基于单片机脉冲宽度的测量的设计
单片机PWM(脉冲宽度调制)原理与实现

、PWM原理2、调制器设计思想3、具体实现设计一、PWM(脉冲宽度调制Pulse Width Modulation)原理:脉冲宽度调制波通常由一列占空比不同的矩形脉冲构成,其占空比与信号的瞬时采样值成比例。
图1所示为脉冲宽度调制系统的原理框图和波形图。
该系统有一个比较器和一个周期为Ts的锯齿波发生器组成。
语音信号如果大于锯齿波信号,比较器输出正常数A,否则输出0。
因此,从图1中可以看出,比较器输出一列下降沿调制的脉冲宽度调制波。
通过图1b的分析可以看出,生成的矩形脉冲的宽度取决于脉冲下降沿时刻t k时的语音信号幅度值。
因而,采样值之间的时间间隔是非均匀的。
在系统的输入端插入一个采样保持电路可以得到均匀的采样信号,但是对于实际中tk-kTs< (1)其中,x{t}是离散化的语音信号;Ts是采样周期;是未调制宽度;m是调制指数。
然而,如果对矩形脉冲作如下近似:脉冲幅度为A,中心在t = k Ts处,在相邻脉冲间变化缓慢,则脉冲宽度调制波xp(t)可以表示为:(2)其中,。
无需作频谱分析,由式(2)可以看出脉冲宽度信号由语音信号x(t)加上一个直流成分以及相位调制波构成。
当时,相位调制部分引起的信号交迭可以忽略,因此,脉冲宽度调制波可以直接通过低通滤波器进行解调。
二、数字脉冲宽度调制器的实现:实现数字脉冲宽度调制器的基本思想参看图2。
图中,在时钟脉冲的作用下,循环计数器的5位输出逐次增大。
5位数字调制信号用一个寄存器来控制,不断于循环计数器的输出进行比较,当调制信号大于循环计数器的输出时,比较器输出高电平,否则输出低电平。
循环计数器循环一个周期后,向寄存器发出一个使能信号EN,寄存器送入下一组数据。
在每一个计数器计数周期,由于输入的调制信号的大小不同,比较器输出端输出的高电平个数不一样,因而产生出占空比不同的脉冲宽度调制波。
图3为了使矩形脉冲的中心近似在t=kTs处,计数器所产生的数字码不是由小到大或由大到小顺序变化,而是将数据分成偶数序列和奇数序列,在一个计数周期,偶数序列由小变大,直到最大值,然后变为对奇数序列计数,变化为由大到小。
基于单片机的直流电机调速系统的课程设计

一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。
二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。
但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。
由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。
磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。
电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。
传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。
随着电力电子的发展,出现了许多新的电枢电压控制法。
如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。
调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。
脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。
如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。
平均转速Vd与占空比的函数曲线近似为直线。
脉冲宽度的测量

电子科技大学综合课程设计报告基于单片机门控位的脉冲宽度测量与显示think2011/5/4一、 可行性分析及其原理:该项目是要实现脉冲宽度的测量,再把测量值用数码管显示。
为了实现这一功能我们大致把整个系统分为以下几个模块:1. 振荡器模块:产生某一特定振荡频率的时钟,一般要求这一频率较高,本题要求精度为10us ,所以采用100kHZ 的振荡频率即可。
2. 计数器模块:对振荡脉冲进行计数,用待测脉冲信号作为使能输入(或开关),这样就可以记录下脉冲有效的时间,计数值乘以10us 即为待测脉冲宽度。
