注水开发油田油层结垢机理与防垢措施
注水开发油田油层结垢机理与防垢措施

注水开发油田油层结垢机理与防垢措施【摘要】近年来,随着注水开采技术的逐渐成熟,油田的采油率得到了显著的提高。
然而因注水过程中引起的原有油层平衡的打破,造成了各种油层伤害问题的出现,最为典型的就是油层的结垢问题。
本文针对目前国内油田所面临的因注水开采而引起的油层结垢问题,通过试验模拟分析讨论了这类情况下的结垢机理,并对比以往的防垢措施,提出油田水源混配防垢法。
此种方法的工作机理是在地表通过采用地表水或油田污水与注入水以一定比例混配,提前去除水中的成垢离子,从而达到防垢的目的。
【关键词】注水油田油层结垢结垢机理防垢措施1 油田结垢机理分析1.1 油田结垢理论分析油田注水开采系统结垢因素很多,但从结垢物的物质本质分析,其结垢物主要是由BaCO3、SrCO3、MgCO3、CaCO3、CaSO4 、MgSO4、SrSO4、BaSO4等物质组成,而这些沉淀的形成主要是注入水中的成垢阴离子与地层水中的成垢阳离子结合形成,即为采油系统中结垢的最直接原因。
鉴于此,要想有效的防止结垢的出现,只有最大限度的排除掉注入水中的成垢阴离子,并防止后续的BaCO3、SrCO3、MgCO3、CaCO3、CaSO4、MgSO4、SrSO4、BaSO4形成即可。
1.2 试验论证试验设备主要包括:显微照相系统(主要包括高级体视显微镜,配摄像机、录像机、监视器、照相机等,可随时观察模型中流体运行状态,随时录像、照相等),加压测试系统(通过采用氮气瓶或电子蠕动泵加压,从而用数字压力仪测量压力)以及辅助设备(主要包括机械真空泵、721分光光度计、数字浊度仪、过滤装置、加热装置等设备)。
试验模型主要采用曲志浩的真实砂岩微观模型制作技术方法,制作砂岩微观孔隙模型,进行试验验证。
试验方法主要是:在常温常压下,将地层水(油田污水)与注入水以不同的比例混合,静置一小时后,观察沉淀物的生成情况并记录;对沉淀生成完毕的上清液进行PH值测试并记录;在不同PH值下,上清液与地层水再次接触后,生成沉淀的情况进行比对分析记录;取出沉淀完全且静置后的上清液两等分,分别加入Ca(OH)2,调节溶液PH值使其大于8.4,并对两份溶液同时加以高温高压(接近真实油层温度压力)处理,一段时间后对比观察现象并记录。
油田结垢机理及防治技术参考文档

碳酸钙的溶解度随着温度的升高和C02的分压降低而减 小,后者的影响尤为重要。因为在系统内的任何部位,压 力降低都可能产生碳酸钙沉淀。
Ca2++2HC03══CaC03↓+C02↑+H20
结垢机理
如果系统内压力降低 ,溶液中 C02 减少,促使反应向右 进行,导致CaCO3沉淀。硫酸钙(CaS04 ·2H20)的溶解度随着温 度的升高而增 大,可是当达到35℃一40℃ 以上时,溶解度 又随温度的升 高而减小。硫酸钙的溶解度随压 力升高而增 大,这完全是 物理效应。
(3)避免不相容的水混合
防垢技术
不相容的水是指两种水混合时,沉淀出不溶性产物。不 相容性产生的原因是一种水含有高浓度的成垢阳离子,如 Ca2+、Ba2+、Sr2+等,另一种水含高浓度成垢阴离子,如 C032-、HC03-或SO42-。当这两种水混合,离子的最终浓 度达到过饱和状态,就产生沉淀,导致垢的生成。
结垢的分布规律与过去仅以热力学理论为基础所进行 的物理模拟和数值模拟不尽相同,地层中发现有大量与 粘土伴生的硫酸钙、硫酸钡垢。一般距油井井筒50~ 330米。
马岭油田水化学特征与结垢关系
产 层 水 型 总矿(g/l)
水特征及可能生成矿物
环河水 Na2SO4 洛河层水 Na2SO4
延4+5 Y6 Y7 Y9
在地面站,也常因不同层位的生产井来水混合而结CaS04垢,主要结 垢部位在收球筒及总机关处。
油田注水系统结垢及治理措施

