第七章 非线性系统的分析
合集下载
自动控制原理第七章非线性控制系统的分析

X X
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e
非线性系统分析方法

解:1. 死去继电特性的描述函数
4M N(X)
1 ( )2
X
X
2. 绘制描述函数的负倒数特性
1
X
N(X ) 4M 1 ( )2
X
3. 绘制线性部分的极坐标图
4. 判断稳定性,分析两曲线相交点的性质
1 N(X)
X
-1.56 300 400 B -1 -0.5
X 130 A 140
120 G(j)
趋于奇点 远离奇点 包围奇点
例:二阶线性定常系统
••
•
x 2n x n2 x 0
试分析其奇点运动性质。
dx/dt x
稳定节点
••
•
x 2n x n2 x 0
dx/dt x
1
稳定节点
相轨迹趋于原点,该奇点称为 稳定节点
••
•
x 2n xn2 x 0
dx/dt x
1
不稳定节点
相轨迹远离原点,该奇点为 不稳定节点
者是自持振荡的
自持振荡点 a 振荡幅值=Xa
振荡频率=a
Im Re
X a
0
1 G(j) N ( X )
例:已知死区继电非线性系统如图
R(s)
+M
460
C(s)
+-
- -M
( j)(0.01 j 1)(0.005 j 1)
继电参数: M 1.7 死区参数:Δ 0.7 应用描述函数法作系统分析。
•
x
-1 -5/4
-3/2
-5/3
=
-2
-3/7
-3
-5 - x
3
1 1/3
0 -3/4 -1/2 -1/3
第7章非线性系统分析

描述函数的定义是:输入为正弦函数时,输 出的基波分量与输入正弦量的复数比。
其数学表达式为
N
X
R
X
Y1
sin(t X sint
1)
Y1 X
1
A12 B12 arctan A1
A1
1
2
y(t) costdt
0
X
B1
1
B1
2
y(t ) sin tdt
0
7.3 非线性特性的描述函数法
(2)举例说明描述函数
(1) 降低了定位精度,增大了系统的静差。 (2) 使系统动态响应的振荡加剧,稳定性变坏。
7.2 非线性环节及其对系统结构的影响
4.摩擦特性
Mf
M1 •
M2
•
M f 摩擦力矩
转速
M1 静摩擦力矩
M 2 动摩擦力矩
7.2 非线性环节及其对系统结构的影响
摩擦特性的影响
(1)对随动系统而言,摩擦会增加静差,降低精 度。
7.2 非线性环节及其对系统结构的影响
2.饱和特性
x1 a ,等效增益 为常值,即线性段 斜率;
而 x1 a ,输出饱
和,等效增益随输 入信号的加大逐渐 减小。
7.2 非线性环节及其对系统结构的影响
饱和特性的影响
(1) 饱和特性使系统开环增益下降, 对动态响应的 平稳性有利。
(2) 如果饱和点过低,则在提高系统平稳性的同时, 将使系统的快速性和稳态跟踪精度有所下降。
7.3 非线性特性的描述函数法
KX sint
y(t) Ka
0 t 1 1 t / 2
∵ y(t) 单值奇对称, A0 0 A1 0
B1
4
第7章 非线性系统的分析

某一初始条件出发在相平面上按照式(7-13)或式(7-14)绘出的
曲线称为相平面轨迹,简称相轨迹。不同初始条件下构成的
相轨迹,称为相轨迹簇。由相轨迹簇构成的图称为相平面图。
利用相平面图分析系统性能的方法,称为相平面分析法。
图7-6为某个非线性系统的相平面图。图中,相轨迹上的
箭头表示相变量随着时间的增加沿相轨迹运动的方向。
第7章 非线性系统的分析 7.2 相平面分析法
7.2.1 相平面的基本概念 设二阶非线性系统的微分方程为
第7章 非线性系统的分析
第7章 非线性系统的分析
1.相平面和相轨迹
前面已经设定
我们称以x1(或x)为横坐
标、以x2(或 )为纵坐标构成的平面为相平面(注意,纵坐标x2
是横坐标x1的一阶导数),如图7-6所示。x1、x2为相变量。由
7.2.2 线性系统的相轨迹 在学习非线性系统的相平面分析法之前,我们先对非常
熟悉的线性系统做相平面分析。设二阶线性系统的微分方程 为
第7章 非线性系统的分析
也就是说,无论系统特征参数ωn和ξ是何值,系统的奇点是 不变的。此外,式(7-21)的特征方程为
系统的特征根为
对于不同的阻尼比ξ,二阶系统特征根的形式是不同的,而 线性系统的时域响应是由特征根决定的。下面介绍系统特征 根与系统的奇点(0,0)以及相轨迹的关系。
行线性化。我们只研究系统平衡点附近的特性时,就可以采 用平衡点附近的线性化方法,将非线性系统在平衡点附近小 范围线性化。当然,也可以将非线性系统分为几个区域,对每 个区域进行分段线性化。
