查学生对正多边形的概念掌握和计算的能力.解答这类题往往一些学生因对正多边形的基本知识不明确,将多边形的半径与内切圆的半径相混淆而造成错误计算,记住基本概念是解题的关键,属于中考常考题型.2.1.(2016•凉山州)一个多边形切去一个角后,形成的另一个多边形的内角和为1080°,那么原多边形的边数为( )A .7B .7或8C .8或9D .7或8或9【考点】多边形内角与外角.【分析】首先求得内角和为1080°的多边形的边数,即可确定原多边形的边数.【解答】解:设内角和为1080°的多边形的边数是n ,则(n ﹣2)•180°=1080°, 解得:n=8.则原多边形的边数为7或8或9.故选:D .【点评】本题考查了多边形的内角和定理,一个多边形截去一个角后它的边数可能增加1,可能减少1,或不变.3.(2016•泸州)以半径为1的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是( )A D【分析】由于内接正三角形、正方形、正六边形是特殊内角的多边形,可构造直角三角形分别求出边心距的长,由勾股定理逆定理可得该三角形是直角三角形,进而可得其面积.【解答】解:如图1,∵OC=1,∴OD=1×sin30°=12; 如图2,∵OB=1,∴OE=1×sin45°; 如图3,∵OA=1,∴OD=1×cos30°,则该三角形的三边分别为:12∵(12)2+(2)2=(2)2,∴该三角形是以12、2为直角边,2为斜边的直角三角形,∴该三角形的面积是12×12×2=8, 故选:D .【点评】本题主要考查多边形与圆,解答此题要明确:多边形的半径、边心距、中心角等概念,根据解直角三角形的知识解答是解题的关键.4.(3分)(2016•南充)如图,正五边形的边长为2,连结对角线AD ,BE ,CE ,线段AD 分别与BE 和CE 相交于点M ,N .给出下列结论:①∠AME=108°;②AN 2=AM •AD ;③MN=3﹣;④S △EBC =2﹣1.其中正确结论的个数是( )A .1个B .2个C .3个D .4个【考点】相似三角形的判定与性质;正多边形和圆.【分析】根据正五边形的性质得到∠ABE=∠AEB=∠EAD=36°,根据三角形的内角和即可得到结论;由于∠AEN=108°﹣36°=72°,∠ANE=36°+36°=72°,得到∠AEN=∠ANE ,根据等腰三角形的判定定理得到AE=AN ,同理DE=DM ,根据相似三角形的性质得到,等量代换得到AN 2=AM •AD ;根据AE 2=AM •AD ,列方程得到MN=3﹣;在正五边形ABCDE 中,由于BE=CE=AD=1+,得到BH=BC=1,根据勾股定理得到EH==,根据三角形的面积得到结论.【解答】解:∵∠BAE=∠AED=108°,∵AB=AE=DE ,∴∠ABE=∠AEB=∠EAD=36°,∴∠AME=180°﹣∠EAM ﹣∠AEM=108°,故①正确;∵∠AEN=108°﹣36°=72°,∠ANE=36°+36°=72°,∴∠AEN=∠ANE ,∴AE=AN ,同理DE=DM ,∴AE=DM ,∵∠EAD=∠AEM=∠ADE=36°,∴△AEM ∽△ADE ,∴, ∴AE 2=AM •AD ;∴AN2=AM•AD;故②正确;∵AE2=AM•AD,∴22=(2﹣MN)(4﹣MN),∴MN=3﹣;故③正确;在正五边形ABCDE中,∵BE=CE=AD=1+,∴BH=1BC=1,∴EH==,∴S△EBC=BC•EH=1×2×=,故④错误;故选C.【点评】本题考查了相似三角形的判定和性质,勾股定理,正五边形的性质,熟练掌握正五边形的性质是解题的关键.5.(4分)(2016•曲靖)数如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个【考点】正多边形和圆;平行四边形的判定.【分析】根据正六边形的性质,直接判断即可;【解答】解:如图,∵AD,BE,CF是正六边形ABCDEF的对角线,∴OA=OE=AF=EF,∴四边形AOEF是平行四边形,同理:四边形DEFO,四边形ABCO,四边形BCDO,四边形CDEO,四边形FABOD都是平行四边形,共6个,故选C【点评】此题是正多边形和圆,主要考查了正六边形的性质,平行四边形的判定,掌握平行四边形的判定是解本题的关键.注意:数平行四边形个数时,按顺时针或逆时针数.二、填空题1.(3分)(2016•株洲)如图,正六边形ABCDEF内接于半径为3的圆O,则劣弧AB的长度为π.【考点】正多边形和圆;弧长的计算.【分析】求出圆心角∠AOB的度数,再利用弧长公式解答即可.【解答】解:如图,连接OA、OB,∵ABCDEF为正六边形,∴∠AOB=360°×16=60°,AB的长为603180π∙=π.故答案为:π.【点评】本题主要考查正多边形的性质和弧长公式,熟练掌握正多边形的性质是解题的关键.2.(3分)(2016•连云港)如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10= 75°.【考点】多边形内角与外角.【分析】如图,作辅助线,首先证得3710A A A =512 ⊙O 的周长,进而求得∠A 3OA 10=512⨯ 360︒=150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的圆心为O ,如图,连接A 10O 和A 3O ,由题意知,3710A A A =512⊙O 的周长, ∴∠A 3OA 10=512⨯ 360︒=150°, ∴∠A 3A 7A 10=75°,故答案为:75°.【点评】此题主要考查了正多边形及其外接圆的性质及圆周角定理,作出恰当的辅助线,灵活运用有关定理来分析是解答此题的关键.3.(3分)(2016•威海)如图,正方形ABCD 内接于⊙O ,其边长为4,则⊙O 的内接正三角形EFG【考点】正多边形和圆.【分析】连接AC 、OE 、OF ,作OM ⊥EF 于M ,先求出圆的半径,在Rt △OEM 中利用30度角的性质即可解决问题.【解答】解;连接AC 、OE 、OF ,作OM ⊥EF 于M ,∵四边形ABCD 是正方形,∴AB=BC=4,∠ABC=90°,∴AC 是直径,∴OM ⊥EF ,∴EM=MF ,∵△EFG 是等边三角形,∴∠GEF=60°,在RT △OME 中,∵,∠OEM=12∠CEF=30°,∴,∴EF=2.故答案为.【点评】本题考查正多边形与圆、等腰直角三角形的性质、等边三角形的性质等知识,解题的关键是熟练应用这些知识解决问题,属于中考常考题型.4.(4分)(2016•滨州)如图,△ABC 是等边三角形,AB=2,分别以A ,B ,C 为圆心,以2为半径作弧,则图中阴影部分的面积是332-π【考点】扇形面积的计算;等边三角形的性质.【分析】根据等边三角形的面积公式求出正△ABC 的面积,根据扇形的面积公式S=3602R n π求出扇形的面积,求差得到答案.【解答】解:∵正△ABC 的边长为2,∴△ABC 的面积为21×2×3=3, 扇形ABC 的面积为ππ323602602=⨯⋅, 则图中阴影部分的面积=3×(332-π)=2π﹣33,故答案为:2π﹣33.【点评】本题考查的是等边三角形的性质和扇形的面积计算,掌握扇形的面积公式S=3602R n π是解题的关键. 三、解答题1.