2017年10月油田注水系统结垢及治理措施李兴华张挺夏红宇吕仁仨(长庆油田分公司第三采油厂,陕西延安717507)摘要:对于油田注水系统而言,一般都会存在一定的结构性问题,国际上对于预防油田注水系统结垢都在进行努力,并且收到了一些成效。
但是,不能否认的是,在一些方面还存在瑕疵。
许多时候并不能完全兼顾简单、经济、高效以及通用等多个方面。
在这篇文章中,我们主要介绍了油田注水系统为什么会出现结垢,对其进行了简要的分析,并且在后面还提出了一些改进措施。
关键词:油田;注水系统;结垢;治理措施1油田注水系统结垢原因1.1对结垢机理进行分析对于油田注水系统而言,其结垢的原因是有很多种的。
在对结垢物的物质本质进行分析之后,我们可以其结垢物主要由碳酸与多种硫酸化合物相结合,这主要包括碳酸钡、碳酸镁、硫酸钙、硫酸镁以及硫酸钡等化合物。
这种沉淀化合物产生的主要原因,是由于在注水中存在成垢阴离子,在地层水中,存在成垢阳离子,两种相互反应,就会产生沉淀物。
由沉淀物的发生机理可以知道,要使得结垢现象尽可能的少,就应该在去除注水中的成垢阴离子。
1.2对上述结论进行验证验证上述结论的主要办法是(1)将油田污水同不同比例的水在常温常压条件下进行混合,将液体进行充分静置,分析沉淀物的组成部分,并且做好详细记录;(2)测试并且记录沉淀物在生产完成之后上清液的pH 值,使不同pH 值的上清液同水接触,通过比较来分析沉淀物的情况;(3)把沉淀物取出,然后将上清液进行均分,加入一定量的氢氧化钙,加入氢氧化钙的标准为使得溶液的pH 值达到8.4以上。
在高温高压下对溶液进行处理,直到溶液比较接近真实的油层,在经过一段时间之后对溶液进行观察并且记录;(4)在显微镜的观察下,我们能够发现大量结垢,而且我们还能看到由于沉淀的堆积,使得原有的比较大的孔隙变小或者被完全堵塞。
除此之外,我们还可以看到流体会由于沉淀物的阻力而受到阻塞。
在经过一系列的试验之后,我们可以发现单一地下水和注入水的结垢倾向要比混合水的结垢倾向小得多。
石油类油田注水开发及防垢技术

目录第一章概论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯第一节油田开发中面临的主要问题⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1第二节防垢领域研究中存在的主要问题⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1第二章注水工程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 第一节注水供水与注水水质⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4第二节油田注水水质处理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7第三节注水地面工程⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9第三章油田注水开发中的防垢现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 第一节油田注水开发中的防垢现状⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11 第二节油层结垢伤害防治对策⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯11第四章常见阻垢剂的阻垢机理性能及应用⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 