(优选)自动控制理论第七章非线性系统
合集下载
(优选)自动控制原理第七章非线性系统

1, x 0 signx 1, x 0
0
xa
y k( x asignx) x a
3 滞环特性
滞环特性表现为正向与反向特性不是重叠在一起,而是
在输入--输出曲线上出现闭合环路。其静特性曲线如图7-3
所示。其数学表达式为:
y
b
y
k(
x asignx) bsignx
y0 y0
-a
0a
x
(优选)自动控制原理第七章 非线性系统
7.1 典型非线性特性
在控制系统中,若控制装置或元件其输入输出间的静 特性曲线,不是一条直线,则称为非线性特性。如果这 些非线性特性不能采用线性化的方法来处理,称这类非 线性为本质非线性。为简化对问题的分析,通常将这些 本质非线性特性用简单的折线来代替,称为典型非线性 特性。 7.1.1 典型非线性特性的种类
描述函数法是非线性系统的一种近似分析方法。首先利用描 述函数将非线性元件线性化,然后利用线性系统的频率法对系统 进行分析。它是线性理论中的频率法在非线性系统中的推广,不 受系统阶次的限制。
分析内容主要是非线性系统的稳定性和自振荡稳态,一 般不给出时域响应的确切信息。 7.2.1 描述函数的定义
1.描述函数的应用条件
2.死区特性
死区又称不灵敏区,在死区内虽有输入信号,但其输
出为零,其静持性关系如图7-2所示。
y
其数学表达式为
k -a
0a
x
0,| x | a
y
k(x
a),
x
a
k( x a), x a
若引入符号函数
图7-2 死区特性
死区小时,可忽略;大 时,需考虑。工程中,为抗 干扰,有时故意引入。比如 操舵系统。
自动控制原理课件 第7章 非线性控制系统

描述函数法是基于频率域的等效线性化方法。该法不受系统 阶次的限制,但系统必须满足一定的假设条件,且只能提供系 统稳定性和自激振荡的信息。 3. 波波夫法
波波夫法是一个关于系统渐近稳定充分条件的频率域判据。 它可以应用于高阶系统,并且是一个准确判定稳定性的方法。
2020年11月17日
EXIT
第7章第16页
4.可以用频率特性的概念来研究和分析线性系统的固 有特性。不能用频率特性、传递函数等线性系统常用的 方法来研究非线性系统。
2020年11月17日
EXIT
第7章第15页
7.1.4 非线性系统的分析和设计方法
1. 相平面法 相平面法是求解一阶或二阶非线性系统的图解法。这种方法
既能提供的稳定性信息,又能提供时间响应信息。其缺点是只 限于一阶和二阶系统。 2. 描述函数法
齿轮传动的齿隙特性,液压传动的的油隙特性等均属于 这类特性。
当系统中有间隙特性存在时,将使系统输出信号在相位 上产生滞后,从而使系统的稳定裕度减少,动态特性变坏。
间隙的存在常常是系统产生自持振荡的主要原因。
2020年11月17日
EXIT
第7章第9页
4.继电器特性
0 y(t) b0sgn e(t)
在控制系统中若存在饱和特性,将使系统在大信号
作用下的等效放大倍数降低,从而引起瞬态过程时间 的延长和稳态误差的增加。对于条件稳定系统,甚至 可能出现小信号时稳定,而大信号时不稳定的情况。
2020年11月17日
EXIT
第7章第7页
2.死区(不灵敏区)特性
y (t )
0
k
e(t)
a sgn
e(t)
e(t) a e(t) a
2. 线性系统的稳定性与输入响应的性质只由系统本身的 结构及参量决定,而与系统的初始状态无关。而非线性 系统的稳定性及零输入响应的性质不仅取决于系统本身 的结构和参量,而且还与系统的初始状态有关。
波波夫法是一个关于系统渐近稳定充分条件的频率域判据。 它可以应用于高阶系统,并且是一个准确判定稳定性的方法。
2020年11月17日
