GPS定位坐标系统和时间系统

合集下载

定位坐标系和时间标准讲义

定位坐标系和时间标准讲义

定位坐标系和时间标准讲义定位坐标系和时间标准是在地理和天文领域中广泛使用的工具,用于确定地球表面上的位置和测量时间。

本讲义将介绍三种常用的定位坐标系和一些常见的时间标准。

一、地理坐标系地理坐标系是用经度和纬度来描述地球表面上任意位置的一种坐标系统。

经度是指一个位置相对于东西方经线的角度,以0度为本初子午线。

纬度是指一个位置相对于南北方纬线的角度,以赤道为基准。

地理坐标系可以通过全球定位系统(GPS)等技术来测量和确定位置。

例如,北京的经度为116.4度东经,纬度为39.9度北纬。

二、UTM坐标系UTM(Universal Transverse Mercator)坐标系是一种基于横轴墨卡托投影的坐标系统,将地球划分为60个标准带和20个副带。

每个标准带宽度6度,以中央经线为基准。

UTM坐标系采用东北方向的坐标表示位置,适用于大规模的地图制作和测量工程。

例如,北京的UTM坐标为50KU 414547 4400879,其中50KU表示所在的标准带,414547和4400879分别表示东北方向的坐标。

三、国家格网坐标系国家格网坐标系是在UTM坐标系基础上,根据各国的需要制定的一种坐标系统。

每个国家或地区都有自己的国家格网,包括分带、投影方式和坐标体系等。

国家格网坐标系广泛用于地理信息系统(GIS)和空间数据管理。

在中国,国家格网坐标系为2000年国家大地坐标系,采用了高斯-克吕格投影,最常用的带号为3度带。

例如,北京的国家格网坐标为带号33N,X坐标为3407765,Y坐标为439512。

四、时间标准时间标准用于统一和测量时间,使世界各地的时间保持一致。

其中,国际原子时(TAI)是以原子频率标准为基础,提供高精度的时间计量。

协调世界时(UTC)是基于国际原子时,并根据地球自转的变化进行调整的时间标准,通常以格林威治时间(GMT)为参考。

全球定位系统(GPS)时间是由GPS卫星提供的一种时间标准,用于卫星导航定位。

第二章GPS定位的坐标系统和时间系统 第四节时间系统

第二章GPS定位的坐标系统和时间系统 第四节时间系统
计量原子时的时钟称为原子钟,常用的有铯原子钟、铷原子钟和氢原子钟三 种,国际上是以铯原子钟为基准的,原子钟的计时精度满足了一些高精度时间 部门的需要,特别是空间技术和地面高精度定位的需要。GPS卫星上全部配置 了原子钟。
国际原子时是全球统一的原子时,是由国际时间局(BIH)用100台左右精 选过的原子钟测定的。
目前,几乎所有国家发播的时号,均以UTC为准,各时号的互差一般 不便超用过户±获1得m所s,需除的了U发T1。播UTC时号外,还同时给出UTC与UT1的差值,以
GPS测量定位技术
六、力学时(DT)
这是天文力学理论及其历表所用的时间系统。力学时分两种,即相对于 太阳系质心运动的太阳系质心力学时(TDB)和以地心视位置为基础的地球 质心力学时(TDT)。力学时的基本单位为日,一日包含86400国际单位值秒, 秒 值 采 用 国 际 原 子 时 ( ATI) 秒 长 。 地 球 质 心 力 学 时 TDT 的 1 9 7 7 年 1 月 1.0003725日(即1日0h00m32.184s)对应于国际原子时ATI的1977年1月1日 0h0m0s。
GPS时与协调时的关系为:
GPST = UTC + 1S × n - 19S
(2-7)
其中n为调整参数,其值由国际地球自转服务组织(IERS)发布。
GPS测量定位技术
八、区会议决定采用一种分区统一时
刻,把全球按经度划分为24个时区,每个时区的经度差为15 °,则
在GPS卫星定位中,时间系统有着重要的意义。卫星的在轨运 动以及所发射的电磁波的运动也是和时间紧密相关的,所以测距 也是个测时的过程。天文测量中测量经纬度和方位角要用到时间, 同样在GPS导航和定位中也要用到时间。各国各地区由于民族、 文化和地理位置的关系,计时的方法和单位虽有不同,但都是以 地球绕太阳公转、月球绕地球运转和地球的自转的运转周期为基 础的,因而都用年、月、日来计时。当今,多数国家都以格里历 来作年、月、日的计时单位,即以地球自转轴运转一周的平均时 间叫做一日,而将地球绕太阳公转一周的平均时间长度365.2425 日叫做一年,这就是人们所称的公元年,这种计时的起点是公元 元年1月1日。我国正式采用格里历并采用公元纪年,是1949年 10月1日中华人民共和国成立的那天起正式开始的。计时的单位, 除了年、月、日以外,还有时、分、秒等小于一日的单位。