3. 译码显示模块:题目中要求用数码管显示6位测量值,分别完成译码和数码管的静态显示或是动态扫描输出即可。
框图如下:二、 本次设计构思了两个方案:方案一:运用CD4518(BCD 码全加器)的级联来实现计数,CD4511七段译码,555多谐振荡器提供100kHZ 频率,待测信号输入到计数器使能。
电路连接图如下:上述方案为数码管静态显示。
优点为方案简单无需编程,只需要组合逻辑与时序逻辑即可完成。
缺点为硬件电路的连线过于复杂上容易出错且很难排除故障,另一个问题在于使用的外接振荡源精度不是很高,势必带来不小的误差。
此方案理论上可行,由于实际操作带来的不方便,我们考虑了后面一种方案。
方案二:利用单片机门控位实现脉冲宽度测量。
基本思路为:利用单片机内部定时器的GATE信号,对于定时器T0来讲,如果GATE=1,则用软件把TR0置1,且INT0为高电平时可以启动定时器T0,所以我们就把被测脉冲信号从INT0端输入,使其上升沿触发启动T0计数,下降沿停止T0计数。
定时器数值乘以机器周期即为脉冲宽度。
电路连接图如下:可以看出,电路结构由以下部分构成:1.振荡模块:12MHZ晶体振荡器,由XTAL1和XTAL2接入单片机。
2.单片机控制模块:AT89S51单片机实现控制,主要任务是对其进行必要的编程设计。
3.输出显示模块:由数码管动态扫描显示,注意P0需要外接上拉电阻。
基于单片机的脉冲宽度测量

山东科技大学电工电子实验教学中心创新性实验研究报告课程名称:单片机原理及应用实验项目名称脉冲宽度测量姓名学号_________________专业_____________ 班级____________指导教师及职称________________________开课学期2011 至2012 学年第一学期提交时间2012 年 1 月 3 日五、实验结果与分析1、实验现象、数据记录按照流程图所示,按动脉冲按钮,可以看到,显示屏显示出所测脉冲的宽度。
再次按动,可以清楚地观察到所示的示数变化。
每次显示的示数,都根据所按按钮的时间长短,即高电平的脉宽长度。
第一张图为T0工作方式,第二张图为T2捕捉方式。
六、实验结论七、指导老师评语及得分:附件:源程序等。
T0门控方式:ORG 0000HLJMP MAINORG 000BHLJMP T0_INTORG 0030H MAIN: MOV TMOD,#09HMOV TL0,#0FCHMOV TH0,#17HMOV R4,#00HMOV R3,#00HJB ,$SETB ET0SETB EAIOC: SETB TR0JNB ,$MOV R3,#00HMOV R4,#00HJB ,$CLR TR0MOV 34H,R4MOV 35H,R3LCALL BCDLCALL UBCD DIS: LCALL DISPJB ,IOCSJMP DIST0_INT:INC R3CJNE R3,#00H,NEXTINC R4NEXT: MOV TH0,#0FCHMOV TL0,#17HRETIBCD: MOV R7,#16CLR AMOV 47h,AMOV 46h,AMOV 45h,ABCD1:CLR CMOV A,35HRLC AMOV 35H,AMOV A,34HRLC AMOV 34H,AMOV A,47HADDC A,47HDA AMOV 47H,AMOV A,46HADDC A,46HDA AMOV 46H,AMOV A,45HADDC A,45HDA AMOV 45H,ADJNZ R7,BCD1RETUBCD:MOV A,45HANL A,#0F0HSWAP AMOV 50H,AMOV A,45HANL A,#0FHMOV 51H,AMOV A,46HANL A,#0F0HSWAP AMOV 52H,AMOV A,46HANL A,#0FHMOV 53H,AMOV A,47HANL A,#0F0HSWAP AMOV 54H,AMOV A,47HANL A,#0FHMOV 55H,ARETDISP:MOV R0,#55HMOV R2,#20HMOV A,#0FFHMOV P0,AACALL DIPMOV R0,#54H MOV R2,#10H ACALL DIPMOV R0,#53H MOV R2,#08H ACALL DIPMOV R0,#52H MOV R2,#04H MOV