纯电动汽车控制策略

合集下载

电动汽车电机控制策略

电动汽车电机控制策略

电动汽车电机控制策略电机控制模式是电动汽车电机控制的基础,根据不同的控制需求,可以采用不同的控制模式。

常见的电机控制模式包括电压控制模式、转速控制模式和转矩控制模式。

电压控制模式是通过控制电机的输入电压来控制电机的转速和转矩,具有简单、可靠的特点。

转速控制模式是通过控制电机的转速来实现对车辆速度的控制,可以根据车辆的需求进行动态调节。

转矩控制模式是通过控制电机的输出转矩来实现对车辆动力的控制,可以根据车辆的需求进行动态调节。

转速控制是电动汽车电机控制的关键环节之一、转速控制可以通过改变电机的电压、频率和电流来实现。

在低速运行时,可以通过提高电机的电压和电流来增加车辆的加速度,提高动力输出;在高速运行时,可以通过减小电机的电压和电流来控制车辆的速度,提高续航里程。

通常情况下,转速控制采用闭环控制方法,即根据车辆的实际速度和目标速度的差异来调节电机的转速,使其尽可能接近目标速度。

转矩控制是电动汽车电机控制的另一个关键环节。

转矩控制可以通过改变电机的电流来实现。

在启动和加速阶段,需要提供足够大的转矩来驱动车辆,而在稳定行驶和减速阶段,需要减小转矩以提高能效。

转矩控制的目标是在保证车辆安全和舒适性的前提下,实现最佳的车辆性能和能效。

通常情况下,转矩控制也采用闭环控制方法,即根据车辆的实际转矩和目标转矩的差异来调节电机的电流,使其尽可能接近目标转矩。

电流控制是电动汽车电机控制的另一个重要环节。

电流控制可以通过改变电机的电压和电阻来实现。

电流控制的目标是保证电机的工作在安全范围内,避免过大的电流对电机和电池造成损坏。

电流控制通常采用开环控制方法,即根据电机的额定电流和实际电流的差异来调节电机的电压和电阻,使其尽可能接近额定电流。

除了上述的基本控制策略之外,电动汽车的电机控制还可以结合车辆的动态需求和运行条件进行智能控制。

例如,根据车辆的行驶路况和载荷等信息,可以通过智能控制算法来实现电机控制的优化,提高车辆的动力性能和能效。

纯电动汽车电池散热系统的优化控制策略

纯电动汽车电池散热系统的优化控制策略

纯电动汽车电池散热系统的优化控制策略随着环境保护意识的增强和汽车工业的发展,纯电动汽车作为一种清洁、低碳的交通方式逐渐成为人们关注的焦点。

作为纯电动汽车的核心部件,电池扮演着关键的角色。

而电池的散热问题一直是制约纯电动汽车发展的瓶颈之一。

因此,对纯电动汽车电池散热系统的优化控制策略进行研究,对提高其性能与安全性具有重要意义。

一、纯电动汽车电池散热系统的重要性纯电动汽车电池散热系统是保证电池正常工作的关键。

电池在工作过程中会产生热量,若不能及时散热,会导致电池温度过高,影响其性能和寿命,甚至引发故障和事故。

因此,优化电池散热系统具有重要的意义。

二、现有的纯电动汽车电池散热系统的不足目前纯电动汽车电池散热系统主要采用的是风冷和液冷两种方式。

但是这两种方式都存在一定的不足之处。

风冷散热系统的散热效果较差,特别是在高温环境下,无法有效降低电池温度。

而液冷散热系统需要占用较大的空间,增加了整车的重量和成本。

三、纯电动汽车电池散热系统的优化控制策略为了解决纯电动汽车电池散热系统存在的问题,可以采取以下优化控制策略:1. 监测电池温度通过在电池上安装温度传感器,实时监测电池温度的变化。

