命题与证明知识讲解

合集下载

13《13.1命题与证明》

13《13.1命题与证明》

D
1
E
C F
2
A
B
你有哪些收获?
⑴命题、逆命题、互逆命题的概念 ⑵什么叫证明 ⑶定理、逆定理、互逆定理的概念
谢谢!
条件变结论
命题“两直线平行,内错角相等”和它 的逆命题“内错角相等,两直线平行”都 是真命题,所以它们都是定理。因此它们 就是互逆定理。
归纳
互逆定理:如果一个定理的逆命题是真命题,
那么这个逆命题也可以称为原定理的逆定理。一个 定理与它的逆定理是互逆定理。
温馨提示:
(1)互逆定理必须都是真命题。 (2)一个定理一定有逆命题,但不一定有逆定理,只有当一个
证明真命题的步骤:
(1)根据题意画出图形; (2)根据题设和结论,结合图形,写出
“已知”和“求证”; (3)根据基本事实、 已有定理等进行证明
例题分析
证明命题“两条直线被第三条所截,如果内错角 相等,那么同位角也相等”是真命题。
第一步:
根据题意,画出图形
l3
3 1
l1
2
l2
证明命题“两条直线被第三条所截,如果内错角 相等,那么同位角也相等”是真命题。
{ 3、命题的类型:
正确的命题叫做真命题 错误的命题叫做假命题
4、基本事实:有些命题经过实践检验被公认为真命题,
我们把这样的命题叫做基本事实
5、定理:
有些真命题,它们的正确性已经过演绎推理 得到证实,并被作为判定其他命题真假的依
据,这样的命题叫做定理
指出下列命题的题设和结论 1、如果两条直线相交,那么它们只

又∵ ∠1=∠2 (已知)
∴AB//EF
(内错角相等,两直线平行)
∴ CD// EF ( 平行于同一直线的两直线平行)