第7章 非线性系统的分析
2.相平面分析法 相平面分析法简称相平面法,是非线性系统的图解分析 法。其基本思路是:建立一个相平面,在相平面上根据非线性 系统的结构和特性,绘制非线性系统的相轨迹。相轨迹就是 非线性系统中的变量在不同初始条件下的运动轨迹,根据相 轨迹就可以对非线性系统进行分析。该方法只适用于一阶和 二阶非线性微分方程。
第七章 非线性控制系统的分析

2 2
6
(7.3)
式中:
N 为非线性环节的描述函数; 描述函数 A 为正弦输入信号的幅值; y1 为输出信号基波分量的幅值;
ϕ1 为输出信号基波分量的相移角。
7.1.1 描述函数
若非线性环节中不含储能元件 N = N( A ) 若非线性环节中含有储能元件 N = N( A,ω )
7
7.1.2 典型非线性特性的描述函数
14
为与输入振幅A有关的复函数,输出的基波分量的相角 滞后于输入信号的相角。
7.1.2 典型非线性特性的描述函数
(7.5)式中, b=0, 为理想继电型特性的描述函数: 理想继电型特性
N ( A) = 4M πA
15
(7.6)
7.1.2 典型非线性特性的描述函数
(7.5)式中, m = 1, 为具有死区的三位置继电型特性
−1 N (A -− N -1(A )) 稳定区域
24
G ( jω )
d
G ( jω )
7.2 非线性控制系统的描述函数分析
(若非线性系统的线性部分G(s) 是非最小相位系 统,则系统闭环稳定的条件为N = -P. ) 自持振荡可用一个正弦振荡来近似,振荡的 频率和振幅,分别由交点处的 G(jω) 曲线上的 ω 值和 “-N-1(A)” 曲线上的 A 值来确定。 正弦振荡存在表明非线性系统存在周期解, 可用Nyquist判据分析其稳定性。只有稳定的正弦 振荡才能近似表示非线性系统实际存在的自持振 荡:稳定的自持振荡(极限环)可通过试验观察到, 而不稳定的自持振荡却观察不到。
22
7.2 非线性控制系统的描述函数分析
推广的Nyquist判据: 判据
23
设非线性系统的线性部分 G(s) 是最小相位的,于是,闭 环系统稳定的条件为 N = 0。 当 s 在 s平面上顺时针方向沿D型围线变化一周时: 2) 若 G(jω) 曲线包围 “-N-1(A)” 曲线 (图b所示) 则非线性系统是不稳定的 不稳定
6
(7.3)
式中:
N 为非线性环节的描述函数; 描述函数 A 为正弦输入信号的幅值; y1 为输出信号基波分量的幅值;
ϕ1 为输出信号基波分量的相移角。
7.1.1 描述函数
若非线性环节中不含储能元件 N = N( A ) 若非线性环节中含有储能元件 N = N( A,ω )
7
7.1.2 典型非线性特性的描述函数
14
为与输入振幅A有关的复函数,输出的基波分量的相角 滞后于输入信号的相角。
7.1.2 典型非线性特性的描述函数
(7.5)式中, b=0, 为理想继电型特性的描述函数: 理想继电型特性
N ( A) = 4M πA
15
(7.6)
7.1.2 典型非线性特性的描述函数
(7.5)式中, m = 1, 为具有死区的三位置继电型特性
−1 N (A -− N -1(A )) 稳定区域
24
G ( jω )
d
G ( jω )
7.2 非线性控制系统的描述函数分析
(若非线性系统的线性部分G(s) 是非最小相位系 统,则系统闭环稳定的条件为N = -P. ) 自持振荡可用一个正弦振荡来近似,振荡的 频率和振幅,分别由交点处的 G(jω) 曲线上的 ω 值和 “-N-1(A)” 曲线上的 A 值来确定。 正弦振荡存在表明非线性系统存在周期解, 可用Nyquist判据分析其稳定性。只有稳定的正弦 振荡才能近似表示非线性系统实际存在的自持振 荡:稳定的自持振荡(极限环)可通过试验观察到, 而不稳定的自持振荡却观察不到。
22
7.2 非线性控制系统的描述函数分析
推广的Nyquist判据: 判据
23
设非线性系统的线性部分 G(s) 是最小相位的,于是,闭 环系统稳定的条件为 N = 0。 当 s 在 s平面上顺时针方向沿D型围线变化一周时: 2) 若 G(jω) 曲线包围 “-N-1(A)” 曲线 (图b所示) 则非线性系统是不稳定的 不稳定
自动控制原理课件:非线性系统的分析

( ) 90 arctan arctan
4
求与负实轴的交点
90 arctan arctan
4
180
5
arctan arctan arctan 4 2 90
4
1
4
2
4
1 2
G ( j )
1
10
称 , 为相变量,它们构成二维平面称为相平面
相变量在相平面上运动的轨迹称为相轨迹, 即在一定
初始条件下满足上述微分方程的解.