当电池温度超过设定的安全范围时,自动启动散热系统,以确保电池温度维持在安全范围内。

2. 散热系统的设计与优化针对不同的散热方式,设计散热风道或散热液路,保证热量能够快速有效地传递到外界。

同时,选用高效的散热介质,提高散热效率。

3. 温度控制策略的优化通过优化温度控制策略,使电池工作于最佳温度范围内。

可以根据电池的温度特性和工作状态,动态调整散热系统的工作模式,避免过度散热或不足散热的问题。

4. 应用智能控制技术借助智能控制技术,实现对散热系统的智能化管理。

利用传感器采集的数据,结合算法和模型,自动调节散热系统的运行状态,提高散热效果和能源利用效率。

5. 结合其他散热手段除了传统的风冷和液冷方式外,还可以结合其他散热手段,如相变材料散热、热传导技术等,进一步提升纯电动汽车电池散热系统的性能。

纯电动汽车电机系统的控制策略

纯电动汽车电机系统的控制策略

纯电动汽车电机系统的控制策略纯电动汽车的电机系统控制策略是多样的,旨在实现高效的动力输出、维持电池状态和最大程度延长续航里程。

以下是一些常见的电动汽车电机系统控制策略:1.电机功率调节:控制电机的功率输出,以满足车辆的加速、维持恒速行驶和超车等需求。

电机功率通常是通过调整电机控制器中的电流和电压来实现的。

2.能量回收:电动汽车通常具有再生制动系统,能够将制动时产生的能量转化为电能,并存储在电池中。

控制策略会根据车辆速度和制动力度来调整能量回收的程度。

3.驱动模式选择:提供不同的驾驶模式,如经济模式、标准模式和运动模式。

每种模式会根据驾驶者的选择来调整电机的性能和续航里程。

4.动力分配:在多电机系统中,控制策略会决定不同电机之间的动力分配,以实现最佳的牵引力、悬挂控制和稳定性。

5.温度管理:控制电机和电池的温度,以维持在合适的操作范围内,以确保性能和寿命。

6.电池管理系统:监测和管理电池的状态,包括电池充电和放电速度,以避免过充或过放,从而延长电池寿命。

7.最佳速度控制:通过计算车辆和驾驶条件,选择最佳速度来提高能效和续航里程。

8.动力输出平滑性:通过调整电机的输出来确保加速和减速平稳,提高驾驶舒适性。

9.车辆动力分布:在具有多个电机的车辆中,控制策略可以根据驾驶条件和车辆稳定性来分配动力到前轮或后轮,或分配到单个轮胎以提高牵引力。

10.充电管理:控制充电速度、充电房间以及使用电网能源的时间,以满足用户需求和电力系统的可持续性。

这些策略通常是由电动汽车的控制单元(ECU)来执行,通过传感器和反馈系统来实时监测车辆状态和驾驶条件。

这些策略的目标是提高电动汽车的性能、效率和可持续性,同时确保驾驶安全性和舒适性。

纯电动汽车动力系统参数匹配及整车控制策略研究

纯电动汽车动力系统参数匹配及整车控制策略研究

纯电动汽车动力系统参数匹配及整车控制策略研究纯电动汽车动力系统参数匹配及整车控制策略研究摘要:随着环保要求的提升和电池技术的不断成熟,纯电动汽车逐渐成为了未来汽车发展的主要方向。