第一节常见阻垢剂的阻垢机理⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14 第二节常见阻垢剂的性能⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯14结论⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17 参考文献⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯18第一章概论第一节油田开发中面临的主要问题石油开发过程中提高原油采收率是一个颇具普遍性的问题。
在我国低渗透油藏储量约有40×108t ,一些老油田含水率已达80%~90%,但此时仅采出地下石油储量的1 ∕3,还有2∕3 的石油储量用常规的办法无法开采。
目前我国投入开发的低渗透油田的储量占总动用储量的比例越来越高,而未动用地质储量中所占的比例更大。
注水开发是目前保持地层压力和提高采收率的主要手段之一,以为国内外广泛采用,我国大部分油田也都采用注水开发的方式。
然而我国的油田注水开发过程中存在许多亟待解决的问题,油层结垢伤害就是其中常见的严重问题之一。
目前普遍认为,油田注水工艺需要考虑的主要问题是堵塞、结垢、腐蚀三大因素,尤其是油田结垢本身就是导致注水井和油层堵塞、腐蚀的重要因素。
浅析油井结垢机理及清防垢技术

浅析油井结垢机理及清防垢技术摘要:油田在开发过程中,随原油由油层被举升至地面,外界温度、压力、流体流速等因素的变化会引起无机盐类会在油井管网或地层上形成沉积,造成油井结垢。
本文主要阐述了油田开发过程中油井结垢的主要机理、结垢所带来后续问题及目前油田主要防垢对策,对油田防垢具有一定的借鉴意义。
关键词:油井结垢机理清垢防垢技术一、前言目前,我国大部分油田采用了注水补充能量的开发方式,油田注入水通常有三种:一是清水,即油区浅层地下水;二是污水,即与原油同时采出的地层水,经处理后可回注到油层;也有将不同水混合注入的。
随着注入水向油井推进,使油井含水率不断升高,同时伴随温度、压力和pH值等发生变化时,最终导致油井近井地带、采油井井筒、井下设备、地面管线及设备出现严重的结垢现象。
二、结垢对油井的危害首先,油田中油井中存在的结垢沉积会影响原油开采设备的功能,严重的油垢会造成设备的堵塞。
其次,油井中存在着不同程度的结垢,会造成油井井下附件及采油系统设备在沉积结垢下不同程度的腐蚀。
此外,油井上的结垢还可能导致缓蚀剂和金属表面无法形成表面膜,降低了缓蚀剂的作用,缩短了系统管道的寿命,严重情况下则会造成腐蚀穿孔现象,导致油井的管柱故障。
再次,结垢造成油层堵塞、产液量下降和能源浪费,阻碍了原油的正常生产,导致增加修井作业次数,缩短修井作业周期,严重时还会造成井下事故,导致油井关井,甚至报废,造成很大的经济损失。
三、油井结垢机理1.结垢机理油田中常见的结垢机理分为以下四种:1.1自动结垢油井中水和油一起存在,不同采油工艺会造成水油的比例的改变,在水油相溶中发生了不同程度的比例改变,就会使得水油成分多于某些油井中的矿物质溶解度,造成不同程度的结垢产生,这种情况称为自动结垢。
碳酸盐或者硫酸盐形成沉积结垢之后会因为井下流动形成阻碍、筒内自有压力、温度的高低变化发生沉积。
高矿化度盐水在温度严重不均衡的情况下也会产生氯化钠。
同时,含有酸气的采出流体会形成碳酸盐结垢,进行原油开采时,因为压力下降也会造成流体脱气,使得ph值增高,结垢程度加重。
油水井结垢机理及除垢技术研究与应用

油水井结垢机理及除垢技术研究与应用【摘要】积垢的产生能够在油管表面形成污垢,在管内造成内部区域的阻力,从而降低了输油量极其速度,继而对产油量造成不可估摸的损失。
众所周知,结垢可以造成油管内部流通面积的缩小,在地层的结垢还可能引起储层渗透率降低等问题,。
储层伤害直接影响着采油井的产能。