(10分)(2016•苏州)如图,在矩形ABCD中,AB=6cm,AD=8cm,点P从点B出发,沿对角线BD向点D匀速运动,速度为4cm/s,过点P作PQ⊥BD交BC于点Q,以PQ为一边作正方形PQMN,使得点N落在射线PD上,点O从点D出发,沿DC向点C匀速运动,速度为3m/s,以O为圆心,0.8cm为半径作⊙O,点P与点O同时出发,设它们的运动时间为t(单位:s)(0<t<85).(1)如图1,连接DQ平分∠BDC时,t的值为43;(2)如图2,连接CM,若△CMQ是以CQ为底的等腰三角形,求t的值;(3)请你继续进行探究,并解答下列问题:①证明:在运动过程中,点O始终在QM所在直线的左侧;②如图3,在运动过程中,当QM与⊙O相切时,求t的值;并判断此时PM与⊙O是否也相切?说明理由.【分析】(1)先利用△PBQ∽△CBD求出PQ、BQ,再根据角平分线性质,列出方程解决问题.(2)由△QTM∽△BCD,得QM TQBD BC=列出方程即可解决.(3)①如图2中,由此QM交CD于E,求出DE、DO利用差值比较即可解决问题.②如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.由△OHE∽△BCD,得OH OEBC BD=,列出方程即可解决问题.利用反证法证明直线PM不可能由⊙O相切.【解答】(1)解:如图1中,∵四边形ABCD是矩形,∴∠A=∠C=∠ADC=∠ABC=90°,AB=CD=6.AD=BC=8,∴,∵PQ⊥BD,∴∠BPQ=90°=∠C,∵∠PBQ=∠DBC,∴△PBQ∽△CBD,∴PB PQ BQ BC DC BD==,∴48610t PQ BQ==,∴PQ=3t,BQ=5t,∵DQ平分∠BDC,QP⊥DB,QC⊥DC,∴QP=QC,∴3t=8﹣5t,∴t=1,故答案为:1.(2)解:如图2中,作MT⊥BC于T.∵MC=MQ,MT⊥CQ,∴TC=TQ,由(1)可知TQ=12(8﹣5t),QM=3t,∵MQ∥BD,∴∠MQT=∠DBC,∵∠MTQ=∠BCD=90°,∴△QTM∽△BCD,∴QM TQ BD BC=,∴1(85) 32108tt-=,∴t=4049(s),∴t=4049s时,△CMQ是以CQ为底的等腰三角形.(3)①证明:如图2中,由此QM交CD于E,∵EQ∥BD,∴EC CQ CD CB=,∴EC=34(8﹣5t),ED=DC﹣EC=6﹣34(8﹣5t)=154t,∵DO=3t,∴DE﹣DO=154t﹣3t=34t>0,∴点O在直线QM左侧.②解:如图3中,由①可知⊙O只有在左侧与直线QM相切于点H,QM与CD交于点E.∵EC=34(8﹣5t),DO=3t,∴OE=6﹣3t﹣34(8﹣5t)=34t,∵OH⊥MQ,∴∠OHE=90°,∵∠HEO=∠CEQ,∴∠HOE=∠CQE=∠CBD,∵∠OHE=∠C=90°,∴△OHE∽△BCD,∴OH OE BC BD=,∴3 0.84 810t=,∴t=43.∴t=43s时,⊙O与直线QM相切.连接PM,假设PM与⊙O相切,则∠OMH=12PMQ=22.5°,在MH上取一点F,使得MF=FO,则∠FMO=∠FOM=22.5°,∴∠OFH=∠FOH=45°,∴OH=FH=0.8,∴MH=0.8),由OH HEBC DC=得到HE=35,由EC CQBD CB=得到EQ=53,∴MH=MQ﹣HE﹣EQ=4﹣35﹣53=2615,∴0.8)≠2615,矛盾,∴假设不成立.∴直线PM与⊙O不相切.【点评】本题考查圆综合题、正方形的性质、相似三角形的判定和性质、切线的判定和性质、勾股定理、角平分线的性质等知识,解题的关键灵活运用这些知识解决问题,学会利用方程的思想思考问题,充分利用相似三角形的性质构建方程,在最后一个问题证明中利用了反证法,属于中考压轴题.2.(10分)(2016•黄石)如图1所示,已知:点A(﹣2,﹣1)在双曲线C:y=ax上,直线l1:y=﹣x+2,直线l2与l1关于原点成中心对称,F1(2,2),F2(﹣2,﹣2)两点间的连线与曲线C在第一象限内的交点为B,P是曲线C上第一象限内异于B的一动点,过P 作x轴平行线分别交l1,l2于M,N两点.(1)求双曲线C及直线l2的解析式;(2)求证:PF2﹣PF1=MN=4;(3)如图2所示,△PF1F2的内切圆与F1F2,PF1,PF2三边分别相切于点Q,R,S,求证:点Q与点B重合.(参考公式:在平面坐标系中,若有点A(x1,y1),B(x2,y2),则A、B两点间的距离公式为)【考点】圆的综合题.【分析】(1)利用点A 的坐标求出a 的值,根据原点对称的性质找出直线l 2上两点的坐标,求出解析式;(2)设P (x ,2x),利用两点距离公式分别求出PF 1、PF 2、PM 、PN 的长,相减得出结论; (3)利用切线长定理得出1122PR PS F R F Q F S F Q =⎧⎪=⎨⎪=⎩,并由(2)的结论PF 2﹣PF 1=4得出PF 2﹣PF 1=QF 2﹣QF 1=4,再由两点间距离公式求出F 1F 2的长,计算出OQ 和OB 的长,得出点Q 与点B 重合.【解答】解:(1)解:把A (﹣2,﹣1)代入y=a x 中得: a=(﹣2)×(﹣1)=2,∴双曲线C :y=2x, ∵直线l 1与x 轴、y 轴的交点分别是(2,0)、(0,2),它们关于原点的对称点分别是(﹣2,0)、(0,﹣2),∴l 2:y=﹣x ﹣2(2)设P (x , 2x), 由F 1(2,2)得:PF 12=(x ﹣2)2+(2x ﹣2)2=x 2﹣4x+24x ﹣8x +8, ∴PF 12=(x+2x﹣2)2, ∵x+2x ﹣2=222x x x+-=2(1)1x x -+>0, ∴PF 1=x+2x﹣2, ∵PM ∥x 轴 ∴PM=PE+ME=PE+EF=x+2x ﹣2, ∴PM=PF 1,同理,PF 22=(x+2)2+(2x +2)2=(x+2x +2)2, ∴PF 2=x+2x +2,PN=x+2x+2 因此PF 2=PN ,∴PF 2﹣PF 1=PN ﹣PM=MN=4,(3)△PF 1F 2的内切圆与F 1F 2,PF 1,PF 2三边分别相切于点Q ,R ,S ,∴1122PR PS F R F Q F S F Q =⎧⎪=⎨⎪=⎩⇒PF 2﹣PF 1=QF 2﹣QF 1=4又∵QF 2+QF 1=F 1F 2=QF 1=2,OF 1=OF 2=∴QO=2,∵F 1F 2的直线:y=x 与双曲线C :y=2x相交于点B ∴B,∴OB=2=OQ ,所以,点Q 与点B 重合.【点评】此题主要考查了圆的综合应用以及反比例函数的性质等知识,将代数与几何融合在一起,注意函数中线段的长可以利用本题给出的两点距离公式解出,也可以利用勾股定理解出;解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.3.(10分)(2016•衡阳)在平面直角坐标中,△ABC 三个顶点坐标为A0)、B0)、C (0,3).(1)求△ABC 内切圆⊙D 的半径.(2)过点E (0,﹣1)的直线与⊙D 相切于点F (点F 在第一象限),求直线EF 的解析式.(3)以(2)为条件,P 为直线EF 上一点,以P 为圆心,以P .若⊙P 上存在一点到△ABC 三个顶点的距离相等,求此时圆心P 的坐标.【考点】圆的综合题.