动力系统参数的合理匹配和整车控制策略的研究对于提高纯电动汽车的性能和续航里程至关重要。

本文通过对纯电动汽车动力系统参数匹配及整车控制策略的研究,可以为纯电动汽车的发展提供一些参考和借鉴。

关键词:纯电动汽车;动力系统参数匹配;整车控制策略;性能;续航里程1. 引言纯电动汽车是指完全依靠电能进行驱动的汽车。

相比传统的燃油驱动汽车,纯电动汽车具有零排放、低噪音、高能效等优势,因此备受人们关注。

然而,纯电动汽车的续航里程和性能仍然是制约其推广和应用的重要因素。

动力系统参数的合理匹配和整车控制策略的研究对于提高纯电动汽车的性能和续航里程至关重要。

2. 纯电动汽车动力系统参数匹配纯电动汽车的动力系统主要由电机、电池组、控制器和转速减速器等组成。

不同的动力系统参数配置会对纯电动汽车的性能和续航里程产生显著影响。

2.1 电机参数匹配电机是纯电动汽车的核心部件,其参数的选择将直接影响到汽车的性能和续航里程。

首先,要考虑电机的功率输出能力,以确保纯电动汽车具备足够的加速性能和爬坡能力。

其次,要合理选择电机的最高转速和最大扭矩,以满足纯电动汽车各种工况下的需求。

2.2 电池组参数匹配电池组是纯电动汽车的能源来源,其容量和能量密度的选择对续航里程至关重要。

较大的电池容量可以提供更长的续航里程,但也会增加整车的重量和成本。

因此,需要在综合考虑续航里程、重量和成本等因素的基础上,合理选择电池组的参数配置。

2.3 控制器参数匹配控制器是纯电动汽车动力系统的“大脑”,负责电机的控制和能量管理等功能。

控制器的参数设置直接影响到纯电动汽车的性能和能量利用效率。

合理选择控制器的参数配置,可以提高纯电动汽车的动力输出效率,进而提高整车的续航里程。

3. 整车控制策略研究整车控制策略是指对纯电动汽车的动力系统进行优化控制,以提高汽车的性能和续航里程。

纯电动汽车再生制动控制策略与仿真研究的开题报告

纯电动汽车再生制动控制策略与仿真研究的开题报告

纯电动汽车再生制动控制策略与仿真研究的开题报告一、选题背景纯电动汽车作为新能源汽车领域的一种重要类型,因其环保节能、零排放以及优异的驾驶性能受到越来越多的关注。

其中,再生制动系统是纯电动汽车的关键技术之一。

再生制动系统将汽车制动时产生的动能转化为电能回收存储,不仅可以增加汽车续航里程,还可以降低刹车片的磨损,延长刹车系统的使用寿命。

因此,研究纯电动汽车再生制动控制策略具有重要的应用意义。

二、选题目的本文旨在研究纯电动汽车再生制动控制策略,通过对控制算法的优化与仿真分析,提高纯电动汽车再生制动效率和性能,降低系统成本和技术难度,为纯电动汽车的产业化应用提供技术支撑。

三、主要研究内容1. 对纯电动汽车再生制动系统的组成和工作原理进行介绍和分析。

2. 分析纯电动汽车再生制动系统的控制策略,包括电机控制、制动力分配等控制参数。

3. 基于MATLAB/Simulink软件平台,建立纯电动汽车再生制动控制模型,进行仿真分析,比较不同控制策略下的制动效果和能量回收量。

4. 对优化后的再生制动控制策略进行实车试验,并对试验结果进行分析和验证。

四、预期结果通过本研究,预期可以得到以下成果:1. 详细分析纯电动汽车再生制动系统的组成和工作原理,深入了解再生制动技术的原理;2. 研究纯电动汽车再生制动系统的控制策略,找出不同控制策略的优缺点;3. 基于MATLAB/Simulink软件平台,建立纯电动汽车再生制动控制模型,进行仿真分析;4. 对优化后的再生制动控制策略进行实车试验,验证仿真结果的可靠性。

五、论文结构1.绪论1.1 选题背景和意义1.2 国内外研究现状和进展1.3 本论文研究内容和方法1.4 论文组织结构2.纯电动汽车再生制动技术分析2.1 再生制动技术原理2.2 再生制动系统组成和控制策略3.纯电动汽车再生制动控制系统建立3.1 纯电动汽车控制系统概述3.2 再生制动控制系统建立3.3 电机控制策略研究4.纯电动汽车再生制动控制仿真分析4.1 仿真模型建立和参数设计4.2 不同控制策略下的仿真分析4.3 仿真结果分析5.纯电动汽车再生制动实车试验5.1 试车平台建立和实验设计5.2 试车数据采集和分析5.3 试车结果分析6.总结与展望6.1 研究成果总结6.2 研究存在问题和改进方向6.3 纯电动汽车再生制动未来发展趋势参考文献。