相平面模型即 非线性二阶系统的状态空间模型.
x(t )
d x(t ) / dt d x(t ) f ( x(t ), x(t ))
dx(t )
x(t ) dx(t ) / dt
作用的基波分量,近似为“线性系统”。
01
描述函数是非线性特性的一种近似表示,是一种谐波线性化方法,忽略
非线性环节输出中的高次谐波,用基波分量表示其输出。
e(t ) X sin t
c1 (t )
N(X )
表示非线性环节的输出一次谐波分量对正弦输入信号的复数比。
N(X )
使用上常将描述函数表示为的函数.
的初始状态无关。
非线性系统的稳定性和零输入响应的性质不仅取决于系统的结构、参数,而且
与系统的初始状态有关。
2. 系统的自持振荡
线性系统只有两种基本运动形式:发散(不稳定)和收敛(稳定)。
非线性系统除了发散和收敛两种运动形式外,即使无外界作用,也可能会发生
自持振荡。
4
dx(t )
2
x
自动控制原理第七章非线性系统ppt课件

7.1.3 非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无 法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
4M
sin t
故理想继电器特性的描述函数为
N ( A)
Y1 A
1
4M
A
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
2.饱和特性
当输入为x(t)=Asinωt,且A大于线性区宽度a 时,
饱和特性的输出波形如图7-10所示。
y
x
N
M
k 0a
x
yy
0 ψ1
π
2π
ωt
0 x
ψ1
π
A sin 1
x(t) Asint
则其输出一般为周期性的非正弦信号,可以展成傅氏级 数:
y(t ) A0 ( An cos nt Bn sin nt ) n1
若系统满足上述第二个条件,则有A0=0
An
1
2 y(t ) cos ntd t
0
Bn
1
2 y(t ) sin ntd t
0
由于在傅氏级数中n越大,谐波分量的频率越高,An,Bn
7第七章非线性系统的分析

第七章 非线性系统的分析
5、 ( 1)
jω
××
λ1 λ2
x
x
系统的运动是非周期发散运动。相轨迹是由原点出发的发散 型抛物线。原点处的奇点称为不稳定节点。
第七章 非线性系统的分析
6、
, 为一正一负两实根
12
jω
×
λ1
0
×
λ2
x
x
系统的自由运动是发散运动,原点处的奇点称为鞍点。 以上6种奇点,类似的奇点在非线性系统中也常见到。
复平面中,根据二者的相对位置可分析非线性系统的稳定
性。
一、非线性系统稳定
Im
1 不被G(j)包围
N(X)
x a
1 N(X)
0
Re
G( j)
第七章 非线性系统的分析
二、非线性系统不稳定 1 被G( j)包围
N(X)
三、非线性系统产生自持振荡
1 与G(j)相交
N(X)
图示系统在a点产生稳定的自 持振荡。由交点可确定自持 振荡的频率和幅值。
Im
0
Re
x a
G( j) 1
N(X)
Im
1 N(X)
a0
Re
x b a
G( j)
非线性系统即使无外界作用,也可能会发生某一 固定振幅和频率的振荡,称为自持振荡。
3、频率响应畸变 非线性系统在输入为正弦函数时,输出为包含一定数
量的高次谐波的非正弦周期函数。
第七章 非线性系统的分析
线性系统分析可用叠加原理,在典型输入信号下系 统分析的结果也适用于其它情况。
非线性系统不能应用叠加原理,没有一种通用的方 法来处理各种非线性问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
称 为描述函数的负倒幅相特性(或负倒 描述函数)。
如果满足上式,表示 G( j ) 与 有交点,此时非线性 系统将出现自持振荡,这相当于线性系统的极坐标图 G( j ) 在复平面中穿过(-1,j 0)点。