【分析】(1)由A 、B 、C 三点坐标可知∠CBO=60°,又因为点D 是△ABC 的内心,所以BD 平分∠CBO ,然后利用锐角三角函数即可求出OD 的长度;(2)根据题意可知,DF 为半径,且∠DFE=90°,过点F 作FG ⊥y 轴于点G ,求得FG 和OG 的长度,即可求出点F 的坐标,然后将E 和F 的坐标代入一次函数解析式中,即可求出直线EF 的解析式;(3)⊙P 上存在一点到△ABC 三个顶点的距离相等,该点是△ABC 的外接圆圆心,即为点D ,所以P 在直线EF 上,所以这样的点P 共有2个,且由勾股定理可知PF=3【解答】解:(1)连接BD ,∵B 0),C (0,3),∴OC=3,∴tan ∠CBO=OC OB ∴∠CBO=60°∵点D 是△ABC 的内心,∴BD 平分∠CBO ,∴∠DBO=30°,∴tan ∠DBO=OD OB, ∴OD=1,∴△ABC 内切圆⊙D 的半径为1;(2)连接DF ,过点F 作FG ⊥y 轴于点G ,∵E (0,﹣1)∴OE=1,DE=2,∵直线EF 与⊙D 相切,∴∠DFE=90°,DF=1,∴sin ∠DEF=DF DE, ∴∠DEF=30°,∴∠GDF=60°,∴在Rt △DGF 中,∠DFG=30°,∴DG=12,由勾股定理可求得:GF=2,∴F(2,12), 设直线EF 的解析式为:y=kx+b ,∴112b b =-⎧⎪⎨=+⎪⎩, ∴直线EF 的解析式为:﹣1;(3)∵⊙P 上存在一点到△ABC 三个顶点的距离相等,∴该点必为△ABC 外接圆的圆心,由(1)可知:△ABC 是等边三角形,∴△ABC 外接圆的圆心为点D∴设直线EF 与x 轴交于点H ,∴令y=0代入﹣1,∴x=3, ∴H(30), ∴当P 在x 轴上方时,过点P 1作P 1M ⊥x 轴于M ,由勾股定理可求得:P 1∴P 1H=P 1F+FH=3, ∵∠DEF=∠HP 1M=30°,∴HM=12P 1,P 1M=5, ∴∴P 1(5),当P 在x 轴下方时,过点P 2作P 2N ⊥x 轴于点N ,由勾股定理可求得:P 2∴P 2H=P 2F ﹣∴∠DEF=30°∴∠OHE=60°∴sin ∠OHE22P N P H, ∴P 2N=4, 令y=﹣4代入﹣1,∴x=∴P 24),综上所述,若⊙P 上存在一点到△ABC 三个顶点的距离相等,此时圆心P 的坐标为(54).【点评】本题是圆的综合问题,涉及圆的外接圆和内切圆的相关性质,圆的切线性质,锐角三角函数,一次函数等知识,综合程度较高,需要学生将各知识点灵活运用.4.(10分)(2016•南充)已知正方形ABCD的边长为1,点P为正方形内一动点,若点M 在AB上,且满足△PBC∽△PAM,延长BP交AD于点N,连结CM.(1)如图一,若点M在线段AB上,求证:AP⊥BN;AM=AN;(2)①如图二,在点P运动过程中,满足△PBC∽△PAM的点M在AB的延长线上时,AP⊥BN和AM=AN是否成立?(不需说明理由)②是否存在满足条件的点P,使得PC=?请说明理由.【考点】相似形综合题.【分析】(1)由△PBC∽△PAM,推出∠PAM=∠PBC,由∠PBC+∠PBA=90°,推出∠PAM+∠PBA=90°即可证明AP⊥BN,由△PBC∽△PAM,推出==,由△BAP∽△BNA,推出=ANAB,得到=,由此即可证明.(2)①结论仍然成立,证明方法类似(1).②这样的点P不存在.利用反证法证明.假设PC=,推出矛盾即可.【解答】(1)证明:如图一中,∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC∽△PAM,∴∠PAM=∠PBC,=,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP ⊥BN ,∵∠ABP=∠ABN ,∠APB=∠BAN=90°,∴△BAP ∽△BNA ,∴PA =AN AB, ∴AN =AM , ∵AB=BC ,∴AN=AM .(2)解:①仍然成立,AP ⊥BN 和AM=AN .理由如图二中,∵四边形ABCD 是正方形,∴AB=BC=CD=AD ,∠DAB=∠ABC=∠BCD=∠D=90°,∵△PBC ∽△PAM ,∴∠PAM=∠PBC , AM =P,∴∠PBC+∠PBA=90°,∴∠PAM+∠PBA=90°,∴∠APB=90°,∴AP ⊥BN ,∵∠ABP=∠ABN ,∠APB=∠BAN=90°,∴△BAP ∽△BNA ,∴=AN AB, ∴=, ∵AB=BC ,∴AN=AM .②这样的点P 不存在.理由:假设PC=,如图三中,以点C 为圆心为半径画圆,以AB 为直径画圆,CO==2>1, ∴两个圆外离,∴∠APB <90°,这与AP ⊥PB 矛盾,∴假设不可能成立,∴满足PC=的点P 不存在.【点评】本题考查相似三角形综合题、正方形的性质、圆的有关知识,解题的关键是熟练应用相似三角形性质解决问题,最后一个问题利用圆的位置关系解决问题,有一定难度,属于中考压轴题.5.(10分)(2016•内江)如图,在Rt△ABC中,∠ABC=90°,AC的垂直平分线分别与AC,BC及AB的延长线相交于点D,E,F,⊙O是△BEF的外接圆,∠EBF的平分线交EF于点G,交⊙O于点H,连接BD、FH.(1)试判断BD与⊙O的位置关系,并说明理由;(2)当AB=BE=1时,求⊙O的面积;(3)在(2)的条件下,求HG•HB的值.【分析】(1)连接OB ,证得∠DBO=90°,即可得到BD 与⊙O 相切;(2)由等腰直角三角形的性质得到CF=2BF ,由于DF 垂直平分AC ,得到AF=CF=AB+BF=1+BF=2BF ,根据勾股定理得到EF 的长,根据圆的面积公式即可得到结论;(3)推出△EHF 是等腰直角三角形,求得HF=22EF ,通过△BHF ∽△FHG ,列比例式即可得到结论.【解答】解:(1)BD 与⊙O 相切,理由:如图1,连接OB ,∵OB=OF ,∴∠OBF=∠OFB ,∵∠ABC=90°,AD=CD ,∴BD=CD ,∴∠C=∠DBC ,∵∠C=∠BFE ,∴∠DBC=∠OBF ,∵∠CBO+∠OBF=90°,∴∠DBC+∠CBO=90°,∴∠DBO=90°,∴BD 与⊙O 相切;(2)如图2,连接CF ,HE ,∵∠CBF=90°,BC=BF ,∴CF=2BF ,。
2020-2021全国各地中考数学分类:圆的综合综合题汇编附详细答案