EXIT
第7章第16页
4.可以用频率特性的概念来研究和分析线性系统的固 有特性。不能用频率特性、传递函数等线性系统常用的 方法来研究非线性系统。
2020年11月17日
EXIT
第7章第15页
7.1.4 非线性系统的分析和设计方法
1. 相平面法 相平面法是求解一阶或二阶非线性系统的图解法。这种方法
既能提供的稳定性信息,又能提供时间响应信息。其缺点是只 限于一阶和二阶系统。 2. 描述函数法
齿轮传动的齿隙特性,液压传动的的油隙特性等均属于 这类特性。
当系统中有间隙特性存在时,将使系统输出信号在相位 上产生滞后,从而使系统的稳定裕度减少,动态特性变坏。
间隙的存在常常是系统产生自持振荡的主要原因。
2020年11月17日
EXIT
第7章第9页
4.继电器特性
0 y(t) b0sgn e(t)
在控制系统中若存在饱和特性,将使系统在大信号
作用下的等效放大倍数降低,从而引起瞬态过程时间 的延长和稳态误差的增加。对于条件稳定系统,甚至 可能出现小信号时稳定,而大信号时不稳定的情况。
2020年11月17日
EXIT
第7章第7页
2.死区(不灵敏区)特性
y (t )
0
k
e(t)
a sgn
e(t)
e(t) a e(t) a
2. 线性系统的稳定性与输入响应的性质只由系统本身的 结构及参量决定,而与系统的初始状态无关。而非线性 系统的稳定性及零输入响应的性质不仅取决于系统本身 的结构和参量,而且还与系统的初始状态有关。
自动控制原理第七章非线性控制系统的分析

X X
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e
这里,M=3,h=1
负倒描述函数为
N 1 X
X
12 1 1 2
X
X 1
X 1, N 1 X , N 1
必有极值
d N 1X 令
0 dX
得 X 2
N 1 2
2
0.523
12
1
1 2
2
6
X: 1 2
-N-1(X): 0.523
2.自振的稳定性分析
在A点,振幅XA,频率A。
扰动:
X : A点 C点 C点被G(j)轨迹包围,不稳定,
振幅 ,工作点由C点向B点运动;
A点一个不稳 定的极限环。
X : A点 D点 D点不被G(j)轨迹包围,稳定,
振幅 ,工作点由D点左移。
在B点,振幅XB,频率B 。 扰动:
X : B点 E点 E点不被G(j) 轨迹包围,稳定,
振幅 ,工作点由E点到B点;
X : B点 F点 F点被G(j)轨迹包围,不稳定,
振幅 ,工作点由F回到B点。
B点呈现稳定的自激振荡:振幅XB ,频率B。
3.闭环系统稳定性判别步骤
1)绘制非线性部分的负倒描述函数曲线和线 性部分的频率特性曲线。
2)若G(j)曲线不包围“-N-1(X)”曲线,则系统稳定。 若G(j)曲线包围“-N-1(X) ”曲线,系统不稳定。 若G(j)曲线与“-N-1(X)”曲线相交,系统出现自振。
3)若G(j )曲线与“-N-1(X)”曲线有交点,做以 下性能分析:
(1)不稳定的极限环
(2)稳定的极限环 计算自振频率和幅值。
例1:非线性系统如图所示,其中非线性特性为 具有死区的继电器,分析系统的稳定性。
0e
自动控制原理课件 第七章 非线性系统

2
从(2)式看出:线性化以后的系
统其特性与线性系统的特性一样,
可是(1)式表示的非线性系统的
将上式写成二个一阶方程组:
x1 (t ) x2 (t )
平衡点为:
x2 (t ) x1 (t ) 2 1 x12 (t ) x2 (t )
(1) 特性为:
当参量
x2 0, x1 0
一、相平面、相轨迹和平衡点 x f ( x , x)
将二阶系统常微分方程写成两个一阶微分方程表示如下:
..