所以油水井的防垢和除垢问题正待解决。
【关键词】油水井结垢机理除垢1 结垢的主要原因结垢即指管道内部由于固态附着物长期淤积而造成局部阻塞现象。
附着在管道内壁上的微粒块状物体就是结垢。
在油田开发之中要根据情况向管内注水,而油田情况又与井下的油藏运输有关,所以结垢原因有很多。
具体而言,一是所注水的矿化度和硬度都很高导致管内高钙垢的形成。
如果在采油井中注入的水质硬度和碱度都过高,那么随开采条件的改变,譬如温度和压力以及pH值的改观,就可能在油井管内发生结垢现象;二是注入的水与地层水混合促进结垢现象的发生。
地下水与地层水常常属于不同系别的液体水,所以当两种或几种不同系的水源融合在一起,经过一系列的化学反应就很可能促使结垢的形成,造成垢离子之间的补充。
还因为不同系水质之间的杂志不能融合,所以悬浮物与不溶物容易沉淀造成结垢沉积。
譬如腐蚀产物FeS和Fe2O3等粘土矿物质;三是胶质和沥青质以及蜡所共同形成的有机垢;原油含有胶质和沥青质及蜡等物质,采油过程中这些有机物会随着温度以及压力的变化附着于管壁的结垢上。
这些物质则与无机垢产生混合垢;四是细菌滋生导致地层的堵塞。
以长庆油田为例。
油田地层中含有称为厌氧菌的硫酸还原菌和号称好氧菌的铁细菌。
细菌繁殖长成菌络从而堵塞地层。
细菌因为代谢作用而产生的粘液也可能堵塞地层;五是粘土矿物的堵塞现象。
粘土矿物处于储层,它在水敏和酸敏的储层地层中出水后会自行膨胀造成地层的孔隙堵塞;六是生产条件的变化。
随着生产条件的改变,井筒的温度和压力等方面也会随之改变,这些意外因素可能导致结垢现象的发生。
2 除垢工艺技术除垢工艺技术主要应用于油管的除垢技术。
油田注水系统结垢趋势及应对措施研究

油田注水系统结垢趋势及应对措施研究摘要:随着油田的开采进入中后期,注水驱替提高采收率是大多数陆地油田的主要手段之一。
但这种方法在注水的过程中,外来注入的流体与油田油气层的岩石和地下原有水体接触,会发生各种物理、化学变化,造成产出水的水质变化,再注入井下时产生了严重的结垢趋势,严重影响了油田的正常连续生产,因此研究油田注水系统结垢的趋势和应对措施对油气田的生产有重要实际应用价值。
关键词:油田注水系统;结垢;应对措施引言低渗油藏在向下注水过程中有注水启动压力过高,渗流阻力较大;储层敏感性比较强,注水井下能量扩散很慢,注水的压力持续下降等问题;从而致使低渗油气藏的注水开发方式开发效果不理想,地层的能量不能有效补充,油井产量下降较快,油田内油层的动用状况差。
对注入水的水质控制是使油田长期高产稳产的重要手段,课题研究具有重要的意义。
在油田注水的过程中,外来水与油田内地层岩石的接触,会发生各种物理变化和化学变化,极大的造成了地层的损害。
同时,在注水过程中,注水管线的中的流体由于地层温度和压力的变化,某些成分析出,在注水管线中形成垢层,堵塞注水管线,对油田开采作业产生十分不利的影响。
本课题拟研究胜利油田注水井筒结垢的趋势、缓蚀阻垢剂对实验模拟注水管线结垢的抑制作用等内容,为胜利油田注水及薄互层低渗油藏的高效稳定注水开发提供相关的技术支持。
1.结垢概述按垢形成机制,可将壁面上结出的垢分为颗粒垢、结晶垢、腐蚀垢、化学反应垢、凝固垢以及微生物垢等,这些基本结垢机制中以结晶垢最常见。
结晶垢是溶解度较小的无机盐成分,由于物理或化学因素的变化,如温度压力变化等,从过饱和的溶液中析出,并沉积于各种设备壁表面而形成,其中最普遍的是难溶的盐类如碳酸钙、硫酸钙、硫酸锶、硫酸钡等。
溶液的过饱和是形成结晶垢的必要条件,即只有当水溶液中有某些成分过饱和时,热力学上才具备结垢的可能。
在实际工程中,结垢过程十分复杂,且形态各异。
油田管线结垢主要由两种原因产生,一是由于注入水体的温度、压力等热力学相关条件发生改变,致使水体中离子平衡的状态发生改变,形成过饱和的溶液,结垢组分析出,结晶变大后沉淀;二是由于结垢离子组成不相容的水体之间相互混合,导致结垢组分过饱,从而产生沉淀。