第二章GPS坐标系统和时间系统

第二章GPS坐标系统和时间系统

5
2015-6-6
§2.1 天球与地球坐标系
二、坐标系统的分类
1、参心坐标系
在经典大地测量中,为了处理观测成果和传算坐标,通常选取一参考椭 球面作为参考,选一参考点作为起算点(大地原点),利用大地原点的观 测量来确定参考椭球在地球内部的位置和方向。 参心坐标系中的“参心” 指参考椭球的中心,由于参考椭球中心与地 球质心不重合,故又称为非地心坐标系。参心坐标系有大地坐标系和空间 直角坐标系两种。 参心坐标系的应用十分广泛,是经典大地测量的一种通用坐标系。根 据地图投影,参心大地坐标系可以通过高斯投影计算转化为平面直角坐标 系,为地形测量和工程测量提供控制基础。
6
2015-6-6
§2.1 天球与地球坐标系
二、坐标系统的分类
参心空间大地直角 坐标系是用三维坐标x、 y、z表示点位的,它可 按一定的数学公式与参 心大地坐标系相互换算。 通常在由GPS定位结果 (地心空间大地直角坐 标系)计算参心大地坐 标系时,作为一种过渡 换算的坐标系。
地球表面与各种椭球之间的关系பைடு நூலகம்
(1)不适合建立全球统一坐标系的要求; (2)不便于研究全球重力场; (3)水平控制网和高程控制网分离,破坏了空间点三维坐标的完整性。
9
2015-6-6
§2.1 天球与地球坐标系
二、坐标系统的分类
在上述这3方面,地心坐标系就表现出明显的优势。因
人造地球卫星围绕地球运转,其轨道平面随时通过地球质
心,所以通过对卫星的跟踪观测来处理与观察站位臵有关 的问题时,就需要建立以地心为坐标原点、与地球体相固 连的三维空间直角坐标系统。因此,建立并不断精化地心 直角坐标系统,对于发展空间技术和解决卫星大地测量等 问题具有特殊意义。