A,R2MOV P2,AMOV A,@R0MOV DPTR,#TABLE MOVC A,@A+DPTR ANL A,#7FHMOV P0,AACALL DELAY MOV R0,#51H MOV R2,#02H ACALL DIPMOV R0,#50HMOV R2,#01HACALL DIPRETDIP:MOV A,R2MOV P2,AMOV A,@R0MOV DPTR,#TABLEMOVC A,@A+DPTRMOV P0,AACALL DELAYRETDELAY:MOV R5,#9FHDJNZ R5,$RETTABLE:DB0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8H ,80H,90H,88H,83H,0C6H,0A1H,86H,8EH ENDT2捕捉方式:T2CON EQU 0C8HTH2 EQU 0CDHTL2 EQU 0CCHRCAP2H EQU 0CBHRCAP2L EQU 0CAHTR2 BIT 0CAHORG 0000HLJMP MAINORG 000BHLJMP T0_INTORG 0030H MAIN: MOV TMOD, #01HMOV T2CON,#0FHJB ,$STR: MOV TL0, #17HMOV TH0, #0FCHMOV TH2, #00MOV TL2 ,#00MOV 50H,#00HMOV 51H,50HCLRSETB EASETB ET0JNB , $SETB TR0SETB TR2JB , $CLR TR0MOV 50H,RCAP2LMOV 51H,RCAP2HLCALL ZHUANHUAN LOOP1: LCALL DISPJB ,STRAJMP LOOP1T0_INT: MOV TL0, #17HMOV TH0, #0FCHSETBNOPNOPCLRRETI ZHUANHUAN: CLR A百度文库- 好好学习,天天向上-9 MOV 38H,51H MOV 37H,50H MOV 34H,#0 MOV 35H,#0 MOV 36H,#0 MOV R7,#16LOOP2: CLR CMOV A,37HRLC AMOV 37H ,AMOV A,38HRLC AMOV 38H ,AMOV A,36HADDC A,36HDA AMOV 36H,AMOV A,35HADDC A,35HDA AMOV 35H,AMOV A,34HADDC A,34HDA AMOV 34H,ADJNZ R7 ,LOOP2MOV R1,#35HMOV R0,#36HMOV A,#00XCHD A,@R0MOV 58H,AMOV A,@R0SWAP AMOV 57H,AMOV A,#00XCHD A,@R1MOV 56H,AMOV A,@R1SWAP AMOV 55H,AMOV A,#00MOV R0,#34HXCHD A,@R0MOV 54H,AMOV A,@R0SWAP AMOV 53H,ARETDISP: MOV R0,#53HMOV R2,#01HLOP11: MOV A,#0FFHMOV P0,AMOV A,R2MOV P2,AMOV A,@R0MOV DPTR,#TABMOVC A,@A+DPTRCJNE R0,#55H,LOP21ANL A,#7FHLOP21: MOV P0,AACALL DELAYINC R0MOV A,R2JB ,EXIT1RL AMOV R2,AAJMP LOP11EXIT1: RETDELAY: MOV R7,#0FEHLOOP: MOV R6,#70HDJNZ R7,LOOPRETTAB:DB0C0H,0F9H,0A4H,0B0H,99H,92H,82H,0F8 H,80H,90H,88H,83H,0C6H,0A1H,86H,8EH END。
基于单片机的脉冲信号采集与处理分析

基于单片机的脉冲信号采集与处理分析单片机应用系统是通过核心CPU设备来显示工业领域各个设备环节的系统。
单片机的应用程序比较复杂,现代经济的发展对单片机的应用提出了更高的要求,特别在当下机械加工、化工和石油工程等多个领域,对单片机的各种性能要求十分高。
而在我省工业自动化控制领域中,缺乏相应的单片机技术体系,难以满足当下工程的数据采集、计算机处理应用、数据通信等方面的需要。