油田防垢技术

第二部分油田防垢技术结垢是海上采油工程中常遇的问题,海上采油工程的很多领域都要接触各种类型的水如淡水、海水、地层水、水井水等,因此结垢的现象会出现在生产中的各个环节,给生产带来严重的影响,使生产中的问题更加复杂化。
地层结垢会造成地层堵塞,使注水井不能达到配注量,油井产能大大下降;在井筒中结垢增加了井下的起下维修作业,严重的造成注水井、油井的报废;结垢还会造成地面系统中管线、输送泵、热交换器的堵塞,影响原油处理系统、污水处理系统的正常操作,增加了设备、管线的清洗和更换费用;水垢的沉积还会引起设备和管道的局部腐蚀,在很短的时间内出现穿孔,大大减小了使用寿命。
一、油田水结垢机理结垢就是指在一定条件下,水相中对于某种盐出现了过饱和而发生的析出和沉积过程,析出的固体物质叫做垢,主要是溶解度小的Ca、Ba、Sr 等无机盐。
结垢分为三个阶段,即垢的析出、垢的长大和垢的沉积。
在这个过程中主要作用机理为结晶作用和沉降作用。
1、结晶作用当盐浓度达到过饱和时,首先发生晶核形成过程,溶液中形成了少量盐的微晶粒,然后发生晶格生长过程,形成较大的颗粒,较大的颗粒经过熟成竞争成长过程进一步聚集。
图1 碳酸钙的溶解与析出曲线1—溶解;2—析出对于微溶盐类如碳酸钙,通常析出浓度远大于饱和浓度。
图1是用等浓度的钙硬度和碱度(以CaCO2计)作纵坐标,以温度作横坐标,得到碳酸钙溶解度曲线和碳酸钙结晶析出曲线。
该图分成三个区域:沉淀区、介稳区和溶解区。
介稳区出现的原因是在晶格生长的过程中,由于受到水中离子或粒子的扩散速度的影响,或者说受传质过程的控制造成的。
若盐类在水中的溶解度较大,则水中溶解的离子和粒子浓度都较高,晶核形成后很容易生长,这时盐类的溶解度曲线和晶体析出曲线基本重合,因而不存在介稳区。
但在微溶或难溶盐类的饱和溶液中,由于离子和粒子的浓度都很低,因此晶核形成后晶格并不生长,只有在离子或粒子浓度较高的过饱和溶液中,晶格才开始生长和析出晶体。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注水开发油田油层结垢机理与防垢措施
【摘要】近年来,随着注水开采技术的逐渐成熟,油田的采油率得到了显著的提高。
然而因注水过程中引起的原有油层平衡的打破,造成了各种油层伤害问题的出现,最为典型的就是油层的结垢问题。
本文针对目前国内油田所面临的因注水开采而引起的油层结垢问题,通过试验模拟分析讨论了这类情况下的结垢机理,并对比以往的防垢措施,提出油田水源混配防垢法。
此种方法的工作机理是在地表通过采用地表水或油田污水与注入水以一定比例混配,提前去除水中的成垢离子,从而达到防垢的目的。
【关键词】注水油田油层结垢结垢机理防垢措施
1 油田结垢机理分析
1.1 油田结垢理论分析
油田注水开采系统结垢因素很多,但从结垢物的物质本质分析,其结垢物主要是由baco3、srco3、mgco3、caco3、caso4 、mgso4、srso4、baso4等物质组成,而这些沉淀的形成主要是注入水中的成垢阴离子与地层水中的成垢阳离子结合形成,即为采油系统中结垢的最直接原因。
鉴于此,要想有效的防止结垢的出现,只有最大限度的排除掉注入水中的成垢阴离子,并防止后续的baco3、srco3、mgco3、caco3、caso4、mgso4、srso4、baso4形成即可。
1.2 试验论证
试验设备主要包括:显微照相系统(主要包括高级体视显微镜,配摄像机、录像机、监视器、照相机等,可随时观察模型中流体运
行状态,随时录像、照相等),加压测试系统(通过采用氮气瓶或电子蠕动泵加压,从而用数字压力仪测量压力)以及辅助设备(主要包括机械真空泵、721分光光度计、数字浊度仪、过滤装置、加热装置等设备)。