.
x1 (t ) f1 t , x1 (t ), x2 (t ) x2 (t ) f 2 t , x1 (t ), x2 (t )
1、相平面:以横坐标表示X,以纵坐标 x 构成一个直角坐标 系,则该
则:
2 x2 n x1 2n x2
dx1 x2 2 dx2 n x1 2n x2
从二阶线性系统的特征方程中解出
1 , 2 n n 2 1
(1)当 0时
方程为:
1,2为虚根
x1 x2
2 x2 n x1
dx1 x2 2 dx2 n x1 x (
2 1
n
x2
)2 R 2
表示系统的相轨迹是一族同心的椭圆
当不同的
,我们得到不同的相轨迹如下图:
根与相轨迹
j λ 2 λ1 0 j 0 λ λ 1 2
稳定节点
j
不稳定节点
j 0
0
稳定焦点
j 0
不稳定焦点
j λ1 0 λ2
中心
鞍点
三、二阶非线性系统的特征
解析法:
(1)
从(2)式看出:线性化以后的系
统其特性与线性系统的特性一样,
可是(1)式表示的非线性系统的
将上式写成二个一阶方程组:
x1 (t ) x2 (t )
平衡点为:
x2 (t ) x1 (t ) 2 1 x12 (t ) x2 (t )
(1) 特性为:
当参量
x2 0, x1 0
一、相平面、相轨迹和平衡点 x f ( x , x)
将二阶系统常微分方程写成两个一阶微分方程表示如下:
..
.
x1 (t ) f1 t , x1 (t ), x2 (t ) x2 (t ) f 2 t , x1 (t ), x2 (t )
1、相平面:以横坐标表示X,以纵坐标 x 构成一个直角坐标 系,则该
则:
2 x2 n x1 2n x2
dx1 x2 2 dx2 n x1 2n x2
从二阶线性系统的特征方程中解出
1 , 2 n n 2 1
(1)当 0时
方程为:
1,2为虚根
x1 x2
2 x2 n x1
dx1 x2 2 dx2 n x1 x (
2 1
n
x2
)2 R 2
表示系统的相轨迹是一族同心的椭圆
当不同的
,我们得到不同的相轨迹如下图:
根与相轨迹
j λ 2 λ1 0 j 0 λ λ 1 2
稳定节点
j
不稳定节点
j 0
0
稳定焦点
j 0
不稳定焦点
j λ1 0 λ2
中心
鞍点
三、二阶非线性系统的特征
解析法:
(1)
自动控制原理 第七章 非线性系统

实质上是应用谐波线性化的方法,将非线性特性线性化, 然后用频域法的结论来研究非线性系统,它是线性理论 中的频率法在非线性系统中的推广,不受系统阶次的限 制。
(2)相平面法(本质非线性):图解法。通过在相平 面上绘制相轨迹,可以求出微分方程在任何初始条件下 的解。是一种时域分析法,仅适用于一阶和二阶系统。
1
ωt
y1 (t ) B1 sint
由式(7-15)可得饱和特性的描述函数为
B1 2k a a a 2 N ( A) arcsin 1 ( ) A A A A
M sin td ( t )
yMFra bibliotek0 π2π
ωt
所以基波分量为:
y1 ( t )
4M
sin t
故理想继电器特性的描述函数为
Y1 4M N ( A) 1 A A
2.饱和特性
请牢记!
即 N(A)的相位角为零度,幅值是输入正弦信号A的函数.
