脉冲宽度检测

合集下载

低压脉冲测试法中脉冲宽度的选择

低压脉冲测试法中脉冲宽度的选择

低压脉冲测试法中脉冲宽度的选择在做故障测试之前要弄清楚,现有基于“行波法”测试的试验设备能不能测量要测的故障电缆:1。

有金属屏蔽层的电缆能用“行波法”测试。

2.有钢铠金属护套而无金属屏蔽层的电缆,对于数百米以内的短距离电缆故障可以把金属护套作为测试地进行“行波法”测试。

3.对于无金属屏蔽层和钢铠护套的电力电缆:单相对地故障,此时不能用“行波法”进行粗测;两相或多相间故障,可把其中一故障相安全接地,使其变为工作地,采用“行波法”应注意相应的测试方法进行粗侧。

行波法测试有的误差很大是几种误差的积累,没有误差则是几种误差的相互抵消。

《电力电缆试验及检测技术》第133页若电缆的额定电压为Um,当给电缆加压时,在电压加到某一数值Us时,在Us≤Um条件下,电缆击穿说明电缆存在故障,当降压后绝缘自行恢复,这种故障称为电缆的闪络性故障,而降压后绝缘性能不可恢复的情况,则称为泄露性故障。

《电力电缆试验及检测技术》第126页了解被测电缆的绝缘介质类型有两方面意义:1.电缆的绝缘介质与电缆的最高测试电压有关,如10KV油浸纸绝缘介质电力电缆,其最高测试直流电压为50KV;而10KV XLPE电力电缆,其最高测试直流电压为35KV。

35KV XLPE电力电缆,其最高测试直流电压为80KV。

因此,在冲击高压或直流高压测量电缆故障时,其测试电压不能高于电缆的最高直流测试电压。

2.在使用“行波法”原理测试电缆故障时,电缆故障的粗测精度直接与电缆的绝缘介质有关,而与电缆的粗细、形状及耐压等级没有关系。

了解被测电缆的结构特征由于结构的不同,在故障测试的连线方式也有较大的区别。

6KV及以上电压等级的XLPE电力电缆,其绝缘损伤故障几乎都表现为相对地故障,地线的选择是唯一的铜屏蔽层。

测出一个故障点后,不应立即做接头,而应分段对电缆进行耐压试验合格后再做接头。

试验设备:取样器:“冲闪法”测试电缆故障时,电缆故障点形成的反射波时高电压脉冲波,不能直接通过仪器进行显示,通常要用“取样器”,取样器的作用是将故障点在高压作用下形成的高压脉冲转换成仪器所需的低电压脉冲信号。

uwb mac层 cca空闲信道评估机制

uwb mac层 cca空闲信道评估机制

uwb mac层cca空闲信道评估机制
CCA(Clear Channel Assessment)是指在无线通信中,设备在发送数据前对信道进行评估,判断信道是否闲置。