为了确保工业自动化控制模式的正常开展,实现机械应用与计算机应用技术的协调发展,可通过优化单片机内部结构程序或使用内部倍频技术和琐相环技术等,达到提升其运算和内部总线速度的目的。
1单片机脉冲信号采集1.1单片机模拟信号采集单片机系统采集器的信号有模拟电压信号、PWM信号和数字逻辑信号等,其中,应用较广泛的是模拟信号采集。
模拟信号指的是电压和电流,采用的处理技术主要有模拟量的放大和选通、信号滤波等。
因为单片机测控系统有时需要采集和控制多路参数,如果对每条路都单独采用一个较为复杂且成本较高的回路,就会对系统的校准造成较大影响,几乎不能实现。
因此,可以选用多路模拟开关,方便多种情况下共用。
但在选择多路模拟开关时,要注意考虑通道数量、数漏电流设计、切换速度、通导电阻、器件封装、开关参数的漂移性和每路电阻的一致性这几点。
信号滤波是为了减少或消除工作过程中的噪声信号,滤波常用的有模拟滤波电路和数字滤波技术,后者在单片机系统中发展较快。
1.2随机脉冲信号采集卡的设计随机脉冲信号采集卡的硬件组成主要有输入输出接口、单片机运行和控制、复读采集和控制、信号重放和主机接口控制这五个电路模块。
该系统的主要硬件电路包括单片机主系统中的随机脉冲放大和限幅电路、脉冲幅度、脉冲宽度测量电路、高速信号采集、存储电路以及由EPLD等构成的控制信号电路等。
单片机除了负责随机脉冲信号的采集以外,还要将相关的数据与随机脉冲数据组织成一个完整的信号数据结构。
1.3单片机脉冲信号采集优化模式单片机脉冲信号的采集应用必须要做好相关软硬件的应用、采集模式等的剖析准备工作。
毕业设计(论文)基于单片机的电容测量仪设计

2.3.2基于AT89C51电容测量系统复位电路
MCS-51的复位是由外部的复位电路来实现的。MCS-51单片机片内复位,复位引脚RST通过一个斯密特触发器用来抑制噪声,在每个机器周期的S5P2,斯密特触发器的输出电平由复位电路采样一次,然后才能得到内部复位操作所需要的信号。
利用多谐震荡原理测量电容的方案硬件设计比较简单,但是软件实现相对比较复杂,而直接根据充放电时间判断电容值的方案虽然基本上没有用到软件部分,但是硬件却又十分的复杂。而且他们都无法直观的把测量的电容值大小显示出来。
根据上面两种方案的优缺点,本次设计提出了硬件设计和软件设计都相对比较简单的方案:基于AT89C51单片机和555芯片的数显式电容测量。该方案主要是根据555芯片的应用特点,把电容的大小转变成555输出频率的大小,进而可以通过单片机对555输出的频率进行测量。本方案的硬件设计和软件设计都相对简单。
反向器单稳态触发器显示窄脉冲触发器秒脉冲发生器译码器记数器标准记数脉斱案三基亍at89c51单片机和555芯片构成的多谐振荡申路申容测量返种申容测量斱法主要是通过一块555芯片来测量申容让555芯片工作在直接反馈无稳态的状态下555芯片输出一定频率的斱波其频率的大小跟被测量的申只要我仧能够测量出555芯片输出的频率就可以计算出测量的申容
2.面向应用和现代市场营销模式还没有真正建立起来。本土仪器设备厂商只是重研发,重视生产,重视狭义的市场,还没有建立起一套完整的现代营销体系和面向应用的研发模式。传统的营销模式在计划经济年代里发挥过很大作用,但无法满足目前整体解方案流行年代的需求。所以,为了快速缩小与国外先进公司之间的差距,国内仪器研发企业应加速实现从面向仿制的研发向面向应用的研发的过渡。特别是随着国内应用需求的快速增长,为这一过渡提供了根本动力,应该利用这些动力,跟踪应用技术的快速发展。
基于单片机的无刷直流电动机脉宽调速系统_孙艳霞

图 5 PI 调节算 法 Fig 5 PI adjustment algorithm
PI 调节器的脉冲3; K I
1 S
式中: K p KI T
Kp+
KI 2
T
Z+ 1 Z- 1
( 1)
孙艳霞
( 大连交通大学 电气信息学院, 辽宁 大连 116028)
摘 要: 针对以往无刷直流电动机多由单片机附 加许多种接 口设备构 成, 难于 实现从位 置环到 速
度、电流环的全数字控制问题, 设计 了采用 SP CE061A 型 16 位单片 机的 脉宽调 速系 统. 该单片 机
主要完成 位置传感器信号的采集、电动机 换相信 号的输 出、电 动机转 速的测 量以及 数字 PWM 调
无刷直流电动机的单片机脉宽调速是伴随着 数字控制技术发展起来的. 系统采用台湾凌阳公 司推出的 16 位单片机 SPCE061A 对其进行有效 控制.