2020-2021全国各地中考数学分类:圆的综合综合题汇编附详细答案一、圆的综合1.如图,四边形OABC 是平行四边形,以O 为圆心,OA 为半径的圆交AB 于D ,延长AO 交O 于E ,连接CD ,CE ,若CE 是⊙O 的切线,解答下列问题:(1)求证:CD 是⊙O 的切线;(2)若BC=4,CD=6,求平行四边形OABC 的面积.【答案】(1)证明见解析(2)24【解析】试题分析:(1)连接OD ,求出∠EOC=∠DOC ,根据SAS 推出△EOC ≌△DOC ,推出∠ODC=∠OEC=90°,根据切线的判定推出即可;(2)根据切线长定理求出CE=CD=4,根据平行四边形性质求出OA=OD=4,根据平行四边形的面积公式=2△COD 的面积即可求解.试题解析:(1)证明:连接OD ,∵OD=OA ,∴∠ODA=∠A ,∵四边形OABC 是平行四边形,∴OC ∥AB ,∴∠EOC=∠A ,∠COD=∠ODA ,∴∠EOC=∠DOC ,在△EOC 和△DOC 中,OE OD EOC DOC OC OC =⎧⎪∠=∠⎨⎪=⎩∴△EOC ≌△DOC (SAS ),∴∠ODC=∠OEC=90°,即OD ⊥DC ,∴CD 是⊙O 的切线;(2)由(1)知CD 是圆O 的切线,∴△CDO 为直角三角形,∵S △CDO =12CD•OD , 又∵OA=BC=OD=4,∴S△CDO=12×6×4=12,∴平行四边形OABC的面积S=2S△CDO=24.2.如图,已知△ABC中,AB=AC,∠A=30°,AB=16,以AB为直径的⊙O与BC边相交于点D,与AC交于点F,过点D作DE⊥AC于点E.(1)求证:DE是⊙O的切线;(2)求CE的长;(3)过点B作BG∥DF,交⊙O于点G,求弧BG的长.【答案】(1)证明见解析(2)33)4π【解析】【分析】(1)如图1,连接AD,OD,由AB为⊙O的直径,可得AD⊥BC,再根据AB=AC,可得BD=DC,再根据OA=OB,则可得OD∥AC,继而可得DE⊥OD,问题得证;(2)如图2,连接BF,根据已知可推导得出DE=12BF,CE=EF,根据∠A=30°,AB=16,可得BF=8,继而得DE=4,由DE为⊙O的切线,可得ED2=EF•AE,即42=CE•(16﹣CE),继而可求得CE长;(3)如图3,连接OG,连接AD,由BG∥DF,可得∠CBG=∠CDF=30°,再根据AB=AC,可推导得出∠OBG=45°,由OG=OB,可得∠OGB=45°,从而可得∠BOG=90°,根据弧长公式即可求得»BG的长度.【详解】(1)如图1,连接AD,OD;∵AB为⊙O的直径,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=DC,∵OA=OB,∴OD∥AC,∵DE ⊥AC ,∴DE ⊥OD ,∴∠ODE=∠DEA=90°,∴DE 为⊙O 的切线;(2)如图2,连接BF ,∵AB 为⊙O 的直径,∴∠AFB=90°,∴BF ∥DE ,∵CD=BD ,∴DE=12BF ,CE=EF , ∵∠A=30°,AB=16,∴BF=8,∴DE=4,∵DE 为⊙O 的切线,∴ED 2=EF•AE , ∴42=CE•(16﹣CE ),∴CE=8﹣43,CE=8+43(不合题意舍去);(3)如图3,连接OG ,连接AD ,∵BG ∥DF ,∴∠CBG=∠CDF=30°,∵AB=AC ,∴∠ABC=∠C=75°,∴∠OBG=75°﹣30°=45°,∵OG=OB ,∴∠OGB=∠OBG=45°,∴∠BOG=90°,∴»BG 的长度=908180π⨯⨯=4π.【点睛】本题考查了圆的综合题,涉及了切线的判定、三角形中位线定理、圆周角定理、弧长公式等,正确添加辅助线、熟练掌握相关的性质与定理是解题的关键.3.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB, DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=52AD,∶DE=4∶1,求DE的长.【答案】(1)见解析;(2)5【解析】分析:(1)直接利用直角三角形的性质得出DF=CF=EF,再求出∠FDO=∠FCO=90°,得出答案即可;(2)首先得出AB=BC即可得出它们的长,再利用△ADC~△ACE,得出AC2=AD•AE,进而得出答案.详解:(1)连接OD.∵OD=CD,∴∠ODC=∠OCD.∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.∵点F为CE的中点,∴DF=CF=EF,∴∠FDC=∠FCD,∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.∵DB平分∠ADC,∴∠ADB=∠CDB,∴¶AB=¶BC,∴BC=AB=52.在Rt△ABC中,AC2=AB2+BC2=100.又∵AC⊥CE,∴∠ACE=90°,∴△ADC~△ACE,∴ACAD =AEAC,∴AC2=AD•AE.设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,∴100=4x•5x,∴x=5,∴DE=5.点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD•AE是解题的关键.4.如图,已知AB 是⊙O 的直径,点C ,D 在⊙O 上,BC=6cm,AC=8cm,∠BAD=45°.点E 在⊙O 外,做直线AE ,且∠EAC=∠D .(1)求证:直线AE 是⊙O 的切线.(2)求图中阴影部分的面积.【答案】(1)见解析;(2)25-504π. 【解析】 分析:(1)根据圆周角定理及推论证得∠BAE=90°,即可得到AE 是⊙O 的切线; (2)连接OD ,用扇形ODA 的面积减去△AOD 的面积即可.详解:证明:(1) ∵AB 是⊙O 的直径,∴∠ACB=90°,即∠BAC+∠ABC=90°,∵∠EAC=∠ADC ,∠ADC=∠ABC ,∴∠EAC=∠ABC∴∠BAC+∠EAC =90°,即∠BAE= 90°∴直线AE 是⊙O 的切线;(2)连接OD∵ BC=6 AC=8∴ 226810AB =+=∴ OA = 5又∵ OD = OA∴∠ADO =∠BAD = 45°∴∠AOD = 90°∴AOD ODA S S S ∆-阴影扇形= =90155553602π⨯⨯-⨯⨯ 25504π-= (2cm )点睛:此题主要考查了圆周角定理和圆的切线的判定与性质,关键是利用圆周角定理和切线的判定与性质,结合勾股定理的和弓形的面积的求法求解,注意数形结合思想的应用.5.如图,△ABC中,∠A=45°,D是AC边上一点,⊙O经过D、A、B三点,OD∥BC.(1)求证:BC与⊙O相切;(2)若OD=15,AE=7,求BE的长.【答案】(1)见解析;(2)18.【解析】分析:(1)连接OB,求出∠DOB度数,根据平行线性质求出∠CBO=90°,根据切线判定得出即可;(2)延长BO交⊙O于点F,连接AF,求出∠ABF,解直角三角形求出BE.详解:(1)证明:连接OB.∵∠A=45°,∴∠DOB=90°.∵OD∥BC,∴∠DOB+∠CBO=180°.∴∠CBO=90°.∴直线BC是⊙O的切线.(2)解:连接BD.则△ODB是等腰直角三角形,∴∠ODB=45°,BD=OD=15,∵∠ODB=∠A,∠DBE=∠DBA,∴△DBE∽△ABD,∴BD2=BE•BA,∴(15)2=(7+BE)BE,∴BE=18或﹣25(舍弃),∴BE=18.点睛:本题考查了切线的判定,圆周角定理,解直角三角形等知识点,能综合运用定理进行推理和计算是解此题的关键,题目综合性比较强,难度偏大.6.如图,A是以BC为直径的⊙O上一点,AD⊥BC于点D,过点B作⊙O的切线,与CA 的延长线相交于点E,G是AD的中点,连结CG并延长与BE相交于点F,延长AF与CB的延长线相交于点P.(1)求证:BF=EF:(2)求证:PA是⊙O的切线;(3)若FG=BF,且⊙O的半径长为32,求BD的长度.【答案】(1)证明见解析;(2) 证明见解析;(3)2【解析】分析:(1)利用平行线截三角形得相似三角形,得△BFC∽△DGC且△FEC∽△GAC,得到对应线段成比例,再结合已知条件可得BF=EF;(2)利用直角三角形斜边上的中线的性质和等边对等角,得到∠FAO=∠EBO,结合BE是圆的切线,得到PA⊥OA,从而得到PA是圆O的切线;(3)点F作FH⊥AD于点H,根据前两问的结论,利用三角形的相似性质即可以求出BD 的长度.