四种卫星定位导航系统的坐标系统与时间系统以及他们的转换关系

四种卫星定位导航系统的坐标系统与时间系统以及他们的转换关系
间国际上公认精度最高的坐标转换七参数。
-16-
■模板简要说明
-17-
■模板简要说明
-18-
演示完毕 感谢聆听 ◎中国风系列作品之“虚竹”
汇报结束
谢谢大家! 请各位批评指正
Galileo 坐标系统名:ITRS 时间系统名:伽利略系统时间
-7-
定义
伽利略地球参考框架(Galileo Terrestrial Reference Frame,GTRF)是实现 伽利略所有产品和服务的基础,它由伽利略大地测量服务原型(GGSP)负责 定义、建立、维持与精化。GTRF符合ITRS定义,并与ITRF对准,它的维持主 要基于GTRF周解。除GTRF外,GGSP还提供地球自转参数、卫星轨道、卫星 和测站钟差改正等产品。GTRF的发展早在2011年10月首批Galileo卫星升空前, GTRF就完成了它的初始实现(2007年)。它采用了42个位于伽利略跟踪站 (GSS)附近的IGS站、33个其他IGS站和13个伽利略实验站(GESS)从 2006年11月至2007年6月的GPS观测数据。后续的GTRF将由使用GPS/Galileo 数据逐步过渡到只使用Galileo数据。从2013年4颗Galileo卫星组网并开始提供 导航服务以来,GTRF每年都会发布新的版本并进行2~3次更新。
定义
Galileo的时间系统(Galileo system time,GST):由周数和周秒组成,也是一 个连续计数的时间系统。起算时刻为UTC时间的1999-08-22 T00:00:00。 GST比UTC快13s。因此,GST和GPST之间相差1024周和一个很小的偏差 (GPS to GalileO time offset,GGTO)。值得注意的是在RINEX文件中习惯将 Galileo周数设为与GPS周数相同。

第五章 GPS定位的坐标系统及时间系统

第五章 GPS定位的坐标系统及时间系统

第五章 GPS定位的坐标系统及时间系统
四 坐标系统之间的转换
不同空间直角坐标系统之间的转换
z5 4 / 8 0 ωz z8 4 y 54/80
) Δ z20 y2 + +Δ 0 2 Δ x0
O
ω y
sqr
(
ω x M x5 4 / 8 0 x 84 y 84
图 5-9 空 间 直 角 坐 标 系 的 转 换
第五章 GPS定位的坐标系统及时间系统
不同空间直角坐标系统转换公式
X 2 X 1 ∆X 0 Y = (1 + m) R (ε ) R (ε ) R (ε ) Y + ∆Y 1 x 2 y 3 z 1 0 2 Z 2 Z1 ∆Z 0 X 1 ∆X 0 = (1 + m) R0 Y1 + ∆Y0 Z1 ∆Z 0
GPS时间系统 时间系统GPST (6) GPS时间系统GPST
GPST属于原子时系统,它的 秒长即为原子时秒长,GPST的 原点与国际原子时IAT相差19s。 有关系式: IAT-GPST=19(s) (2-18) GPS时间系统与各种时间系统 的关系见图2-6所示:
第五章 GPS定位的坐标系统及时间系统
协议地球坐标系: 协议地球坐标系:取平地极为坐标原点,z轴指向CIO,x轴指向协定赤 道面与格林尼治子午线的交点,y轴在协定赤道面里,与 xoz构成右手系 统而成的坐标系统称为协议地球坐标系。 协议地球坐标系与瞬时地球坐标系的转换公式: :
x x y = R (− x′′ ) R ( y′′ ) y y p x p z em z et

GPS测量原理及应用:02 时间系统与坐标系统

GPS测量原理及应用:02 时间系统与坐标系统
22
协调世界时(Universal Time Coordinated)
建立UTC的原因:
满足高精度时间间隔测量的要求 时刻与UT基本一致
定义
秒长与AT相同 通过跳(闰)秒,与UT的差值保持在0.9秒内(通常在6
月30日24h或12月31日24h进行跳秒) 正闰秒(增加1秒)与负闰秒(减少1秒)
2
1. 有关时间系统的一些基本概念
3
时间是什么?
是事物存在或延续的过程 与长度、质量一同称为宏观物质世界的三个基本量 是四维空间中的一维 具有绝对和相对两方面的特性
时刻(历元) 时间间隔
4
时间系统-规定时间测量的标准
时间系统的要素:参考基准(起点)、尺度 时间系统:由定义和相应的规定从理论上进行阐述 时间系统框架:通过守时、授时以及时间频率测量
17
世界时(Universal Time)
定义:格林尼治零子午线(本初子午线)处的民用 时称为世界时。
UT0、UT1、UT2
问题的引出:极移和地球自转的不均匀(长期趋势变缓, 且存在短周期变化和季节性变化)
UT0:未改正的世界时 UT1:引入极移改正的世界时 UT2:引入极移改正和地球自转速度的季节改正的世界
太阳时属于地方时
14
真太阳时与平太阳时
真太阳时
参考点:太阳中心 尺度定义:太阳中心连续两次经过当地上子午圈的时间
间隔为一个真太阳日。 数值定义:太阳中心相对于本地子午圈的时角,中午为
0h,子夜为12h 特点
优点:容易测定 缺点:尺度不稳定(由于地球绕日公转时的速度不同,以及黄
赤交角的存在,导致不同时间的真太阳时时长不同)
春分点两次经过地方上子午圈(上中天)的时间间隔为 一恒星日。并由此派生出“时”、“分”、“秒”等单 位。