在UWB(Ultra-Wideband)的MAC层中,也有针对CCA的空闲信道评估机制。

UWB的MAC层使用了一种称为Impulse Radio(脉冲无线电)的调制技术,因此CCA机制采用了一些特定的方法来评估信道的闲置情况。

在UWB的MAC层中,CCA机制通常包括以下步骤:
1. 能量检测:设备在发送数据前会对接收到的信号进行能量检测。

通过计算信号的能量水平,设备可以判断信道是否有其他设备正在使用。

2. 接收门限:设备设置一个接收门限,只有当信号的能量超过门限值时,设备才会认为信道被占用。

3. 脉冲宽度检测:由于UWB使用脉冲信号传输数据,设备还可以通过检测接收到的脉冲宽度来判断信道是否被占用。

如果接收到的脉冲宽度超过一个阈值,则设备认为信道被占用。

4. 脉冲重合检测:UWB中的脉冲通常具有较短的持续时间,设备可以通过检测接收到的脉冲是否与之前接收到的脉冲重合来判断信道的闲置情况。

通过以上的CCA机制,UWB的MAC层可以较准确地评估信道的闲置情况,以便设备在发送数据之前选择一个空闲的信道。

这样可以避免多设备同时发送导致的冲突,提高整体的通信效率。

STM32利用捕获功能完成脉冲宽度测量

STM32利用捕获功能完成脉冲宽度测量

STM32利用捕获功能完成脉冲宽度测量STM32是一款常见的32位微控制器,它具有强大的功能和灵活性。

通过利用STM32的捕获功能,我们可以实现脉冲宽度测量。

下面是一个详细的说明,包括如何配置STM32的定时器和GPIO引脚,以及如何使用捕获功能进行脉冲宽度测量。

1.配置定时器和GPIO引脚:首先,我们需要配置定时器和GPIO引脚,以确保它们能够正常工作。

在STM32中,使用CubeMX可视化工具来配置硬件资源是一个比较方便的方法。

- 打开CubeMX工具,并选择你正在使用的STM32微控制器型号。

- 在"Pinout & Configuration"选项卡中,选择所需的GPIO引脚进行输入捕获。

将引脚配置为输入模式,并启用上拉或下拉电阻。

-在同一选项卡上,选择所需的定时器。

将其配置为捕获模式,并选择所需的输入通道。

- 在"Generated Code"选项卡中,点击"Project Firmware Structure"下的"Middlewares"文件夹,选择"TIM"文件夹,然后选择"TIM_HandleTypeDef"文件。

复制该文件到你的代码工程文件夹下。

2.配置捕获功能与中断处理函数:- 在自动生成的代码中,找到`HAL_TIM_IC_MspInit`函数。

在该函数中,初始化定时器和GPIO相关的寄存器。

-在主函数中,进行以下配置:```cuint32_t ICValue1 = 0;uint32_t ICValue2 = 0;uint32_t Difference = 0;TIM_HandleTypeDef htim2;```-初始化定时器和GPIO:```cvoid MX_TIM2_Init(void)TIM_MasterConfigTypeDef sMasterConfig = {0};TIM_IC_InitTypeDef sConfigIC = {0};htim2.Instance = TIM2;htim2.Init.Prescaler = 0;htim2.Init.CounterMode = TIM_COUNTERMODE_UP;htim2.Init.Period = 0xFFFFFFFF;htim2.Init.ClockDivision = TIM_CLOCKDIVISION_DIV1; HAL_TIM_IC_Init(&htim2);sConfigIC.ICPolarity = TIM_ICPOLARITY_RISING; sConfigIC.ICSelection = TIM_ICSELECTION_DIRECTTI;sConfigIC.ICPrescaler = TIM_ICPSC_DIV1;sConfigIC.ICFilter = 0;HAL_TIM_IC_ConfigChannel(&htim2, &sConfigIC, TIM_CHANNEL_1);sMasterConfig.MasterSlaveMode = TIM_MASTERSLAVEMODE_DISABLE;HAL_TIMEx_MasterConfigSynchronization(&htim2,&sMasterConfig);```3.启动捕获功能和中断处理:```cvoid HAL_TIM_IC_CaptureCallback(TIM_HandleTypeDef *htim)if (htim->Channel == HAL_TIM_ACTIVE_CHANNEL_1)if (ICValue1 == 0)ICValue1 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1);}else if (ICValue2 == 0)ICValue2 = HAL_TIM_ReadCapturedValue(htim, TIM_CHANNEL_1);if (ICValue2 > ICValue1)Difference = ICValue2 - ICValue1;}else if (ICValue1 > ICValue2)Difference = (0xFFFFFFFF - ICValue1) + ICValue2; }elseError_Handler(;}ICValue1 = 0;ICValue2 = 0;}}int main(void)HAL_Init(;SystemClock_Config(;MX_GPIO_Init(;MX_TIM2_Init(;HAL_TIM_IC_Start_IT(&htim2, TIM_CHANNEL_1); while (1)//主循环}```4.测试和读取脉冲宽度:通过使用上述代码配置和启动定时器和GPIO引脚后,STM32将能够使用捕获功能进行脉冲宽度测量。

数字脉冲宽度测量仪-文亚平

数字脉冲宽度测量仪-文亚平

数字脉冲宽度测量仪-文亚平数字脉冲宽度测量仪是一种用于测量数字脉冲的工具,它具有高准确度、高精密度、高速度等优点,被广泛应用于各个领域中的脉冲测量。

文亚平老师是该测量仪器的设计师,他是深圳大学控制科学与工程系的副教授。

数字脉冲宽度测量仪的概述数字脉冲宽度测量仪能够非常准确地测量脉冲的宽度,不仅适用于高速脉冲的测量,同时也可用于低速脉冲的测量。

该仪器具有清晰的界面,易于使用,能够轻松地获取精确的脉冲宽度测量数据。

数字脉冲宽度测量仪在高科技领域中广泛应用,它可以在医学、航空、车辆、通讯等领域得到应用。

数字脉冲宽度测量仪的主要功能包括:1.测量脉冲的宽度2.显示脉冲的时间基准和脉冲的周期3.显示脉冲的立即响应和延迟响应数字脉冲宽度测量仪的优点与传统的模拟脉冲宽度测量仪相比,数字脉冲宽度测量仪具有以下优点:1.高精度:数字脉冲宽度测量仪的精度达到毫微秒甚至亚毫微秒级别。