《命题与证明》知识讲解

《命题与证明》知识讲解

《命题与证明》知识讲解宋老师【学习目标】1.了解定义、命题、真命题、假命题的含义,会区分命题的题设(条件)和结论,会判断一个命题的真假;2.了解综合法的证明步骤和书写格式. 3.运用平行线的判定与性质、三角形的内角和定理及其推论去解决一些简单的问题,用几何语言进行简单的推理论证.4. 了解逆命题的概念,会识别两个互逆命题,并知道原命题成立,逆命题不一定成立. 会判断一个命题的逆命题的真假.【要点梳理】要点一、定义、命题、真命题、假命题定义:对名称或术语的含义进行描述或做出规定,就是给它们的定义. 命题:判断一件事情的句子叫命题.真命题:如果条件成立,那么结论成立,这样的命题叫做真命题. 假命题:如果条件成立时,不能保证结论总是正确的,也就是说结论不成立,这样的命题叫做假命题.要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.其中命题的题设是已知事项,结论是由已知事项推出的事项.当证明一个命题是假命题时只要举出一个反例就可以,即只需列出一个具备条件而不具备结论的例子即可. 要说明一个真命题,则要从命题的条件出发,根据已学过的基本事实、定义、性质和定理等,进行有理有据的推理, 证明它的正确性.要点二、证明根据已知真命题,确定某个命题的真实性的过程,叫做证明.经过证明的真命题称为定理.证明过程必须做到言必有据. 证明过程通常包含几个推理,每个推理都应包括因、果和有因得果的依据.其中,“因”是已知事项,“果”是推出的结论;“有因得果的依据”是基本事实、定义、已学过的定理以及等式性质、不等式性质.证明的步骤: 1. 根据题意,画出图形;2. 根据命题的条件、结论,结合图形,写出已知、求证;3. 写出证明过程.要点诠释:推理和证明是有区别的,推理是证明的组成部分,一个证明过程往往包含多个推理.要点三、三角形的内角和定理及其推论三角形的内角和定理:三角形的三个内角的和等于180° .推论:三角形的外角等于与它不相邻的两个内角和.要点诠释:(1) 三角形内角的概念:三角形内角是三角形三边的夹角.每个三角形都有三个内角,且每个内角均大于0°且小于180°.(2)三角形内角和定理的应用主要用在求三角形中角的度数.①直接根据两已知角求第三个角;②依据三角形中角的关系,用代数方法求三个角;③在直角三角形中,已知一锐角可利用两锐角互余求另一锐角.(3)三角形外角的定义:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.三角形共有六个外角,其中有公共顶点的两个相等,因此共有三对.(4)三角形的外角性质:①三角形的外角和为360°.②三角形的一个外角等于和它不相邻的两个内角的和.③三角形的一个外角大于和它不相邻的任何一个内角.(5)若研究的角比较多,要设法利用三角形的外角性质②将它们转化到一个三角形中去.要点四、互逆命题在两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题是另一个命题的逆命题•把一个命题的条件与结论互换,就得到它的逆命题,我们能够判断一个命题及其它的逆命题的真假•证明一个命题是假命题,只需举出一个反例就可以了要点诠释:每一个命题都有对应的逆命题,一个真命题的逆命题不一定是真命题,同样一个假命题的逆命题也不一定仍为假命题.反例就是复合命题的条件,但不符合命题的结论的例子,它可以是数值、图形,也可以是文字说明•一个命题的反例可以有很多个,解题时只需要举出其中最易懂的一个即可•【典型例题】类型一、逆命题与逆定理A. 如果|a|=1,那么a=1B. 有两条边相等的三角形是等腰三角形C. 如果a为实数,那么a是有理数D. 相等的角是对顶角.;【答案】B.【解析】如果|a|=1,那么a=± 1,故A错误;如果a为有理数,那么a是实数,故C错误; 两个直角三角形中的两个直角相等,但不是对顶角,故D错误;而B根据等腰三角形的定义可判断正确;【总结升华】主要考查命题的真假,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义•举一反三:【变式】(2016春?东平县期中)下列句子中,不是命题的是()A .三角形的内角和等于180°B .对顶角相等C.过一点作已知直线的平行线 D .两点确定一条直线【答案】C.C不是可以判断真假的陈述句,不是命题;A、B、D均是用语言表达的、可以判断真假的陈述句,都是命题. 故选C.2. 下列命题中,逆命题正确的是()A.对顶角相等B. 直角三角形两锐角互余C.全等三角形面积相等D. 全等三角形对应角相等【答案】B.【解析】A选项逆命题是相等的角是对顶角,不对;B选项逆命题是两个锐角互余的三角形是直角三角形,对的;C选项逆命题是面积相等的三角形是全等三角形显然不对;D选项的逆命题是对应角相等的三角形是全等三角形,不一定,也可能是相似三角形【总结升华】判断逆命题是否正确,能举出反例即可•举一反三:【变式】试将下列各个命题的题设和结论相互颠倒,得到新的命题,并判断这些命题的真假.(1)对顶角相等;(2)两直线平行,同位角相等;⑶若a=0,则ab=O;(4)两条直线不平行,则一定相交;【答案】(1)对顶角相等(真);相等的角是对顶角(假);(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真);(3)若a=0,则ab=0(真);若ab=0,则a=0(假);(4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真);3. 