无刷直流电动机的换相原理如图 2 所示, 定 子端盖内对称装有 3 个霍尔集成片作为转子传感 器, 随着转子永磁体的转动, 作用于位置传感器的 磁场方向 N- S 极交替变换, 使位置传感器产生相 差 120 的 H 1、H 2、H 3 方波, 有效的 6 个转态编码 信号: 101、100、110、010、011、001, 每一瞬间 有 2 个功率管导通, 每个功率管连续导通 120 电角度, 每隔 60 电角度定子绕组电流换相一次, 编码信号 发生变化的时刻也是定子绕组电流将要发生换相 的时刻.
本系统采用的是三相星型联结, 驱动主回路采 用二二导通方式, 共有 6 种导通状态, 转子每转过 60 电角度变换一种状态. 导通状态的转换通过软 件来完成, 即根据位置传感器的输出信号 H 1、H 2、 H 3, 不断地取相应的控制字送 IOB 口来实现.
基于89C51单片机脉冲宽度的测量的设计.doc

单片机原理与应用课程设计报告院系:电气信息工程学院班级: 08测控2班学号: 08314237姓名:董亮合作者:虞波指导教师:黄阳2011年09月25日基于89C51单片机脉冲宽度的测量设计序言:近年来随着科技的飞速发展,单片机的应用正在不断地走向深入同时带动传统控制检测日新月益更新。
单片机诞生30多年以来,其品种、功能和应用技术都得到飞速的发展,单片机的应用已深入国民经济和日常生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。
导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理等。
本次课程设计目的主要是培养学生综合运用所学的知识,完成一个单片机应用系统设计。
主要任务是通过解决一些实际问题,巩固和加深课程中所学的理论知识和实验能力,基本掌握单片机应用电路的一般设计方法,提高电子电路的设计和实验能力。
加深对单片机软件硬件知识的理解,获得初步的应用经验,为以后从事生产和科研工作打下一定的基础。
本系统采用单片机AT89C51为中心器件来设计脉冲宽度测量器,系统实用性强、操作简单、扩展性强。
在现有的单片机仿真机系统上掌握相关软硬件设计与调试知识,根据所选择题目,焊接好硬件电路,正确进行元器件的测试与调试,并在计算机上编写汇编程序调试运行,并实现参考选题中要求的设计。
一.设计内容与技术指标1.1设计内容利用单片机及4位LED数码管做成四位脉宽显示,在一个脉宽期间对内部周期进行计数,得到的一个高电平脉冲内的计数值显示在四位数码管上,并达到相应的技术指标要求。
1.2技术指标(1)输入脉冲幅度:0-5V(2)脉宽测量范围:0.1-50ms(3)测量精度:±1%(4)显示方式:四位数字显示二.工作原理及设计方案2.1工作原理把脉冲信号从P3.2脚引入,T0设为定时器方式工作,并工作在门控方式(GATE=1)。
在待测信号高电平期间,T0对内部周期脉冲进行计数(周期为1us)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录
序言 (2)
一.设计内容与技术指标 (3)
1.1设计内容 (3)
1.2技术指标 (3)
二.工作原理及设计方案
2.1工作原理 (4)
2.2系统设计方案 (4)
2.2.1电路原理图 (5)
2.2.2硬件焊接图 (5)
2.2.3软件流程图 (7)
2.2.4程序清单 (8)
三.系统调试及结果分析 (14)