详解:证明:(1)∵BC是圆O的直径,BE是圆O的切线,∴EB⊥BC.又∵AD⊥BC,∴AD∥BE.∴△BFC∽△DGC,△FEC∽△GAC,∴BFDG=CFCG,EFAG=CFCG,∴BFDG=EFAG,∵G是AD的中点,∴DG=AG,∴BF=EF;(2)连接AO,AB.∵BC是圆O的直径,∴∠BAC=90°,由(1)得:在Rt△BAE中,F是斜边BE的中点,∴AF=FB=EF,可得∠FBA=∠FAB,又∵OA=OB,∴∠ABO=∠BAO,∵BE是圆O的切线,∴∠EBO=90°,∴∠FBA+∠ABO=90°,∴∠FAB+∠BAO=90°,即∠FAO=90°,∴PA⊥OA,∴PA是圆O的切线;(3)过点F作FH⊥AD于点H,∵BD⊥AD,FH⊥AD,∴FH∥BC,由(2),知∠FBA=∠BAF,∴BF=AF.∵BF=FG,∴AF=FG,∴△AFG是等腰三角形.∵FH⊥AD,∴AH=GH,∵DG=AG,∴DG=2HG.即12HG DG =, ∵FH ∥BD ,BF ∥AD ,∠FBD =90°,∴四边形BDHF 是矩形,∴BD =FH ,∵FH ∥BC∴△HFG ∽△DCG ,∴12FH HG CD DG ==, 即12BD CD =, ∴23 2.15≈, ∵O 的半径长为32,∴BC =62,∴BD =13BC =22. 点睛:本题考查了切线的判定、勾股定理、圆周角定理、相似三角形的判定与性质.结合已知条件准确对图形进行分析并应用相应的图形性质是解题的关键.7.如图,Rt ABC ∆内接于⊙O ,AC BC =,BAC ∠的平分线AD 与⊙O 交于点D ,与BC 交于点E ,延长BD ,与AC 的延长线交于点F ,连接CD ,G 是CD 的中点,连接OG .(1)判断OG 与CD 的位置关系,写出你的结论并证明;(2)求证:AE BF =;(3)若3(22)OG DE =-g ,求⊙O 的面积.【答案】(1)OG ⊥CD (2)证明见解析(3)6π【解析】试题分析:(1)根据G 是CD 的中点,利用垂径定理证明即可;(2)先证明△ACE 与△BCF 全等,再利用全等三角形的性质即可证明;(3)构造等弦的弦心距,运用相似三角形以及勾股定理进行求解.试题解析:(1)解:猜想OG ⊥CD .证明如下:如图1,连接OC 、OD .∵OC =OD ,G 是CD 的中点,∴由等腰三角形的性质,有OG ⊥CD .(2)证明:∵AB 是⊙O 的直径,∴∠ACB =90°,而∠CAE =∠CBF (同弧所对的圆周角相等).在Rt △ACE 和Rt △BCF 中,∵∠ACE =∠BCF =90°,AC =BC ,∠CAE =∠CBF ,∴Rt △ACE ≌Rt △BCF (ASA ),∴AE =BF .(3)解:如图2,过点O 作BD 的垂线,垂足为H ,则H 为BD 的中点,∴OH =12AD ,即AD =2OH ,又∠CAD =∠BAD ⇒CD =BD ,∴OH =OG .在Rt △BDE 和Rt △ADB 中,∵∠DBE =∠DAC =∠BAD ,∴Rt △BDE ∽Rt △ADB ,∴BD DE AD DB=,即BD 2=AD •DE ,∴22622BD AD DE OG DE =⋅=⋅=-().又BD =FD ,∴BF =2BD ,∴2242422BF BD ==-()①,设AC =x ,则BC =x ,AB =2x .∵AD 是∠BAC 的平分线,∴∠FAD =∠BAD .在Rt △ABD 和Rt △AFD 中,∵∠ADB =∠ADF =90°,AD =AD ,∠FAD =∠BAD ,∴Rt △ABD ≌Rt △AFD (ASA ),∴AF =AB =2x ,BD =FD ,∴CF =AF ﹣AC =221x x x -=-().在Rt △BCF 中,由勾股定理,得:222222[21]222BF BC CF x x x =+=+-=-()()②,由①、②,得22222422x -=-()(),∴x 2=12,解得:23x =或23-(舍去),∴222326AB x ==⋅=,∴⊙O 的半径长为6,∴S ⊙O =π•(6)2=6π.点睛:本题是圆的综合题.解题的关键是熟练运用垂径定理、勾股定理、相似三角形的判定与性质.8.如图,△ABC 内接于⊙O ,且AB 为⊙O 的直径.∠ACB 的平分线交⊙O 于点D ,过点D 作⊙O 的切线PD 交CA 的延长线于点P ,过点A 作AE ⊥CD 于点E ,过点B 作BF ⊥CD 于点F .(1)求证:DP∥AB;(2)若AC=6,BC=8,求线段PD的长.【答案】详见解析【解析】【分析】(1)连接OD,由AB为⊙O的直径,根据圆周角定理得∠ACB=90°,再由∠ACD=∠BCD=45°,则∠DAB=∠ABD=45°,所以△DAB为等腰直角三角形,所以DO⊥AB,根据切线的性质得OD⊥PD,于是可得到DP∥AB.(2)先根据勾股定理计算出AB=10,由于△DAB为等腰直角三角形,可得到AD5222===;由△ACE为等腰直角三角形,得到AE CE3222====,在Rt△AED中利用勾股定理计算出DE=42,则CD=72,易证得∴△PDA∽△PCD,得到PD PA AD52PC PD CD72===,所以PA=57PD,PC=75PD,然后利用PC=PA+AC可计算出PD.【详解】解:(1)证明:如图,连接OD,∵AB为⊙O的直径,∴∠ACB=90°.∵∠ACB的平分线交⊙O于点D,∴∠ACD=∠BCD=45°.∴∠DAB=∠ABD=45°.∴△DAB为等腰直角三角形.∴DO⊥AB.∵PD为⊙O的切线,∴OD⊥PD.∴DP∥AB.(2)在Rt△ACB中,,∵△DAB 为等腰直角三角形,∴. ∵AE ⊥CD ,∴△ACE 为等腰直角三角形.∴. 在Rt △AED 中,, ∴. ∵AB ∥PD ,∴∠PDA=∠DAB=45°.∴∠PAD=∠PCD .又∵∠DPA=∠CPD ,∴△PDA ∽△PCD .∴. ∴PA=75PD ,PC=57PD . 又∵PC=PA+AC ,∴75PD+6=57PD ,解得PD=.9.如图所示,AB 是半圆O 的直径,AC 是弦,点P 沿BA 方向,从点B 运动到点A ,速度为1cm/s ,若10AB cm ,点O 到AC 的距离为4cm .(1)求弦AC 的长;(2)问经过多长时间后,△APC 是等腰三角形.【答案】(1)AC=6;(2)t=4或5或145s 时,△APC 是等腰三角形; 【解析】【分析】(1)过O 作OD ⊥AC 于D ,根据勾股定理求得AD 的长,再利用垂径定理即可求得AC 的长;(2)分AC=PC 、AP=AC 、AP=CP 三种情况求t 值即可.【详解】(1)如图1,过O 作OD ⊥AC 于D ,易知AO=5,OD=4,从而AD==3,∴AC=2AD=6;(2)设经过t秒△APC是等腰三角形,则AP=10﹣t①如图2,若AC=PC,过点C作CH⊥AB于H,∵∠A=∠A,∠AHC=∠ODA=90°,∴△AHC∽△ADO,∴AC:AH=OA:AD,即AC: =5:3,解得t=s,∴经过s后△APC是等腰三角形;②如图3,若AP=AC,由PB=x,AB=10,得到AP=10﹣x,又∵AC=6,则10﹣t=6,解得t=4s,∴经过4s后△APC是等腰三角形;③如图4,若AP=CP,P与O重合,则AP=BP=5,∴经过5s后△APC是等腰三角形.