纯电动汽车控制策略课件

纯电动汽车控制策略课件
;能量回收系统通过刹车和滑行时的能量回收,提高续航里程。
电池管理控制策略
总结词
电池管理控制策略是纯电动汽车的关键技术之一,负 责电池的充放电管理、状态监测和安全保护。
详细描述
电池管理控制策略包括电池荷电状态估计、电池健康 状态监测、电池热管理和电池均衡等方面。荷电状态 估计用于预测电池剩余电量和续航里程;健康状态监 测用于评估电池性能退化程度;热管理控制电池温度 ,确保电池在适宜的温度范围内工作;电池均衡则通 过控制各电池单元的充电和放电状态,保持电池整体 性能的一致性。
节能
相比传统燃油车,纯电动汽车能够大幅降低能源 消耗。
ABCD
零排放
纯电动汽车在运行过程中不产生尾气排放,对环 境友好。
噪音低
纯电动汽车使用电动机,运行噪音相对较小。
纯电动汽车的发展历程
早期探索阶段
20世纪初,电动汽车开始出现,但由于技术限制和基 础设施不完善,发展缓慢。
现代发展阶段
随着电池技术的进步和环保需求的提高,纯电动汽车 重新受到关注,各大汽车制造商开始投入研发。
共享经济
智能化驾驶
随着自动驾驶技术的发展 ,纯电动汽车将更加智能 化,能够实现更高效、安 全的驾驶。
03
共享经济
未来纯电动汽车可能将更 多地融入共享经济,提供 更加便捷的出行服务。
未来发展面临的挑战
基础设施建设
目前充电设施建设相对滞后,未 来需要大规模建设充电桩以满足 纯电动汽车的充电需求。
续航里程焦虑
化则通过优化电机的运行状态,降低能耗,提高续航里程

充电控制策略
总结词
充电控制策略是纯电动汽车的重要环节之一,负责协调 充电设施与车辆之间的通信和控制,确保充电过程的安 全、稳定和高效。

新能源汽车驱动系统控制策略研究

新能源汽车驱动系统控制策略研究

新能源汽车驱动系统控制策略研究随着环境污染和能源危机的日益严峻,新能源汽车作为替代传统燃油汽车的重要选择,受到了广泛的关注和研究。

新能源汽车的核心技术之一就是驱动系统控制策略,包括能量管理、驱动力分配和运行模式控制等方面。

本文对新能源汽车驱动系统控制策略进行了研究,并提出了一些改进措施,为新能源汽车的研发和推广提供参考。

一、能量管理策略能量管理是新能源汽车驱动系统控制的核心问题之一、它主要通过对电池的充放电控制和其它能源利用的优化配置来实现能量的高效利用和系统的可靠性。

在能量管理策略中,重点考虑的问题包括电池状态估计、能量利用率优化和动力需求预测等。

对于电池的状态估计,常用的方法有开路电压法、卡尔曼滤波法和粒子群算法等。

这些方法可以通过测量电池的电压、电流和温度等参数,对电池的当前状态进行估计,并预测其剩余寿命和可用容量。

能量利用率优化是能量管理策略中的重要目标之一、通过对电池的充放电过程进行优化控制,可以最大限度地提高能量转化效率,延长电池的使用寿命。

常用的优化方法包括模型预测控制、动态规划和遗传算法等。

动力需求预测是能量管理策略中的另一个重要问题。

通过对路况、载荷和驾驶行为等因素的分析和预测,可以准确预估汽车未来的动力需求,从而合理调整能量管理策略。

常用的预测方法有神经网络、支持向量机和粒子滤波等。

二、驱动力分配策略驱动力分配是指根据路况、负载和驾驶需求等因素,合理分配电池和传动系统的输出扭矩,以提供最佳的车辆动力性能和能量利用效率。

驱动力分配策略需要综合考虑功率性能、能量利用率和系统稳定性等因素。

常见的驱动力分配策略包括前驱动力分配、后驱动力分配和全驱动力分配等。

前驱动力分配是将电池的输出功率主要分配给前轮驱动,后驱动力分配是将电池的输出功率主要分配给后轮驱动,全驱动力分配是将电池的输出功率均匀分配给前后轮驱动。

对于不同的路况和驾驶需求,选择合适的驱动力分配策略可以提高车辆的行驶稳定性和能量利用效率。

《2024年纯电动汽车动力系统参数匹配及整车控制策略研究》范文

《2024年纯电动汽车动力系统参数匹配及整车控制策略研究》范文

《纯电动汽车动力系统参数匹配及整车控制策略研究》篇一一、引言随着环境保护意识的逐渐加强和科技的不断进步,纯电动汽车作为一种新型的交通工具,正受到越来越多的关注和重视。