2.高速度:数字脉冲宽度测量仪可以测量高速的脉冲,速度非常快。

3.多功能:数字脉冲宽度测量仪不仅可以测量脉冲的宽度,还可以显示其它相关数据。

4.易于使用:数字脉冲宽度测量仪具有清晰的界面,易于操作,测量数据准确。

数字脉冲宽度测量仪的应用领域数字脉冲宽度测量仪适用于各个领域中的脉冲测量,如:1.医学领域:用于心脏脉冲的测量。

2.通讯领域:用于取样和测量宽带信号、脉冲信号、射频信号中的脉冲。

3.航空领域:控制飞机的脉冲信号、在飞机上使用。

4.车辆领域:适用于汽车控制单元脉冲信号的检测;汽车电控系统和机器控制系统的脉冲测量。

5.电子领域:适用于半导体测试、数字电路测试等领域。

文亚平老师的贡献文亚平是数字脉冲宽度测量仪的设计师,他拥有29项计算机软件著作权和专利。

他致力于数字测量仪器的研究,研发了多款高精度数字仪器,数字脉冲宽度测量仪就是其中之一。

文亚平老师的研究成果不仅延伸了数字测量仪器的应用领域,同时也提高了仪器测量的精度和准确性。

总结数字脉冲宽度测量仪是一款高精度、高速度、多功能的数字测量仪器,它被广泛应用于各个领域中的脉冲测量。

脉冲涡流的标准

脉冲涡流的标准

脉冲涡流标准脉冲涡流检测是一种先进的无损检测技术,广泛应用于材料缺陷的检测和评估。

脉冲涡流标准是指导脉冲涡流检测实践的重要依据,下面将详细介绍脉冲涡流的各种标准。

1. 脉冲波形标准脉冲波形是脉冲涡流检测的关键参数之一。

根据不同的检测需求和应用场景,需要选择合适的脉冲波形。

通常,脉冲波形应具有陡峭的上升沿和下降沿,以及平顶部分。

对于某些应用,还可以采用带有负脉冲的波形。

2. 脉冲频率标准脉冲频率是指单位时间内脉冲的个数。

脉冲频率的选择取决于检测对象的材质、厚度以及缺陷的类型和大小。

通常,脉冲频率在500Hz 到100kHz的范围内。

对于厚度较大的金属构件,通常采用较低的脉冲频率,以保证渗透深度;而对于较薄的构件,则可以采用较高的脉冲频率以提高检测速度。

3. 脉冲宽度标准脉冲宽度是指脉冲的高电平持续时间。

脉冲宽度的选择直接影响检测的深度和分辨率。

较窄的脉冲宽度可以获得更好的分辨率,但检测深度较小;而较宽的脉冲宽度可以增加检测深度,但分辨率会降低。

通常,脉冲宽度在5μs到50μs之间。

4. 脉冲幅度标准脉冲幅度是指脉冲电压的高低。

脉冲幅度的选择直接影响检测的灵敏度和可靠性。

较高的脉冲幅度可以增加检测的灵敏度,但可能会对检测对象造成损伤;而较低的脉冲幅度可以减少对检测对象的损伤,但可能会降低检测的可靠性。

通常,脉冲幅度在1V到10V之间。

5. 脉冲相位标准脉冲相位是指脉冲波形相对于时间轴的位置。

对于某些应用,可以通过调整脉冲相位来优化检测效果。

例如,在钢管对接焊缝的检测中,采用一定的相位偏移可以更好地发现焊缝中的缺陷。

6. 脉冲偏移标准脉冲偏移是指在时间轴上脉冲波形相对于零点的位置。

通过调整脉冲偏移,可以实现对检测对象的相对速度变化的补偿,以确保检测结果的准确性。

对于旋转构件或在线检测,脉冲偏移的调整尤为重要。

7. 脉冲重复频率标准脉冲重复频率是指单位时间内脉冲波形的重复次数。

与脉冲频率不同的是,脉冲重复频率强调的是多个脉冲波形的连续性。

脉冲群验收标准

脉冲群验收标准

脉冲群验收标准脉冲群测试是一种常用于电子设备和通信系统中的测试方法,在保证设备正常工作和传输质量的前提下,对脉冲信号进行检测和分析。

脉冲群验收标准则是根据一定的规范和要求,对脉冲群测试的结果进行评估和判断的标准。

一、脉冲群测试概述脉冲群测试一般分为两个步骤:脉冲信号的生成和脉冲信号的检测。

脉冲信号的生成可以通过信号发生器或脉冲模块等设备实现,而脉冲信号的检测则需要使用示波器等测试仪器来进行。

在进行脉冲群测试之前,需要明确测试的目的和要求,以及设定合适的参数和标准。

二、脉冲群测试的参数脉冲群测试通常涉及以下几个参数:1. 脉冲宽度(Pulse Width):脉冲信号的持续时间,用于描述脉冲信号在时间上的长度。

2. 脉冲重复频率(Pulse Repetition Frequency,简称PRF):脉冲信号的重复频率,即单位时间内脉冲信号的个数。

3. 占空比(Duty Cycle):脉冲信号高电平时间与周期时间之比,常用百分数表示。

4. 峰值电压(Peak Voltage):脉冲信号的最大电压值。

三、脉冲群验收标准的要求脉冲群验收标准需要根据具体的测试目的和设备要求来确定。

一般来说,脉冲群被认为是合格的需满足以下要求:1. 脉冲宽度稳定性:脉冲群中每个脉冲的宽度应保持在一定的误差范围内,以确保脉冲信号的稳定传输。

2. 脉冲重复频率稳定性:脉冲群中每个脉冲的重复频率应保持在一定的误差范围内,以保证脉冲信号的连续性和可靠性。

3. 占空比精度:脉冲群中每个脉冲的占空比应保持在一定的误差范围内,以保证脉冲信号的准确性和稳定性。

4. 峰值电压一致性:脉冲群中每个脉冲的峰值电压应保持在一定的误差范围内,以确保脉冲信号的一致性和可控性。

四、脉冲群测试的实施流程为了保证脉冲群的质量,脉冲群测试一般需要按照以下流程进行:1. 制定测试方案:根据具体的测试需求和设备要求,制定脉冲群测试的相关参数和标准。