将非线性的负倒幅相特性和线性部分的极坐标图绘制在一个 复平面中,根据二者的相对位置可分析非线性系统的稳定性。 一、非线性系统稳定
非线性系统的稳定性和零输入响应的性质不仅取决于系 统的结构、参数,而且与系统的初始状态有关。
2、线性系统只有两种基本运动形式:发散(不稳定)和收 敛(稳定)。 非线性系统除了发散和收敛两种运动形式外,即使无外 界作用,也可能会发生自持振荡。 3、在正弦输入下,线性系统的输出是同频率正弦信号。 非线性系统在正弦输入下,输出是周期和输入相同、含 有高次谐波的非正弦信号。 4、线性系统分析可用迭加原理,在典型输入信号下系统分 析的结果也适用于其它情况。 非线性系统不能应用迭加原理,没有一种通用的方法来 处理各种非线性问题。 对非线性系统分析研究的重点是:(1)系统是否稳定; (2)有无自持振荡;(3)若存在自持振荡,确定自持 振荡的频率和振幅;(4)研究消除或减弱自持振荡的方 法。
Im
1 N(X )
a
0
G ( j )
图示系统在a点产生稳定的自 持振荡。由交点可确定自持 振荡的频率和幅值。
Re
x a
b
例:
r 0
+
1 -1
y
10 S ( S 1)( S 2)
C
,是与负实轴重合的直线。
Im
1 N(X )
G ( j )与
-1.66
x
G ( j )
1 不被G ( j )包围 N(X )
1 N(X )
Im
x a
1 N(X )
0
Re
G ( j )
Im
二、非线性系统不稳定
x a
G ( j )
1 被G ( j )包围 N(X )
0
Re
1 N(X )
三、非线性系统产生自持振荡
1 与G ( j )相交 N(X )
r 常数
+
N
G(S )
C
用相平面法分析非线性系统,线性部分传递函数 G(S)必须是二阶。
一、线性二阶系统奇点的类型
线性二阶系统的齐次微分方程为:
2 x 2 n x n x 0
随时间t 变化的轨迹, 平面中,绘制 x , x 相平面图是在 x x 称为相轨迹。相轨迹的起点是 (。 ( x(0), x 0)) 0 dx 奇点是指 的点。根据奇点附近相轨迹的特征,奇点 dx 0 有不同名称,据此可判断系统运动的性质。
例2:非线性系统框图如下
r 常数
+
e
a -M
M a
y
2 S ( S 1)
C
其中继电器回环特性的参数M=0.2,a=0.2。 系统的线性部分是欠阻尼情况,奇点是稳定焦点。非线性环节 的输入-输出关系为 0 e a, e M 或 e a, e 0 y= -M
或
0 e a, e 0 e a, e
A0 ( An cos nt Bn sin nt )
n 1
A0 Y n sin(nt n)
n 1
式中
An y (t ) cos nt d (t )
0
1 1
2
B n y (t ) sin nt d (t )
0
2
Yn
3、过阻尼运动 ( 1)
jω
x
×
×
λ2
λ1
0
x
系统的自由运动是非周期地趋向于原点。相轨迹是趋于原点 的抛物线,原点是奇点,称为稳定节点。
4、(-1 0)
jω
× 0 ×
x
x
系统的自由运动是发散振荡。相轨迹是以原点出发的螺旋线, 原点处的奇点称为不稳定焦点。
5、 (-1 )
借助Matlab等软件工具可以方便地绘制非线性系统的相平面 图。
例1:有死区继电器非线性的系统框图如下
r 常数
+
e
1 -1 1 -1
y
1 S ( S 1)
C
系统线性部分的传递函数
G(S )
1 S ( S 1)
,该二阶系统的无
阻尼自然振荡角频率 n 1rad / s ,阻尼比 0.5 ,根据 前面对奇点的分类,可知为稳定焦点。
0
Re
1 交点的坐标是 1.66。 N (X ) 1 的 交点处G ( j )的频率 = 2, N(X ) 幅值 X 2.1
结论:该非线性系统存在自持振荡,振荡频率为 幅为2.1。
,振
二、典型非线性系统及对系统性能的影响
1、死区非线性
y k 0 a x
-a k
常见于测量、放大元件中。 死区非线性特性导致系统产生 稳态误差。