综上可知当t=4或5或s时,△APC是等腰三角形.【点睛】本题是圆的综合题,解决问题利用了垂径定理,勾股定理等知识点,解题时要注意当△BPC是等腰三角形时,点P的位置有三种情况.10.如图,已知:AB是⊙O的直径,点C在⊙O上,CD是⊙O的切线,AD⊥CD于点D,E是AB延长线上一点,CE交⊙O于点F,连接OC、AC.(1)求证:AC平分∠DAO.(2)若∠DAO=105°,∠E=30°①求∠OCE的度数;②若⊙O的半径为22,求线段EF的长.【答案】(1)证明见解析;(2)①∠OCE=45°;②EF =23【解析】【试题分析】(1)根据直线与⊙O相切的性质,得OC⊥CD.又因为AD⊥CD,根据同一平面内,垂直于同一条直线的两条直线也平行,得:AD//OC. ∠DAC=∠OCA.又因为OC=OA,根据等边对等角,得∠OAC=∠OCA.等量代换得:∠DAC=∠OAC.根据角平分线的定义得:AC平分∠DAO.(2)①因为 AD//OC,∠DAO=105°,根据两直线平行,同位角相等得,中,∠E=30°,利用内角和定理,得:∠OCE=45°.∠EOC=∠DAO=105°,在OCE②作OG⊥CE于点G,根据垂径定理可得FG=CG,因为OC=2,∠OCE=45°.等腰直角三2倍,得CG=OG=2. FG=2.在Rt△OGE中,∠E=30°,得GE=23则EF=GE-FG=23【试题解析】(1)∵直线与⊙O相切,∴OC⊥CD.又∵AD⊥CD,∴AD//OC.∴∠DAC=∠OCA.又∵OC=OA,∴∠OAC=∠OCA.∴∠DAC=∠OAC.∴AC平分∠DAO.(2)解:①∵AD//OC,∠DAO=105°,∴∠EOC=∠DAO=105°∵∠E=30°,∴∠OCE=45°.②作OG⊥CE于点G,可得FG=CG∵OC=2∠OCE=45°.∴CG=OG=2.∴FG=2.∵在Rt△OGE中,∠E=30°,∴GE=3∴EF=GE-FG=23【方法点睛】本题目是一道圆的综合题目,涉及到圆的切线的性质,平行线的性质及判定,三角形内角和,垂径定理,难度为中等.11.如图,在Rt△ABC中,点O在斜边AB上,以O为圆心,OB为半径作圆,分别与BC,AB相交于点D,E,连接AD.已知∠CAD=∠B.(1)求证:AD是⊙O的切线;(2)若CD=2,AC=4,BD=6,求⊙O的半径.【答案】(1)详见解析;(2)35.【解析】【分析】(1)解答时先根据角的大小关系得到∠1=∠3,根据直角三角形中角的大小关系得出OD⊥AD ,从而证明AD为圆O的切线;(2)根据直角三角形勾股定理和两三角形相似可以得出结果【详解】(1)证明:连接OD,∵OB=OD,∴∠3=∠B,∵∠B=∠1,∴∠1=∠3,在Rt△ACD中,∠1+∠2=90°,∴∠4=180°﹣(∠2+∠3)=90°,∴OD⊥AD,则AD为圆O的切线;(2)过点O作OF⊥BC,垂足为F,∵OF⊥BD∴DF=BF=12BD=3∵AC=4,CD=2,∠ACD=90°∴AD=22AC CD=25∵∠CAD=∠B,∠OFB=∠ACD=90°∴△BFO∽△ACD∴BFAC = OB AD即34=25∴OB=35∴⊙O的半径为352.【点睛】此题重点考查学生对直线与圆的位置关系,圆的半径的求解,掌握勾股定理,两三角形相似的判定条件是解题的关键12.如图,PA切⊙O于点A,射线PC交⊙O于C、B两点,半径OD⊥BC于E,连接BD、DC和OA,DA交BP于点F;(1)求证:∠ADC+∠CBD=12∠AOD;(2)在不添加任何辅助线的情况下,请直接写出图中相等的线段.【答案】(1)详见解析;(2)详见解析;【分析】()1根据垂径定理得到BD CD =n n ,根据等腰三角形的性质得到()111809022ODA AOD AOD ∠=-∠=-∠o o ,即可得到结论; ()2根据垂径定理得到BE CE =,BD CD =n n ,根据等腰三角形的性质得到ADO OAD ∠=∠,根据切线的性质得到90PAO ∠=o ,求得90OAD DAP ∠+∠=o ,推出PAF PFA ∠=∠,根据等腰三角形的判定定理即可得到结论.【详解】()1证明:OD BC ⊥Q ,BD CD ∴=n n, CBD DCB ∴∠=∠,90DFE EDF ∠+∠=o Q ,90EDF DFE ∴∠=-∠o ,OD OA =Q ,()111809022ODA AOD AOD ∴∠=-∠=-∠o o , 190902DFE AOD ∴-∠=-∠o o , 12DEF AOD ∴∠=∠, DFE ADC DCB ADC CBD ∠=∠+∠=∠+∠Q ,12ADC CBD AOD ∴∠+∠=∠; ()2解:OD BC ⊥Q ,BE CE ∴=,BD CD =n n,BD CD ∴=,OA OD Q =,ADO OAD ∴∠=∠,PA Q 切O e 于点A ,90PAO ∴∠=o ,90OAD DAP ∴∠+∠=o , PFA DFE ∠=∠Q ,90PFA ADO ∴∠+∠=o ,PAF PFA ∴∠=∠,PA PF ∴=.本题考查了切线的性质,等腰三角形的判定和性质,垂径定理,圆周角定理,正确的识别图形是解题的关键.13.如图,已知△ABC,AB=2,3BC=,∠B=45°,点D在边BC上,联结AD,以点A 为圆心,AD为半径画圆,与边AC交于点E,点F在圆A上,且AF⊥AD.(1)设BD为x,点D、F之间的距离为y,求y关于x的函数解析式,并写出定义域;(2)如果E是»DF的中点,求:BD CD的值;(3)联结CF,如果四边形ADCF是梯形,求BD的长.【答案】(1) 2442y x x=-+(0≤x≤3); (2) 45; (3) BD的长是1或1+52.【解析】【分析】(1)过点A作AH⊥BC,垂足为点H.构造直角三角形,利用解直角三角形和勾股定理求得AD的长度.联结DF,点D、F之间的距离y即为DF的长度,在Rt△ADF中,利用锐角三角形函数的定义求得DF的长度,易得函数关系式.(2)由勾股定理求得:AC=22AH DH+.设DF与AE相交于点Q,通过解Rt△DCQ和Rt△AHC推知12DQCQ=.故设DQ=k,CQ=2k,AQ=DQ=k,所以再次利用勾股定理推知DC的长度,结合图形求得线段BD的长度,易得答案.(3)如果四边形ADCF是梯形,则需要分类讨论:①当AF∥DC、②当AD∥FC.根据相似三角形的判定与性质,结合图形解答.【详解】(1)过点A作AH⊥BC,垂足为点H.∵∠B=45°,AB2∴·cos1BH AH AB B===.∵BD 为x ,∴1DH x =-.在Rt △ADH 中,90AHD ∠=︒,∴AD ==. 联结DF ,点D 、F 之间的距离y 即为DF 的长度.∵点F 在圆A 上,且AF ⊥AD ,∴AD AF =,45ADF ∠=︒.在Rt △ADF 中,90DAF ∠=︒,∴cos AD DF ADF ==∠∴y =.()03x ≤≤ ;(2)∵E 是DF 的中点,∴AE DF ⊥,AE 平分DF .∵BC=3,∴312HC =-=.∴AC =.设DF 与AE 相交于点Q ,在Rt △DCQ 中,90DQC ∠=︒,tan DQ DCQ CQ ∠=. 