2-1GPS定位的坐标系统(GPS)

2-1GPS定位的坐标系统(GPS)
2 2 2
}
Z − N (1 − e 2 ) sin B
在采用上式进行转换时, 需要采用迭代的方法, 在采用上式进行转换时 , 需要采用迭代的方法 , 先 求出,最后在确定H 将B求出,最后在确定H。
3、地心空间直角坐标系与站心(左手)地平直角坐标系 、地心空间直角坐标系与站心(左手) (1)地心空间直角坐标系与站心赤道直角坐标系关系 地心空间直角坐标系与站心赤道直角坐标系关系 O—XYZ:球心空间直角坐标系(地心) P1— X Y Z:站心赤道直角坐标系(站赤)
a = 6378245m f = 1 / 298.3
第二章 GPS 定位的坐标系统 §2-1 GPS坐标系统
该坐标系的高程异常是以前苏联1955年 该坐标系的高程异常是以前苏联1955年 大地水准面重新平差的结果为起算值, 大地水准面重新平差的结果为起算值, 该椭球并未依据当时我国的天文观测资 料进行重新定位, 料进行重新定位,而是由前苏联西伯利 亚地区的一等锁, 亚地区的一等锁,经我国的东北地区传 算过来的,1954年北京坐标系存在着很 算过来的,1954年北京坐标系存在着很 多缺点 。
第二章 GPS 定位的坐标系统 §2-1 GPS坐标系统
四、1980年西安坐标系 1980年西安坐标系
1980年西安大地坐标系统的地球椭球参数的 1980 年西安大地坐标系统的地球椭球参数的 四个几何和物理参数采用了IAG 1975年的推 四个几何和物理参数采用了IAG 1975年的推 a = 6378140m 荐值, 荐值,
(2)站心赤道直角坐标系与站心地平直角坐标系关系 ) P1— X Y Z:站心赤道直角坐标系(站赤) 站心赤道直角坐标系( 站心赤道直角坐标系 站赤) P1— xyz : 站心地平直角坐标系(地平) 站心地平直角坐标系(地平)