2、饱和非线性
y k -a 0 a x
常见于放大器中,在大信 号作用下,放大倍数小,因而 降低了稳态精度。
3、间隙非线性 y
k 0 a x
-a
常见于齿轮传动机构、 铁磁元件的磁滞现象。可使 系统的稳态误差增大,也使 系统的动态特性变差。
A
2 n
B2 n
A n arcபைடு நூலகம்g n Bn
由于y的高次谐波幅值 小于基波幅值,且系 统的线性部分 G1(s),G2 (s) 都具有低通滤波性质, 可以假设只有基波分 量起作用,而将高次 谐波忽略不计。
一、描述函数的定义
设非线性特性为对称型,则傅氏级数中的直流分量 A0 0 y的基波为
4、继电器特性 继电器特性中包含了死 区、回环和饱和特性,因此 对系统的稳态性能、暂态性 能和稳定性都有不利影响。
三、非线性系统的分析方法
1、相平面法 2、描述函数法 时域方法 频域方法
7.2
非线性系统的相平面分析方法
相平面法是一种时域分析方法。设非线性系统框图 如图所示,其中N表示非线性环节,G(S)是线性部分的 传递函数。
1、无阻尼运动 ( 0) 二阶系统的极点分布和相平面图如下
jω
x
λ1 ×
0
0
x
λ2 ×
无阻尼运动时,二阶系统的相平面图是一族同心椭圆,每个 椭圆代表一个简谐运动。这样的奇点称为中心点。
2、欠阻尼运动 (0 1)
jω
x
λ1 ×
0
x
λ2
×
系统的自由运动是衰减振荡。相轨迹是对数螺旋线,收敛于 原点。奇点称为稳定焦点。
jω
x
×
×
λ1 λ2
x
系统的运动是非周期发散运动。相轨迹是由原点出发的发散 型抛物线。原点处的奇点称为不稳定节点。
6、
,
1
2
是对称于原点的实轴
jω
x
×
×
λ1
0
λ2
x
系统的自由运动是发散运动,原点处的奇点称为鞍点。 以上6种奇点,类似的奇点在非线性系统中也常见到。
二、非线性系统的相平面分析
根据系统的相轨迹,可对 系统的性能分析如下:
e
Ⅰ区
e
1、系统的相轨迹收敛于A 点,是稳定的,奇点为稳定 焦点。e是单调衰减的。
2、相轨迹最后没有到达原
Ⅲ区
Ⅱ区 2 1
e
A
Ⅰ区
点,即
lime(t ) 0 ,说明
t
e
1 2 3
-1 -1 -2
系统在阶跃信号输入下,存 在稳态误差,引起稳态误差 的原因是死区继电器特性。 系统线性部分的传递函数表 明,系统是Ⅰ型系统,对阶 跃响应的稳态误差应为0,可 见死区继电器非线性对稳态 精度的影响。
第七章 非线性系统的分析
7.1 基本概念
系统的非线性程度比较严重,无法用小范围线性化方法 化为线性系统,称为非线性系统。有两种情况 (1)系统中 存在非线性元件;(2)为了某种控制目的,人为引进的非 线性。
一 、非线性系统的特点
1、线性系统的稳定性和零输入响应的性质只取决于系统的 结构、参数,而和系统的初始状态无关。
y1 A1 cost B1 sint Y 1 sin(t 1)
非线性特性的描述函数定义为
1 N ( X ) Y 1 e j1 ( B1 j A1) X X
这是一个复函数,模为输出基波幅值与输入幅值之比,相 角是输出基波对输入的相位移。 描述函数N(X)表示了当输入 x 为正弦信号时,输出基波分 量与
平面分为二个区域。分别绘制初 根据上述关系,可将 e e (0) 0 的两 (0) 0 和 e(0) 0.1, e 始状态分别为 e(0) 0.5, e 条相轨迹。
从图知,无论从哪一组初始条件出发,相轨迹均收敛于极限 环,这是一个稳定的极限环,意味着系统产生自持振荡。 一般不希望系统有自持振荡。当振荡难以消除时,应尽量 将振荡限制在一个较小的、可以接收的范围内。实际上,对 于此系统,通过减少继电器回环的宽度a,可减小振荡。
7.3
描述函数
描述函数是非线性特性的一种近似表示,是一种谐波 线性化方法,忽略非线性环节输出中的高次谐波,用基波 分量表示其输出。
r
+
e
G1 ( S )
x
N
y
G2 (S )
C
C
设非线性环节的输入为 其输出的稳定分量y是与 氏级数表示