当输入为x(t)=Asinωt,且A大于线性区宽度a 时, 饱和特性的输出波形如图7-10所示。
7.1.3
非线性系统的分析方法
非线性的数学模型为非线性微分方程,大多数尚无
法直接求解。到目前为止,非线性系统的研究还不成熟, 结论不能像线性系统那样具有普遍意义,一般要针对系 统的结构,输入及初始条件等具体情况进行分析。工程 上常用的方法有以下几种:
(1)描述函数法(本质非线性):是一种频域分析法,
r(t)=0 x
N
y
G(s)
c(t)
图7-8 非线性系统典型结构图
(2)非线性环节的输入输出静特性曲线是奇对称的,即 y(x)=-y(-x),以保证非线性元件在正弦信号作用下的输出不 包含直流分量。 (3)系统的线性部分具有良好的低通滤波特性。能较好的滤 除非线性环节在正弦输入下输出中的高次谐波,于是可以认 为在闭环通道中只有基波分量在流通,此时应用描述函数法 所得的分析结果才是比较准确的。实际系统基本都能满足。
自动控制原理课件 第7章 非线性控制系统

伺服电机的死区电压(启动电压),测量元件的不灵敏 区等都属于死区非线性特性。
由于有死区特性存在,将使系统产生静态误差,特别是 测量元件的不灵敏区影响最为突出。
2020年11月17日
EXIT
第7章第8页
3. 间隙特性
k e(t)
y(t)
k
e(t
)
b sgn e(t)
e(t) 0 e(t) 0 e(t) 0
2020年11月17日
EXIT
第7章第11页
5.变放大系数特性
y
(t
)
k1e(t
)
k2e(t )
e(t) a e(t) a
变放大系数特性使系统在大误差信号时具有较大的 放大系数,系统响应迅速。而在小误差信号时具有较 小的放大系数,使系统响应既缓且稳。
具有这种特性的系统,其动态品质较好。
2020年11月17日
fv
dy t
dt
k
y
y t
F
式中:fv——粘性摩擦系数
k(y)——弹性系数,是 y(t)的函数
2020年11月17日
EXIT
第7章第4页
描述大多数非线性物理系统的数学模型是n阶非线性 微分方程
d
ny dt
t
n
h
t,
y
t
,
dy t
dt
,
,
d
n1
dt
y
n1
t
,
u
t
式中,u(t)为输入函数, y(t)为输出函数
描述函数法是基于频率域的等效线性化方法。该法不受系统 阶次的限制,但系统必须满足一定的假设条件,且只能提供系 统稳定性和自激振荡的信息。 3. 波波夫法
自动控制原理 第七章 非线性

x x x 0 , x(t0 ) x0 , x (t0 ) x0
将它写成微分方程组:
dx
.
x
dt.
dx
x
.
x
dt
容易求出奇点为(0,0)。
图 例7-2的根轨迹
ABCDO对应.初始条件为
x(0) 2, x(0) 7
EFO对应初.始条件为:
x(0) 0, x(0) 10
从相轨迹图可以直观地看到: 所有的相轨迹都最终收敛到 奇点(0,0),这说明系统 是渐近稳定的;可以证明, 每一条相轨迹都是向心螺旋 线,这说明系统的运动过程 是衰减振荡的。
3)相轨迹图形特征
如果微分方程满足解的存在性和唯一性条件, 那么,相轨迹(场)图一定有如下基本特征:
1)任一普通点有且只有一条相轨迹通过(解 的存在性和唯一性);
2)相轨迹必垂直通过轴; 3)轴上方的相轨迹从左向右运动,轴下方的 相轨迹从右向左运动。
Байду номын сангаас
例7-2 作出下列二阶系统的相轨迹
.. .
..
线性系统如果某系统在某初始条件下的响应 过程为衰减振荡,则其在任何输入信号及初始条 件下该系统的暂态响应均为衰减振荡形式。例:
x& x x2 x(0) x0
(1)当初始条件xo <1时,1-xo>0,上式 x(t) 具有负的特征根,其暂 态过程按指数规律衰 减,该系统稳定。
( 2 ) 当 xo=1 时 ,1xo=0,上式的特征根为 o 零,其暂态过程为一常 量。
x a xa x a
此处: x 输入 y 输出 k 比例系数
y
ym
a