坐标系统与时间系统

坐标系统与时间系统
可推得GALILEO系统与GPS系统间的转换系数为:
Page
11

时间系统
Page
12
1.时间系统——GPS
GPS时间系统采用原子时AT1秒长作时间基准,秒长定义 为铯原子CS133基态的两个超精细能级间跃迁幅射振荡192631170 周所持续的时间,时间起算的原点定义在1980年1月6日世界协调时 UTC0时,启动后不跳秒,保证时间的连续。以后随着时间积累, GPS时与UTC时的整秒差以及秒以下的差异通过时间服务部门定期 公布。 目前,GPS卫星广播星历采用WGS-84(G873)世界大地 坐标系,其起始时元为1996年9月29日,而它的坐标基准时元是 1997.0。【6】
Page
3
1.坐标系统——GPS
WGS-84坐标系是目前GPS所采用的坐标系统,GPS所发布的 星历参数就是基于此坐标系统的。WGS-84坐标系统的全称是World Geodetic System(世界大地坐标系-84),它是一个地心地固坐标系统。 WGS-84坐标系统由美国国防部制图局建立,于1987年取代了当时GPS 所采用的坐标系统―WGS-72坐标系统而成为GPS的所使用的坐标系统。 WGS-84坐标系的坐标原点位于地球的质心,Z轴指向BIH1984.0定义 的协议地球极方向,X轴指向BIH984.0的起始子午面和赤道的交点,Y 轴与X轴和Z轴构成右手系。采用椭球参数为: a=6 378 137m f=1/298.257 223 563 【2】
Page
7
5.坐标系统转换
在GPS与GLONASS之间的坐标系转换,即为WGS—84 与PE—90间的转换。俄罗斯MCC(Russian Mision Control Center)的Mitrikas等 人经过长期实验与精确计算,所提出的且已经应用于GPS/GLONASS组合型接 收机中的转换参数, 被认为是目前最精确的坐标转换参数,其表达式为:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Slide 3
1、复习
建立测量坐标系的基准面是什么?
Slide 4
参考椭球面和参心坐标系
参考椭球面
地球表面 陆地
海洋 大地水准面 参考椭球
Slide 5
2、参心坐标系的特点
Slide 6
我国的大地坐标系
1954年北京坐标系
NN
类型:参心坐标系 建立:与苏联1942年普尔科沃坐标系联测 椭球:克拉索夫斯基椭球
产生:高斯投影3度带、六度带 ——〉有利于统一互算 ——〉投影变形
地方独立坐标系 ——〉以当地子午线为中央子午线 地方参考椭 ——〉以当地平均海拔高程面为参考椭球球面??
S
S1
S2
Hm RA Hm
S
ym2 2R2
S0
Hm RA
S
ym2 2R2
S
Slide 25
为什么讨论地方参考椭球?
1、为什么GPS控制网要选择地方参考椭球 参数?而常规控制网计算时只强调投影面?
❖定义一个坐标系统,包含哪两个基本要素? ❖建立参心坐标系的出发点是什么? ❖建立一个参心大地坐标系,必须解决那些问题?
Slide 10
第二节 卫星定位中的坐标系
描述卫星的位置——天球坐标系 描述地球上的点的位置——地球坐标系
Slide 11
一、天球和天球坐标系
天球——以地球质心为 中心,半径为任意长度 的一个假想球体。
Slide 26
如何确定地方参考椭球的参数?
Z
1、仅改变已知椭球的长半径 L
1)直接以投影面到椭球面距离H为 长半
径变化量
a1a aa
2)由测区平均曲率半径的变动量求长半径
O B
3)以测区卯酉圈曲率半径的变化量求长半
径变化量
X
d2、N仅h改变椭球中心位置,并不改变
定dN 向及d元a素
d3球N 、a定改a位变a和dN 长N 定半向a径及a1偏 (eh心2率s)i,n不2B改变(h椭) 1e2sin2B
地心
协议地极原点
(如1900.00~1905. 00年地球自转轴 的瞬时平均位置)
与地心和CIO连线正交之平面和 格林尼治平子午面的交线
协议地球坐 标系??
P16
Slide 22
WGS-84坐标系
类型:协议地球坐标系,地心地固坐标系(ECEF)
定义:原点:地球的质心 Z轴:指向BIH1984.0定义的CTP(协议地球极)方向 X轴:指向BIH1984.0的零子午面和CTP赤道的交点 Y轴:和Z,X构成右手系
标准历元的平天球坐标系
——〉相应标准历元(2000.1.15)的一个特定时刻的平天球 坐标系 ——〉经过了标准历元到观测历元的岁差改正
Slide 18
二、地球坐标系
空间技术和远程武器的发展,要求提供高精度的地心坐标
Slide 19
1、地心坐标系的定义
地心空间直 角坐标系
地心大地坐 标系
P12图2-2
Slide 12
1、天球
天球子 午面:包 含天轴,并 通过天球 上任何一 点的平面
天极:天轴 与天球的交