试验模型主要采用曲志浩的真实砂岩微观模型制作技术方法,制作砂岩微观孔隙模型,进行试验验证。
试验方法主要是:在常温常压下,将地层水(油田污水)与注入水以不同的比例混合,静置一小时后,观察沉淀物的生成情况并记录;对沉淀生成完毕的上清液进行ph值测试并记录;在不同ph值下,上清液与地层水再次接触后,生成沉淀的情况进行比对分析记录;取出沉淀完全且静置后的上清液两等分,分别加入ca(oh)2,调节溶液ph值使其大于8.4,并对两份溶液同时加以高温高压(接近真实油层温度压力)处理,一段时间后对比观察现象并记录。
最后,进行驱替试验,采用真实的油田污水、注入水和砂岩微观孔隙模型,进行地层水—注入水反复驱替试验,在显微镜下观察发现:有大量结垢物出现,且由于结垢物的沉积堆叠,使得原来的大孔隙变成小喉道,甚至一些小的喉道被完全堵塞,且大通道中的沉积物对流体产生明显的阻力作用。
通过用地层水与防垢处理过的混合水在砂岩微观孔隙模型中混合,进行反复驱替试验,未出现结垢现象。
通过一系列的试验测试得出:混合水(注入水与地层水)结垢倾向远大于单一的地层水和注入水;当温度和气压上升时(接近地下真实油层气温气压),未加ca(oh)2调节ph值的上清液仍然会继
续产生沉淀,而对上清液加入ca(oh)2溶液,调节ph值达到8.4以上的碱性时,溶液中的成垢阳离子可最大化的生成沉淀;将地层水与注水以1:5的比例混合时,混合水的沉淀生成最完全,此时溶液中的结垢阳离子与结垢阴离子可充分接触反应,结垢完全;用经过试验处理过的上清液(混合水)作为油田注入水,可以有效防止结垢的产生。
2 新型油田防垢措施
通过上面实验的验证,可以得出新型油田防垢措施--油田水源混配防垢法。
此种防垢措施的工作机理是:通过对注入水在下井前进行预处理,去除注入水中的结垢阴离子,从而最大限度的阻止了其在井下的结垢。
其具体实施方法为:
(1)对当地油田的进行客观考察分析,充分了解其地层水以及注入水的基本构成以及一些特殊情况,核算出具体的混合比例,使两者在常温常压下充分混合后能够最大化的生成结构物(即沉淀),从而有效的去除混合水中的成垢阴离子;
(2)按照事先计算好的比例将注入水和地层水(或采油污水)进行充分混合静置,去除结垢物后,加入ca(oh)2调整ph至8.4以上,继续静置一小时以上;
(3)将静置一小时后混合水采样,进行物质组成分析。
将分析结果与初步设定注入水要求进行比对,调整相应配比参数,直至最后混合水达到注入水标准。
(4)按照合格调配比例,进行批量混配,从而得到除垢后的注
入水,即可用于油田注水生产。
3 结语
油田水源混配防垢法最大的优点在于改变了传统的先结垢再除垢的思路,防患于未然。
同时,它是把当地油田的地层水或油田污水作为除垢剂,通过在下井前提前消除注水中的结垢离子,从而提前清除了像碳酸盐垢、硫酸盐垢、铁的化合物等各种成垢物。
此种方法不仅摆脱了不同地质环境的限制,而且不再受气压温度等因素的影响,由于又是采用当地的油田污水作为除垢剂,因此适用于各种类型的油田。
在节省了大量的采油成本的同时,提高了油田的采出率,是一项十分值得推广的油田除垢新措施。
参考文献
[1] 仇朝军,杜贵林,李晓成,刘旭文,刘成,卢新鹏. 渤海某油田清污混注结垢问题综合治理研究[j]. 全面腐蚀控制,2012,(03)
[2] 方永春,林安邦,曾志伟,李建华. 大牛地气田回注井地层水与注入水配伍性实验研究[j].内蒙古石油化工,2012,(14)[3] 李建梅,习明安,周文. 燃煤电厂渣水系统处理实践[j]. 冶金动力,2012,(04)
[4] 徐仲其,李释然. 江汉油田注水开发储层物性变化趋势研究[j]. 新疆石油科技,2012,(01)
作者简介
刘亮(1983—),男,助理工程师,本科,于2008年毕业于大庆
石油学院应用化学专业,现任职于延长股份有限公司定边采油厂,从事化验工作。