3.1硬件调试 (14)
3.2软件调试 (14)
3.3结果分析 (14)
四. 注意事项 (14)
五. 心得体会 (15)
六.参考文献 (16)
基于单片机脉冲宽度的测量设计
序言:
近年来随着科技的飞速发展,单片机的应用正在不断地走向深入同时带动传统控制检测日新月益更新。
单片机诞生30多年以来,其品种、功能和应用技术都得到飞速的发展,单片机的应用已深入国民经济和日常生活的各个领域,几乎很难找到哪个领域没有单片机的踪迹。
导弹的导航装置,飞机上各种仪表的控制,计算机的网络通讯与数据传输,工业自动化过程的实时控制和数据处理等。
本次课程设计目的主要是培养学生综合运用所学的知识,完成一个单片机应用系统设计。
主要任务是通过解决一些实际问题,巩固和加深课程中所学的理论知识和实验能力,基本掌握单片机应用电路的一般设计方法,提高电子电路的设计和实验能力。
加深对单片机软件硬件知识的理解,获得初步的应用经验,为以后从事生产和科研工作打下一定的基础。
本系统采用单片机AT89C51为中心器件来设计脉冲宽度测量器,系统实用性强、操作简单、扩展性强。
在现有的单片机仿真机系统上掌握相关软硬件设计与调试知识,根据所选择题目,焊接好硬件电路,正确进行元器件的测试与调试,并在计算机上编写汇编程序调试运行,并实现参考选题中要求的设计。
一.设计内容与技术指标
1.1设计内容
利用单片机及6位LED数码管做成四位脉宽显示,在一个脉宽期间对内部周期进行计数,得到的一个高电平脉冲内的计数值显示在四位数码管上,并达到相应的技术指标要求。
1.2技术指标
(1)输入脉冲幅度:0-5V
(2)脉宽测量范围:0.1-50ms
(3)测量精度:±1%
(4)显示方式:四位数字显示
二.工作原理及设计方案
2.1工作原理
把脉冲信号从P3.2脚引入,T0设为定时器方式工作,并工作在门控方式(GATE=1)。
在待测信号高电平期间,T0对内部周期脉冲进行计数(周期为1us)。
在待测脉冲高电平结束时,其下降沿向P3.2发中断,在外部中断0的中断服务程序中,读取TH0、TL0的计数值,该值就是待测脉冲的脉宽(单位us)。
随后,清零TH0和TL0,以便下一个脉宽的测量。
图1 系统原理框图
2.2系统设计方案
2.2.1电路原理图
图2电路原理图2.2.2硬件焊接图
图3 硬件焊接图
采用动态扫描法实现LED数码管显示。
共阴7段LED显示器显示原理:
该电路采用AT89C51单片机最小化应用,采用共阴7段LED 数码管显示器,P3.2口引入脉冲信号,P2.0至p2.3口作为列扫描输出,P0口输出段码数据,采用12Mhz晶振,可提高计数的精确度。
10μf电容作用:上电复位;
7407作用:同相缓冲器,驱动数码管;
12M晶振和两个电容组成晶体振荡器。
2.2.3软件设计流程图
主程序流程图如图4所示,外部中断0服务程序流程图如5所示。
图4主程序流图
图5 外中断0服务程序流程图
2.2.4程序清单
ADC EQU 35H
CLOCK BIT P2.4 ;定义ADC0808时钟位ST BIT P2.5
EOC BIT P2.6
OE BIT P2.7
PWM BIT P3.7
ORG 00H
SJMP START
ORG 0BH
LJMP INT_T0
START: MOV TMOD,#02H ;
MOV TH0,#20
MOV TL0,#00H
MOV IE,#82H
SETB TR0
W AIT: CLR ST