天球赤道 面:通过地 球质心,与 天轴垂直的 平面
天轴:地球自 转轴的延伸
线
Slide 13
黄道和春分点
黄道:地球公转的轨道面 与天球相交的大圆,即地球 公转时,地球上的观测者所 见到的太阳在天球上的轨道
P14、15
Slide 16
4、三种天球坐标系
一个特定时刻,即 标准历元:
2000.1.15:的瞬时 平天极
瞬时平天极
P15
瞬时真天极
Slide 17
三种天球坐标系
瞬时真天球坐标系
——〉瞬时真天极、瞬时真赤道面、瞬时真春分点 ——〉坐标轴指向随时间变化
瞬时平天球坐标系
——〉瞬时平天极、瞬时平赤道面、瞬时平春分点 ——〉经过了章动改正
第二章 坐标系统与时间系统
OUTLINE
常规大地测量中的坐标系统
卫星大地测量中的坐标系统
GPS常用的坐标系统
坐标系统之间的转换
时间系统
Your Location
is: 36.067901o N 94.171071o W
Slide 2
第一节 经典大地测量中的坐标系统
常见的坐标系统 空间直角坐标系 大地坐标系 平面直角坐标系
10.0
1993 5.0
0.0
-5.0
-10.0 20.0
2001
Pole Position
15.0
10.0
5.0
0.0
瞬时北地极 Y Pole (m)
Slide 21
3、两种地球坐标系
地球坐标系
原点
Z轴
X轴
瞬时地球坐标系 地心
瞬时北地极
瞬时真赤道面和包含瞬时自转 轴的格林尼治平子午面的交线
平地球坐标系
春分点:当太阳在黄道上 从天球南半球向北半球运行 时黄道与天球赤道的交点
Slide 14
2、天球坐标系的两种表示方法
天球球面坐标系 (赤经,赤纬,向径) 天球空间直角坐标系 (X,Y,Z)
p11
Slide 15
3、建立天球坐标系的两个问题
实际地球的形状近似一个赤道隆起的椭球体,因此 在日月引力和其他天体对隆起部分的作用下,地球 在绕太阳运行时,自转轴的方向不再保持不变而使 春分点在黄道上产生缓慢的西移——岁差、章动
椭球(国际大地测量与地球物理联合会第17届年会)
长半径 : 6378137 2m
P16
扁率: f 1/298.257223563
Slide 23
小结:GPS中的坐标系统
WGS-84坐标系 我国的国家大地坐标系 地方独立坐标系 ITRF坐标框架 站心坐标系
p16
Slide 24
1、地方独立坐标系
O2 O1
问题:参考椭球面与我国大地水准面符合不好 1980年国家大地坐标系
GEOID
类型:参心坐标系
建立:进行了我国的天文大地网整体平差,采用新的椭球元 素,进行了定位和定向
大地原点:陕西省泾阳县永乐镇
椭球:1975年国际大地测量与地球物理联合会第16届年会
P17
Slide 7
3、平面直角坐标系的建立
Slide 8
高斯平面直角坐标定义
➢高斯平面直角坐标系的定义
X 轴:中央子午线的投影 Y 轴:赤道的投影 原点:两轴的交点
➢假东、假北
为了避免坐标系中出现负值,统一规定将每一带的坐标 轴西移或南移一定距离。 我国的假北为0,假东为500km
➢高斯分带投影
6 度 带 3 度 带
Slide 9
经典大地测量中的坐标系统
思考:和参心坐标系统的定义有何区别?
Sli900.00~1905. 00年地球自转轴 的瞬时平均位置
极移——地球自 转轴相对于地球 体的位置不是固 定的,因而地极 点在地球表面的 位置是随时间而 变化的,这种现 象称为极移。
P15
X P o le ( m )
相关文档
最新文档