在Rt △AHC 中,90AHC ∠=︒,1tan 2AH ACH HC ∠==. ∵DCQ ACH ∠=∠,∴12DQ CQ =. 设,2DQ k CQ k ==,AQ DQ k ==,∵3k =k =,∴53DC ==. ∵43BD BC DC =-=,∴4:5BD CD =. (3)如果四边形ADCF 是梯形 则①当AF ∥DC 时,45AFD FDC ∠=∠=︒.∵45ADF ∠=︒,∴AD BC ⊥,即点D 与点H 重合. ∴1BD =.②当AD ∥FC 时,45ADF CFD ∠=∠=︒.∵45B ∠=︒,∴B CFD ∠=∠.∵B BAD ADF FDC ∠+∠=∠+∠,∴BAD FDC ∠=∠.∴ABD ∆∽DFC ∆.∴AB AD DF DC =. ∵DF =,DC BC BD =-.∴2AD BC BD =-.即23x =-,整理得 210x x --=,解得 x =综上所述,如果四边形ADCF 是梯形,BD 的长是1 【点睛】此题属于圆的综合题,涉及了平行四边形的性质、相似三角形的判定与性质、三角函数值以及勾股定理等知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.14.如图,AB 是O e 的直径,弦CD AB ⊥于点E ,过点C 的切线交AB 的延长线于点F ,连接DF .(1)求证:DF 是O e 的切线;(2)连接BC ,若30BCF ∠=︒,2BF =,求CD 的长.【答案】(1)见解析;(2)3【解析】【分析】(1) 连接OD,由垂径定理证OF 为CD 的垂直平分线,得CF=DF ,∠CDF=∠DCF ,由∠CDO=∠OCD ,再证∠CDO +∠CDB=∠OCD+∠DCF=90°,可得OD ⊥DF ,结论成立.(2) 由∠OCF=90°, ∠BCF=30°,得∠OCB=60°,再证ΔOCB 为等边三角形,得∠COB=60°,可得∠CFO=30°,所以FO=2OC=2OB ,FB=OB= OC =2,在直角三角形OCE 中,解直角三角形可得CE,再推出CD=2CE.【详解】(1)证明:连接OD∵CF 是⊙O 的切线∴∠OCF=90°∴∠OCD+∠DCF=90°∵直径AB ⊥弦CD∴CE=ED ,即OF 为CD 的垂直平分线∴CF=DF∴∠CDF=∠DCF∵OC=OD ,∴∠CDO=∠OCD∴∠CDO +∠CDB=∠OCD+∠DCF=90°∴OD ⊥DF∴DF 是⊙O 的切线(2)解:连接OD∵∠OCF=90°, ∠BCF=30°∴∠OCB=60°∵OC=OB∴ΔOCB 为等边三角形,∴∠COB=60°∴∠CFO=30°∴FO=2OC=2OB∴FB=OB= OC =2在直角三角形OCE中,∠CEO=90°∠COE=60°CE3sin COEOC2∠==∴CF3=∴CD=2 CF23=【点睛】本题考核知识点:垂径定理,切线,解直角三角形. 解题关键点:熟记切线的判定定理,灵活运用含有30°角的直角三角形性质,巧解直角三角形.15.如图,已知四边形ABCD内接于⊙O,点E在CB的延长线上,连结AC、AE,∠ACB=∠BAE=45°.(1)求证:AE是⊙O的切线;(2)若AB=AD,AC=32,tan∠ADC=3,求BE的长.【答案】(1)证明见解析;(2)52 BE=【解析】试题分析:(1)连接OA、OB,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A作AF⊥CD于点F,由AB=AD,得到∠ACD=∠ACB=45°,在Rt△AFC中可求得AF =3,在Rt△AFD中求得DF=1,所以AB=AD=10,CD= CF+DF=4,再证明△ABE∽△CDA,得出BE ABDA CD=,即可求出BE的长度;试题解析:(1)证明:连结OA,OB,∵∠ACB=45°,∴∠AOB=2∠ACB= 90°,∵OA=OB ,∴∠OAB =∠OBA =45°,∵∠BAE =45°,∴∠OAE =∠OAB +∠BAE =90°,∴OA ⊥AE .∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°. ∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =32,∠ACF =45°, ∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF =, ∴DF =1,∴223110AB AD ==+=,且CD = CF +DF =4,∵四边形ABCD 内接于⊙O ,∴∠ABE =∠CDA ,∵∠BAE =∠DCA ,∴△ABE ∽△CDA ,∴BE AB DA CD =, ∴1010=, ∴52BE =.。
2020年全国各地中考数学真题及模拟题汇编:圆(附答案解析)

2020年全国各地中考数学真题及模拟题汇编:圆一.选择题(共20小题)1.(2020•射阳县一模)圆的直径是8cm,若圆心与直线的距离是4cm,则该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切2.(2020•如东县模拟)若用半径为6,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.1B.2C.3D.4 3.(2020•新北区一模)如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠BCD=()A.105°B.110°C.115°D.120°4.(2020•宁波模拟)将一个底面半径为3cm,高为4cm的圆锥形纸筒沿一条母线剪开,所得的侧面展开图的面积为()A.24πcm2B.18πcm2C.15πcm2D.12πcm2 5.(2020•西城区一模)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°6.(2020•南岸区校级模拟)如图,圆O是△ABC的外接圆,连接OB,OC,若∠A=55°,则∠OBC的度数为()A.30°B.35°C.45°D.55°7.(2020•海曙区模拟)如图,AB为⊙O的直径,AB=30,点C在⊙O上,∠A=24°,则AĈ的长为()A.9πB.10πC.11πD.12π8.(2020•宁波模拟)如图,⊙O的弦AB=16,M是AB的中点,且OM=6,则⊙O的直径等于()A.12B.16C.20D.24 9.(2020•宁波模拟)圆的一条弦长为6,其弦心距为4,则圆的半径为()A.5B.6C.8D.1010.(2020•朝阳区一模)如图,⊙O的直径AB垂直于弦CD,垂足为E,CD=4,tan C=1 2,则AB的长为()A.2.5B.4C.5D.10 11.(2020•宁波模拟)如图,圆中两条弦AC,BD相交于点P.点D是AĈ的中点,连结AB,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正多边形与圆
一.选择题
1.(2020年德州市)10.(4分)如图,圆内接正六边形的边长为4,以其各边为直径作半
圆,则图中阴影部分的面积为()
A.24﹣4πB.12+4πC.24+8πD.24+4π
【分析】设正六边形的中心为O,连接OA,OB首先求出弓形AmB的面积,再根据S阴=6•(S半圆﹣S弓形AmB)求解即可.