k
x
0a
ym
饱和非线性对系统的影响:
自动控制理论第七章 非线性系统

-a
常见于齿轮传动机构、铁磁 元件的磁滞现象。可使系统 的稳态误差增大,也使系统 的动态特性变差。
4、继电器特性
y b -a -ma 0 ma -b a x
继电器特性中包含了死区、 回环和饱和特性,因此对 系统的稳态性能、暂态性 能和稳定性都有不利影响。
三、非线性系统的分析方法
1、相平面法 2、描述函数法 时域方法 频域方法
谐波,用基波分量表示其输出。 描述函数法主要用于分析非线性系统稳定性、自 振荡特性及消除自振荡的方法。虽然是一种近似方 法,但对常见实际非线性系统而言,分析结果基本满 足工程需要,在非线性系统分析及设计中得到了广泛 应用。
r
+
e
G1 ( S )
x
y
N
G2 (S )
C
C
设非线性环节的输入为:
x(t ) X sin t
其输出的稳定分量y是与x同周期的非正弦周 期信号,可用傅氏级数表示:
y
式中
A0 ( An cos nt B n sin nt )
n 1
A0 Y n sin(nt n)
n 1
An y (t ) cos nt d (t )
借助Matlab等软件工具可以方便地绘制非线性系统的相平面图。 例1:有死区继电器非线性的系统框图如下
二、非线性系统的相平 面分析
r 常数
+
e
1 -1 1
系统线性部分的传递函数 G ( S )
1 ,该二阶系统的无 S ( S 1)
s 阻尼自然振荡角频率 n 1rad /,阻尼比 0.5,根据 前面对奇点的分类,可知为稳定焦点。
1 N(X )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
-2
Ⅰ区
e
23
1、系统的相轨迹收敛于A点,是稳定的,奇点为稳定
焦点。e是单调衰减的。
2、相轨迹最后没有到达原
点,即 lime(t) 0 ,说明 t
系统在阶跃信号输入下,存 在稳态误差,引起稳态误差 的原因是死区继电器特性。 系统线性部分的传递函数表 明,系统是Ⅰ型系统,对阶 跃响应的稳态误差应为0,可 见死区继电器非线性对稳态 精度的影响。
1、无阻尼运动 ( 0)
二阶系统的极点分布和相平面图如下
jω
x
λ1 ×
0
λ2 ×
0
x
无阻尼运动时,二阶系统的相平面图是一族同心
椭圆,每个椭圆代表一个简谐运动。这样的奇点称 为中心点。
2、欠阻尼运动 (0 1)
jω
λ1 ×
0
λ2 ×
x
x
系统的自由运动是衰减振荡。相轨迹是对数螺 旋线,收敛于原点。奇点称为稳定焦点。
描述函数法主要用于分析非线性系统稳定性、自 振荡特性及消除自振荡的方法。虽然是一种近似方 法,但对常见实际非线性系统而言,分析结果基本满 足工程需要,在非线性系统分析及设计中得到了广泛 应用。
re
x
+ G1(S)
N
y
C
G2 (S)
C
设非线性环节的输入为:
x(t) X sin t
其输出的稳定分量y是与x同周期的非正弦周 期信号,可用傅氏级数表示:
(优选)自动控制理论第七章 非线性系统
3、在正弦输入下,线性系统的输出是同频率正 弦信号。
非线性系统在正弦输入下,输出是周期和输入相 同、含有高次谐波的非正弦信号。
4、线性系统分析可用迭加原理,在典型输入信 号下系统分析的结果也适用于其它情况。
非线性系统不能应用迭加原理,没有一种通用的 方法来处理各种非线性问题。
借助Matlab等软件工具可以方便地绘制非线性系统的相平面图。
例1:有死区继电器非线性的系统框图如下
r 常数 e
+
1 -1
1 -1
y
1 S(S 1)
C
系统线性部分的传递函数 G(S) 1 ,该二阶系统的无
S(S 1)
阻尼自然振荡角频率n 1rad /,s 阻尼比 0.5,根据
前面对奇点的分类,可知为稳定焦点。
一、线性二阶系统奇点的类型
线性二阶系统的齐次微分方程为:
x 2 n x n2 x 0
相平面图是在 x x 平面中,绘制 (x, x)随时间t 变化