动力系统作为纯电动汽车的核心部分,其参数匹配及整车控制策略的研究对纯电动汽车的性能和运行效果起着决定性的作用。

本文将重点探讨纯电动汽车动力系统的参数匹配以及整车控制策略的研究,为相关研究和实践提供理论支持。

二、纯电动汽车动力系统参数匹配1. 电池系统参数匹配电池系统是纯电动汽车的能量来源,其性能直接影响到整车的续航里程和动力性能。

电池系统参数匹配主要包括电池类型选择、电池容量确定以及电池组布置等。

应根据车辆的使用需求、成本考虑以及环境适应性等因素,选择合适的电池类型和容量。

同时,合理的电池组布置可以保证电池系统的散热性能和安全性。

2. 电机系统参数匹配电机系统是纯电动汽车的动力输出部分,其性能直接影响到整车的动力性能和能效。

电机系统参数匹配主要包括电机类型选择、额定功率和峰值功率的确定等。

应根据车辆的使用需求、电机效率、成本等因素,选择合适的电机类型和功率。

3. 控制系统参数匹配控制系统是纯电动汽车的动力传递和管理部分,其性能直接影响到整车的运行稳定性和能效。

控制系统参数匹配主要包括控制器类型选择、控制策略的制定等。

应结合电池系统和电机系统的特性,制定合理的控制策略,以实现整车的高效运行。

三、整车控制策略研究1. 能耗优化控制策略能耗优化控制策略是纯电动汽车控制策略的重要组成部分,其主要目的是在保证车辆动力性能的前提下,降低能耗,提高续航里程。

可以通过优化车辆的运行模式、驾驶者的驾驶行为以及电池管理系统等手段,实现能耗的优化。

2. 充电策略研究充电策略是纯电动汽车充电过程中的重要控制策略,其目的是在保证充电安全的前提下,提高充电效率。

应根据电池系统的特性,制定合理的充电策略,包括充电模式选择、充电电流和电压的控制等。

3. 故障诊断与保护策略故障诊断与保护策略是保证纯电动汽车安全运行的重要措施。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
1.2 整车驱动控制策略的分析与设计
纯电动汽车驱动系统中主要有电机驱动装置,传动系统,动力电池 等。必须有一个性能优越、安全可靠的整车控制策略,从各个环节上合理 控制车辆的运行状态、能源分配和协调功能,以充分协调和发挥各部分的 优势,使汽车整体获得最佳运行状态。整车控制策略主要包括:
(一) 汽车驱动控制。根据司机的驾驶要求、车辆状态、道路及环境状 况,经分析和处理,向电机控制器发出相应指令,满足驾驶要求。
功率转换器的作用是调节电机和能源 间的能源流。能量的回流是因为纯电动汽 车制动能量的再生,该能量被能量源吸收。 应指出的是多数纯电动汽车的电池、超级 电容器和飞轮都能吸收制动再生能量。
能量管理单元与电子控制器一起控制 可再生制动,从而实现系统能量流的最优 化。能量管理单元控制能量并监测能源的 使用情况。辅助动力供给系统向所有的纯 电动汽车辅助装置提供不同电压的电源。
曲线1反映了一种硬踏板策略,能够 满足驾驶员中高负荷的驾驶感觉, 但低负荷时操控性不好。曲线3反映 了一种软踏板策略,车辆加速感觉 整体偏软,但低负荷操控性较好。 曲线2是一种线性踏板策略,能够反 映踏板实际位置,控制效果介于曲 线1和3之间。
精Байду номын сангаас课件
2. 1 加速转矩控制策略
结合电机的外特性曲线,就可以得到纯电动车的动力特性图,即加速转矩 MAP, 如图3所示。最下部曲线是加速踏板回零时的电机滑行制动转矩,模拟传 统车发动机的倒拖阻转矩,并转化为电能储存到蓄电池中 。
精品课件
2. 2 制动能回馈控制策略
在车速很低的爬行区,回馈能 量与回馈路径能量损耗基本相抵, 回馈效率很低且会明显影响驾驶 员制动感觉,故不进行制动能量 回馈 。在低速区,电机具有一定转 速,施以较低制动转矩,尽量回 收制动能量。高速区时车辆惯性 动能很高,可以施加较高制动转 矩而不影响驾驶员制动感觉。但 由于缺少制动踏板开度信号,该 策略的再生制动所占总制动比例 精品课件 较小,具体数值通过实车标定得