SETB S T
CLR ST ;启动AD转换
JNB EOC,$ ;等待转换结束
SETB O E
MOV ADC,P1 ;读取AD转换结果
CLR OE
SETB PWM ;PWM输出
MOV A,ADC
LCALL DELAY
CLR PWM
MOV A,#255
SUBB A,ADC
LCALL DELAY
SJMP W AIT
INT_T0: CPL CLOCK ;提供ADC0808时钟信号RETI
DELAY: MOV R6,#1
D1: DJNZ R6,D1
DJNZ ACC,D1
RET
END
3.2 软件调试
在LCA51编译器下进行汇编程序的编写,以子程序为单位调试,一段一段的编译与访真,最后结合电路板,进行整机联调。
3.3结果分析
因为从设计程序分析,LED显示器动态到秒的频率约为几百赫兹,实际使用观察时完全没有闪烁,由于计时中断程序中加了中断延时误差处理,所以,实际设计时精度非常的高。
四.注意事项
1.焊接之前,应事先画好硬件原理图,细化到每一根接线,以及芯片内部的各个引脚,合理布局好元器件。
这样才能使硬件电路板布线美观。
焊接时要注意防止虚焊的产生,在两个较近的焊点之间要注意不要短接。
2.焊接时要注意焊接工艺,由于是通用板,质量不是太高,如果不注意,上面的小铜片很容易损坏,容易导致虚焊。
焊完后,要用万用表检测,以免出现虚焊漏焊,短接等现象。
检查无误后再通电检
测。
焊接完一部分后,最好先观察一下该部分的波形是否正确,若有错误,可以方便修改。
3.板子及仿真机接电源时,要注意正负极,以免损坏板子或仿真机。
4.仿真机一旦与计算机进行连接之后,就不要经常再拔下,以确保正常通信。
5.编写程序时,要注意各指令的合理应用。
若程序过长,可以先编写子程序,再将其进行组合。
以免出现不必要的错误和困扰。
6.在插拔器件以及接线过程中,为避免仪器损坏应该在断电的前提下操作。
五.心得体会
通过几天的课程设计,我对单片机原理与应用技术等知识都有了一定的了解。
这次课程设计中,我们采用层次化的设计方法来实现了这个电路。
在程序编写结束后,我们还对该程序进行了调试,能按预期的效果进行脉宽测试功能,并设计了动态显示被测信号脉宽的硬件电路。
课程设计对学生而言是其对所学课程内容掌握情况的一次自我验证,从而有着极其重要的意义。
通过课程设计,能提高学生对所学知识的综合应用能力,能全面检查并掌握所学内容,在这次的课程设计中,收获知识的同时,我们还收获了阅历,收获了成熟,在此过程中。
我们通过查找资料,请教老师,以及不懈的努力,不仅培养了独
立思考、动手操作的能力,而且大大加强了团队合作以及设计能力。
更重要的是,我们学会了一些学习的方法,而这是日后最实用的,真的是受益匪浅。
这次课程设计虽然结束了,相信以后我们会以更加积极的态度对待我们的学习、对待我们的生活。
我们的激情永远不会结束,相反,我们会更加努力,努力的去弥补自己的缺点,发展自己的优点,去充实自己,只有在了解充分认识到自己的不足,我们才会更加珍惜拥有的,更加努力的去完善它。
今后在剩余不到一年的大学生活里,我会尽力充实自己,为日后走上工作岗位打下坚实的基础。
要面对千千万万的挑战,只有不断的学习、实践,再学习、再实践。
六.参考文献:
1.《单片机应用程序开发指南》尹勇等.科学出版社.2005
2.《单片机实验与实践教程》夏继强.北京航空航天大学出版社.2001
3.《单片微型机原理、应用与实验》张友德等.复旦大学出版社.2006。