的轨迹,称为相轨迹。相轨迹的起点是 (x(0), x(0)) 。
奇点是指 dx 0的点。根据奇点附近相轨迹的特征, dx 0
奇点有不同名称,据此可判断系统运动的性质。
Ⅲ区 Ⅱ区 e
Ⅰ区
2
1
A
-1
12
-1
e
3
-2
例2:非线性系统框图如下
r 常数 e
+
a
-M
M a
y
2 S(S 1)
C
其中继电器回环特性的参数M=0.2,a=0.2。
系统的线性部分是欠阻尼情况,奇点是稳定焦点。非线性环节
的输入-输出关系为
M
e a, e 0
y=
或 e a, e 0
-M
e a, e 0
或 e a, e 0
根据上述关系,可将 e e 平面分为二个区域。分别绘制初
始状态分别为 e(0) 0.5,e(0) 0 和 e(0) 0.1,e(0) 0 的两 条相轨迹。
从图知,无论从哪一组初始条件出发,相轨迹均收敛于极限 环,这是一个稳定的极限环,意味着系统产生自持振荡。
一般不希望系统有自持振荡。当振荡难以消除时,应尽量 将振荡限制在一个较小的、可以接收的范围内。实际上,对 于此系统,通过减少继电器回环的宽度a,可减小振荡。
相平面法是分析非线性系统的一种时 域法、图解法,不仅可以分析系统的稳定 性和自振荡(极限环),而且可以求取系 统的动态响应。这种方法只运用于二阶系 统,但由于一般高阶系统又可用二阶系统 来近似,因此相平面法也可用于高阶系统 的近似分析。
7.3 描述函数法
描述函数是非线性特性的一种近似表示,是一 种谐波线性化方法,忽略非线性环节输出中的高次 谐波,用基波分量表示其输出。
2、饱和非线性
y
k -a
0a x
常见于放大器中,在大信号 作用下,放大倍数小,因而 降低了稳态精度。
3、间隙非线性y-a 0 Nhomakorabeak
a
x
常见于齿轮传动机构、铁磁 元件的磁滞现象。可使系统 的稳态误差增大,也使系统 的动态特性变差。
4、继电器特性
y
b
-a -ma 0 ma a x
-b
继电器特性中包含了死区、 回环和饱和特性,因此对 系统的稳态性能、暂态性 能和稳定性都有不利影响。
继电器的输入-输出关系为
1, e 1;
y f (e) 0, 1 e 1;
1, e 1.
在 e e 平面,根据继电器的
非线性特性,可分为三个区域, Ⅲ区
设初始状态 e(0) 3,e(0) 0 ,
绘制相轨迹如图所示,(设r=3)
Ⅱ区 e
2
1
A
-1
1
根据系统的相轨迹,可对
-1
系统的性能分析如下:
对非线性系统分析研究的重点是:(1)系统是否 稳定;(2)有无自持振荡;(3)若存在自持振荡, 确定自持振荡的频率和振幅;(4)研究消除或减 弱自持振荡的方法。
二、典型非线性系统及对系统性能的影响
1、死区非线性
y
k -a
k
0a x
常见于测量、放大元件中。 死区非线性特性导致系统产 生稳态误差,且用提高增量 的方法也无法消除。
三、非线性系统的分析方法
1、相平面法 时域方法 2、描述函数法 频域方法
7.2 非线性系统的相平面分析方法
相平面法是一种时域分析方法。设非线性系 统框图如图所示,其中N表示非线性环节,G(S) 是线性部分的传递函数。
r 常数
+ N
G(S)
C
用相平面法分析非线性系统,线性部分传递 函数G(S)必须是二阶。
x
系统的运动是非周期发散运动。相轨迹是由原 点出发的发散型抛物线。原点处的奇点称为不稳定 节点。
6、
,
12
是对称于原点的实数
jω
x
×
λ1
0×
λ2
x
系统的自由运动是发散运动,原点处的奇点称为鞍点。 以上6种奇点,类似的奇点在非线性系统中也常见到。
二、非线性系统的相平
二、面分析非线性系统的相平面分析
3、过阻尼运动 ( 1)
jω
××
λ2 λ1 0
x
x
系统的自由运动是非周期地趋向于原点。相轨迹 是趋于原点的抛物线,原点是奇点,称为稳定节点。
4、 (-1 0)
jω
x
×
0
x
×
系统的自由运动是发散振荡。相轨迹是以原点 出发的螺旋线,原点处的奇点称为不稳定焦点。
5、 (-1 )
jω
x
××
λ1 λ2