精品课件
1.1 纯电动汽车动力系统结构
纯电动汽车主要由三个子系统组成: 电驱动系统、能源系统和辅助系统。
电力驱动子系统包括电子控制器、功 率转换器、电机、机械传动装置。能源子 系统包括能源及能量管理系统。辅助系统 包括助力转向单元、温控单元和辅助动力 供给单元等。根据驾驶者从加速踏板和制 动踏板发出的信号,电子控制器发出相应 的控制信号以控制功率转换器功率器件的 开关。
(二) 制动能量回馈控制。根据制动踏板和加速踏板信息、车辆行驶状 态信息、蓄电池状态信息,计算再生制动力矩,向电机控制器发出指令。
(三) 整车能量优化管理。通过对车载能源动力系统的管理,提高整车 能量利用效率,延长纯电动汽车的续驶里程。
精品课件
(四) 车辆状态显示。对车辆某些信号进行采集和转换,由主控制器通
转矩控制策略可以实现加速转矩控制、制动能量回馈、驱动转矩的功率 限制等主要功能以及驻坡、怠速爬行、WTO 转矩补偿、跛行回家等辅助驱 动功能。
精品课件
2. 1 加速转矩控制策略
加速转矩控制策略直接影响整车驾驶的动力性和舒适性。加速踏板开 度与加速转矩函数关系形成不同的加速转矩控制策略。如图2所示, 曲线 1、2和3分别表示3种加速踏板处理策略 。
基于上述原则,制定控制策略的思路为: 实时考虑行驶工况,电池 SOC值等影响因素,根据规则将转矩合理地分配给电机。同时限定电机 的工作区域和SOC值的范围,确保电机和动力电池能够长时间保持高效
精品课件
1.4 整车驱动控制策略的分析与设计
整车驱动控制策略的核心是根据驾驶员动作分析其驾驶意图,并综合考虑 动力系统状态,计算驾驶员对电机的期望转矩,然后向电机驱动系统发出指 令,使纯电动轿车的行驶状态尽可能快速、准确地达到工况要求和满足驾驶 员的驾驶目的。
精品课件
2. 2 制动能回馈控制策略
制动能量回馈是电动汽车(包括纯电动车、混合动力车和插电式燃料电池车) 的标志性功能。制动能量回馈控制的原则是在最大程度提高能量回馈的同时, 确保电制动与机械制动的协调控制,以保证汽车制动力的要求。
考虑到本项目车机械制动系统不可调整,而且只有制动踏板开关传感器, 实施了纯软件的轻度制动能量回馈控制策略。制动踏板踩下时,回馈制动功能 激活,回馈制动转矩与车速的函数关系如图4所示 。
2. 3 驱动转矩的功率限制策略
该策略是为了保护能源系统、电机驱动系统及整车安全运行。 在能源系统能量不足时,若整车控制器强制按照驾驶员期望转矩,极易引 起能源系统自保高压断电或损坏能源系统,造成事故,因此在这种情况下必须 限制电机输出转矩。驱动转矩的功率限制策略实时根据三大高压子系统状态, 计算蓄电池功率、电机功率及高压辅助系统消耗功率,上策是通过减少高压 辅助系统能量供给来最大可能满足驾驶员动力需求,若仍然能量供需不平衡, 下策就是限制电机功率需求 。
1.3 整车驱动控制策略的分析与设计
车辆需要在满足驾驶员意图,汽车的动力性、平顺性和其他基本技术 性能以及成本控制等要求的前提下选择合适的控制策略。针对各部件的 特性及汽车的运行工况,控制策略要实现能量在电机、电池之间的合理 而有效分配、使整车 系统效率达到最高,获得整车最大的经济性以及平 稳的驾驶性能。在设计纯电动汽车的时候,首先要在保证汽车基本性能 的前提下降低汽车的能量消耗,提高车辆的续驶里程。同时还要兼顾电 池的寿命,并充分考虑驾驶员的驾驶意图、汽车的平顺性以及安全性。
纯电动汽车整车驱动控制策略
精品课件
纯电动汽车作为一种节能 、无污染的理想“零 排放 ”汽车 ,是 21 世纪汽车工业重要的发展趋势 。 随着环保及节能意识的增强 , 纯电动汽车的开发 和应用日益受到世界各主要汽车生产国和大型汽 车企 业的重视 。
整车控制器是纯电动汽车运行的核心单元 , 担负着整车驱动控制 、能量管理 、整车安全及故障 诊 断和信息处理等功能 ,是实现纯电动汽车安全 、 高效运行的必要保障 。整车控制策略作为整车控制器 的软件部分 ,是整车控制器的核心部分 。
相关文档
最新文档