2. 信号生成:使用信号发生器或脉冲模块等设备生成符合要求的脉冲信号。

单片机中的计数器与脉冲宽度测量

单片机中的计数器与脉冲宽度测量

单片机中的计数器与脉冲宽度测量计数器和脉冲宽度测量是单片机中常用的功能模块之一。

计数器可以用于对信号的计数和计时,而脉冲宽度测量可以用于测量信号的高电平或低电平脉冲宽度。

本文将介绍计数器的原理和应用,以及脉冲宽度测量的方法和技巧。

一、计数器的原理与应用计数器是一种用于计数和计时的电子器件,广泛应用于单片机系统中。

单片机中常用的计数器有定时器/计数器模块,可以通过编程来控制计数器的功能和工作方式。

计数器的原理是基于时钟信号进行计数。

时钟信号可以是外部信号源,也可以是内部时钟源。

计数器在每次接收到时钟信号时,根据设定的计数方式进行计数。

计数可以是递增也可以是递减,根据具体应用的需求进行选择。

计数器的应用非常广泛,常见的应用场景包括:1. 频率测量:通过计数器来测量信号的频率。

2. 周期测量:通过计数器来测量信号的周期。

3. 脉冲宽度测量:通过计数器来测量信号的高电平或低电平脉冲宽度。

4. 脉冲个数测量:通过计数器来测量信号的脉冲个数。

5. 定时器:通过计数器来实现精确的定时功能。

二、脉冲宽度测量的方法和技巧脉冲宽度测量是单片机中常用的应用之一,可以用于测量信号的高电平或低电平脉冲宽度。

下面介绍两种常用的脉冲宽度测量方法和技巧。

1. 利用捕获/比较模式:现代的单片机通常会配备捕获/比较模块,可以用于测量信号的脉冲宽度。

通过设置定时器的计数方式和捕获/比较模式,可以实现对信号脉冲宽度的测量。

2. 利用外部中断:单片机通常具有外部中断功能,可以用于检测外部信号的边沿触发。

通过设置外部中断的触发方式和中断服务程序,可以实现对信号脉冲宽度的测量。

中断服务程序可以在触发边沿时开始计时,直到下一个触发边沿时停止计时,得到信号的脉冲宽度。

脉冲宽度测量的技巧包括:1. 选择适当的计数精度:计数器的精度越高,脉冲宽度测量的准确性越高。

根据具体应用需求,选择适当的计数精度。

2. 注意信号的稳定性:脉冲宽度测量需要信号稳定,避免信号发生抖动或干扰。

脉冲激光实验报告

脉冲激光实验报告

脉冲激光实验报告1. 实验目的本实验的目的是研究脉冲激光的发射特性和传播特性,了解脉冲激光的工作原理和应用,掌握脉冲激光的调制、放大和测量技术。

2. 实验仪器实验使用的主要仪器设备包括:- 激光发生器- 光纤耦合器- 光功率计- 光谱仪- 快速检测器- 示波器3. 实验步骤3.1 搭建实验装置首先,我们搭建了实验装置。

将激光发生器与光纤耦合器连接,通过光纤将激光引入实验台。

实验台包括了光功率计、光谱仪、快速检测器和示波器等设备。

3.2 调整激光参数根据实验要求,我们调整了激光的参数,包括频率、脉宽和幅度等。

通过调整激光发生器的参数,我们成功地产生了稳定的脉冲激光。

3.3 测量激光功率利用光功率计,我们对激光的功率进行了测量。

通过改变激光发生器的参数,我们观察到激光功率的变化规律,并记录下相应的数据。

3.4 分析光谱特性利用光谱仪,我们对激光的光谱特性进行了分析。

我们观察到激光的光谱波形,了解了激光的频率分布情况,并记录下相应的数据。

3.5 测量激光脉冲宽度利用快速检测器,我们对激光的脉冲宽度进行了测量。

通过调整快速检测器的参数,我们准确地测量了激光脉冲的宽度,并记录下相应的数据。

3.6 观察激光脉冲形状通过示波器,我们观察到了激光脉冲的形状。

我们发现不同激光参数下,激光脉冲的形状有所差异,例如方波脉冲、梯形脉冲等。

我们记录下不同参数下激光脉冲的形状,并对其进行分析。

4. 实验结果和分析通过实验,我们获得了脉冲激光的基本参数,包括功率、频率、脉宽和幅度等。

我们还观察到了不同参数下脉冲激光的光谱特性和脉冲形状。

根据实验结果,我们得出以下结论:1. 脉冲激光的功率与激光发生器的参数设置密切相关,可以通过调整激光发生器的参数来控制激光的功率。

2. 脉冲激光的光谱特性与激光的频率分布有关,可以通过光谱仪对激光的频率进行分析和调整。

3. 脉冲激光的脉冲宽度与快速检测器的参数设置密切相关,可以通过调整快速检测器的参数来测量和控制激光的脉冲宽度。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种“边沿检测电路”和“脉宽检测电路”的设计方法
关于“边沿检测电路”和“脉宽检测电路”有很多设计方法,以下是一种比较常见的设计方法,大部分的“边沿检测电路”和“脉宽检测电路”都是分别以这两种电路为基础实现的,也是我们在芯片设计中经常采用的方法:
(1)边沿检测电路
上图给出的是一种下降沿检测电路,当输入有下降沿出现时,输出则会产生一个高脉冲,脉冲的宽度由非门构成的延时电路决定。

(2)脉宽检测电路
上图给出的则是一种脉宽检测电路,和边沿检测电路的原理相同,也是利用了非门构成的延时电路。

该图给出的是负脉冲宽度检测电路,只有负脉冲的宽度大于一定的值时,才能输出一个高脉冲。

这个最小脉宽由非门构成的延时电路决定,而输出的高脉冲宽度则是输入脉冲宽度与最小脉宽之差。

通常我们在实际的设计中不只利用非门本身的延时,如果需要的延时比较大时,可以在非门后加一些电容。

利用这两个电路为基础,我们很容易就扩展出“上升沿检测”、“正脉冲宽度检测”,“高脉冲输出”还是“低脉冲输出”。

甚至可以扩展出功能可配置的检测电路。

当输入负脉冲宽度大于四个非门的延迟时间宽度输出才有高电平出现
当输入正脉冲大于四个非门的延迟时间宽度输出才有高电平出现。

相关文档
最新文档