【解答】解:设正六边形的中心为O,连接OA,O B.
由题意,OA=OB=AB=4,
∴S弓形AmB=S扇形OAB﹣S△AOB=﹣×42=π﹣4,
∴S阴=6•(S半圆﹣S弓形AmB)=6•(•π•22﹣π+4)=24﹣4π,
故选:A.
【点评】本题考查正多边形和圆,扇形的面积,弓形的面积等知识,解题的关键是理解题意,灵活运用所学知识解决问题.
二.填空题
1.(2020•江苏省徐州市•3分)如图,A,B,C,D为一个正多边形的顶点,O为正多边形的中
心,若∠ADB=18°,则这个正多边形的边数为10.
【分析】连接OA,OB,根据圆周角定理得到∠AOB=2∠ADB=36°,于是得到结论.【解答】解:连接OA,OB,∵A,B,C,D为一个正多边形的顶点,O为正多边形的中心,∴点A,B,C,D在以点O为圆心,OA为半径的同一个圆上,∵∠ADB=18°,∴∠AOB =2∠ADB=36°,∴这个正多边形的边数==10,故答案为:10.
【点评】本题考查了正多边形与圆,圆周角定理,正确的理解题意是解题的关键.
2.(2020•江苏省扬州市•3分)如图,工人师傅用扳手拧形状为正六边形的螺帽,现测得扳手
的开口宽度b=3cm,则螺帽边长a=cm.
【分析】根据正六边形的性质,可得∠ABC=120°,AB=BC=a,根据等腰三角形的性质,可得CD的长,根据锐角三角函数的余弦,可得答案.
【解答】解:如图,连接AC,过点B作BD⊥AC于D,由正六边形,得
∠ABC=120°,AB=BC=a,∠BCD=∠BAC=30°.由AC=3,得CD=1.5.
cos∠BCD==,即=,解得a=,故答案为.
【点评】本题考查了正多边形和圆,利用了正六边形的性质得出等腰三角形是解题的关键,又利用了正三角形的性质,余弦函数,
3. (2020•江苏省南京市•2分)如图,在边长为2cm的正六边形ABCDEF中,点P在BC
上,则△PEF的面积为2cm2.
【分析】连接BF,BE,过点A作AT⊥BF于T,证明S△PEF=S△BEF,求出△BEF的面积即可.
【解答】解:连接BF,BE,过点A作AT⊥BF于T
∵ABCDEF是正六边形,
∴CB∥EF,AB=AF,∠BAF=120°,
∴S△PEF=S△BEF,
∵AT⊥BE,AB=AF,
∴BT=FT,∠BAT=∠F AT=60°,
∴BT=FT=AB•sin60°=,
∴BF=2BT=2,
∵∠AFE=120°,∠AFB=∠ABF=30°,
∴∠BFE=90°,
∴S△PEF=S△BEF=•EF•BF=×2×=2,
故答案为2.
【点评】本题考查正多边形与圆,解直角三角形等知识,解题的关键是学会用转化的思想思考问题,属于中考常考题型.
4. (2020•湖南省株洲市·4分)据《汉书律历志》记载:“量者,龠(yuè)、合、升、斗、
斛(hú)也”斛是中国古代的一种量器,“斛底,方而圜(huán)其外,旁有庣(tiāo)焉”.意思是说:“斛的底面为:正方形外接一个圆,此圆外是一个同心圆”,如图所示.问题:现有一斛,其底面的外圆直径为两尺五寸(即2.5尺),“庣旁”为两寸五分(即两同心圆的外圆与内圆的半径之差为0.25尺),则此斛底面的正方形的周长为4尺.(结果用最简根式表示)
【分析】根据正方形性质确定△CDE为等腰直角三角形,CE为直径,根据题意求出正方形外接圆的直径CE,求出CD,问题得解.
【解答】解:如图,
∵四边形CDEF为正方形,
∴∠D=90°,CD=DE,
∴CE为直径,∠ECD=45°,
由题意得AB=2.5,
∴CE=2.5﹣0.25×2=2,
∴CD=CE,
∴∠ECD=45°,
∴正方形CDEF周长为尺.
故答案为:.
【点评】本题考查了正方形外接圆的性质,等腰直角三角形性质,解题关键是判断出正方形对角线为其外接圆直径.
5 (2020•湖南省株洲市·4分)一个蜘蛛网如图所示,若多边形ABCDEFGHI为正九边形,
其中心点为点O,点M、N分别在射线O A.OC上,则∠MON=80度.
【分析】根据正多边形性质求出中心角,即可求出∠MON的度数.
【解答】解:根据正多边形性质得,中心角为:
∠AOB=360°÷9=40°,
∴∠MON=2∠AOB=80°.
故答案为:80.
【点评】本题考查了正n边形中心角的定义,在正多边形中,中心角为.
6.(2020•贵州省安顺市•4分)如图,△ABC是⊙O的内接正三角形,点O是圆心,点D,
E分别在边AC,AB上,若DA=EB,则∠DOE的度数是120度.
【分析】连接OA,OB,根据已知条件得到∠AOB=120°,根据等腰三角形的性质得到∠OAB=∠OBA=30°,根据全等三角形的性质得到∠DOA=∠BOE,于是得到结论.【解答】解:连接OA,OB,
∵△ABC是⊙O的内接正三角形,
∴∠AOB=120°,
∵OA=OB,
∴∠OAB=∠OBA=30°,
∵∠CAB=60°,
∴∠OAD=30°,
∴∠OAD=∠OBE,
∵AD=BE,
∴△OAD≌△OBE(SAS),
∴∠DOA=∠BOE,
∴∠DOE=∠DOA+∠AOE=∠AOB=∠AOE+∠BOD=120°,
故答案为:120.
【点评】本题考查了三角形的外接圆与外心,等边三角形的性质,全等三角形的判定和性质,正确的作出辅助线构造全等三角形是解题的关键.
7(2020•广西省玉林市•3分)如图,在边长为3的正六边形ABCDEF中,将四边形ADEF 绕顶点A顺时针旋转到四边形AD'E'F′处,此时边AD′与对角线AC重叠,则图中阴影部分的面积是3π.
【分析】根据正六边形的性质和旋转的性质以及扇形的面积公式即可得到结论.
【解答】解:∵在边长为3的正六边形ABCDEF中,∠DAC=30°,∠B=∠BCD=120°,AB=BC,
∴∠BAC=∠BCA=30°,
∴∠ACD=90°,
∵CD=3,
∴AD=2CD=6,
∴图中阴影部分的面积=S四边形ADEF+S扇形DAD′﹣S四边形AF′E′D′,
∵将四边形ADEF 绕顶点A 顺时针旋转到四边形AD 'E 'F ′处,
∴S 四边形ADEF =S 四边形AD ′E ′F ′
∴图中阴影部分的面积=S 扇形DAD ′=
=3π,
故答案为:3π.
【点评】本题考查了正多边形与圆,旋转的性质,扇形的面积的计算,正确的识别图形是解题的关键.
8.
9.
10.
三.解答题
1.(2020•广东省广州市•10分)如图,O 为等边ABC ∆的外接圆,半径为2,点D 在劣弧
AB 上运动(不与点,A B 重合),连接DA ,DB ,DC .
(1)求证:DC 是ADB ∠的平分线;
(2)四边形ADBC 的面积S 是线段DC 的长x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;
(3)若点,M N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,DMN ∆的周长有最小值,随着点D 的运动,的值会发生变化,求所有值中的最大值.
【答案】(1)详见解析;(2)是, 23(234)S x x =<≤;(3)43。