对于同一平面内的三条直线a、b、c,给出下列五个论断:① a// b;②b// c;③a丄b;④a // c;⑤a丄c,请你以其中两个作为题设,另一个作为结论,用“如果…,那么…”的形式,写出两个正确的命题.【思路点拨】同一平面内,根据垂直于同一直线的两直线平行;平行于同一直线的两直线平行,则可由③⑤得到②;由①②得到④.【答案与解析】解:如果③a丄b,⑤a丄c,那么②b / c; 如果①a / b,②b // c,那么④a / c.【总结升华】本题考查了命题:判断事物的语句叫命题,正确的命题叫真命题,错误的命题为假命题;命题分为题设与结论两部分•也考查了平行线的性质.类型二、证明举例(1 )平行线的性质与判定进行几何证明:CP4. (2015春?姜堰市期末)如图,直线AB和直线CD、直线BE和直线CF都被直线BC 所截.已知AB 丄BC、CD丄BC, BE // CF,,求证:/ 1= / 2.\A BC D【思路点拨】由于AB丄BC、CD丄BC得到AB // CD,利用平行线的性质得到 / ABC= / DCB,又BE // CF,贝U / EBC= / FCB,可得至U / ABC - / EBC= / DCB - / FCB,即有 /1= / 2.【答案与解析】证明:•/ AB 丄BC、CD 丄BC,••• AB // CD ,••• / ABC= / CB ,又••• BE // CF,••• / EBC= / FCB ,••• / ABC - / EBC= / DCB - / FCB,• / 1 = / 2.【总结升华】本题考查的是平行线的判定和性质的综合应用举一反三:【变式】如图所示,E在直线DF上,B在直线AC上,若/ AGB M EHF / C=Z D,试判断/ A 与/ F 的关系,并说明理由.证明:•••/ AGB=/ DGF / AGB M EHF,•••/ DGF2 EHF•BD// CE;•••/ C=Z ABD又•••/ C=Z D,•••/ D=Z ABD•DF// AC;•••/ A=Z F.(2)与三角形有关的几何证明:5. 如图,已知三角形ABC的三个内角平分线交于点I , IH丄BC于H,试比较/ CIH和/【思路点拨】根据角平分线的定义、三角形内角和定理可知/ BAD+Z ABI+ / HCI=90° 又因为/ BAD+Z ABI= Z BID, 90 ° - Z HCI=Z CIH,所以/ BID=Z CIH.【答案与解析】证明:•/ AI、BI、CI为三角形ABC的角平分线,1 1 1•Z BAD—Z BAC Z ABI= Z ABC Z HCI= Z ACB2 2 2•Z BAD+Z ABI+ Z HCI1 1 1=Z BA* Z AB* Z ACB2 2 21= (Z BAC+Z ABC+Z ACB21=x 180°2=90°.•••/ BAD+Z ABI=90 °- / HCI.•/ IH 丄BC,•••/ IHC=90°•90°- Z HCI=Z CIH,•••/ CIH=Z BAD+Z ABI•••Z BID= Z BAD+Z ABI (三角形的一个外角等于与其不相邻的两个内角的和)•Z BID= Z CIH.【总结升华】考查了角平分线的定义及三角形内角和定理:三角形三个内角的和为180° ,在推导角的关系时,一定不要忘记与三角形有关的角中还有一个特别重要的性质:三角形的一个外角等于与其不相邻的两个内角的和•(3)文字命题的证明:【思路点拨】先画图,设等边三角形的边长为a,高为h,再利用三角形的面积公式来求,原三角形分成三个大小不等的三个三角形,三个三角形的面积和与原三角形的面积相等,即S A ABC=S A PAB+S A PBC+S A PAC;可得h=PE+PF+PD.【答案与解析】已知:如图,△ ABC是等边三角形,P是三角形内任一点,PEL AB PGL AC PF丄BC垂足分别为E、G F,求证:PE+PG+P为定值.证明:设等边三角形△ ABC的边长为a,面积为S.连结PA PB PC,贝U1 1 1S^APB F a?PE, S A CP= a?PF, S\AP(= a?PG2 2 21 1 1于是S AAPE+S^CP+S^AP(= a?PE+—a?PF+— a?PG2 2 21 1 1即—a?PE+— a?PF+— a?PG=S2 2 2PE+PF+PG= ,为定值.a【总结升华】对于文字命题的证明,要根据文字所描述的内容写出已知和求证,然后证明。

中考数学复习考点知识与题型专题讲解28---命题与证明(解析版)

中考数学复习考点知识与题型专题讲解28---命题与证明(解析版)

中考数学复习考点知识与题型专题讲解专题28 命题与证明【知识要点】命题的概念:像这样判断一件事情的语句,叫做命题。

命题的形式:“如果…那么…”。

(如果+题设,那么+结论)真命题的概念:如果题设成立,那么结论一定成立,这样的命题叫做真命题。

假命题的概念:如果题设成立,不能保证结论一定成立,这样的命题叫做假命题。

如何说明一个命题是假命题:只需要举出一个反例即可。

定义、命题、公理和定理之间的关系:这四者都是句子,都可以判断真假,即定义、公理和定理也是命题,不同的是定义、公理和定理都是真命题,都可以作为进一步判断其他命题真假的依据,而命题不一定是真命题,因而它不一定能作为进一步判断其它命题真假的依据。

一个命题的正确性需经过推理,才能作出判断,这个推理过程叫做证明。

证明的依据:可以是已知条件,也可以是学过的定义、基本事实或定理等。

【考查题型】考查题型一判断是否命题及命题真假典例1.(2021·广西贵港市·中考真题)下列命题中真命题是( )A 的算术平方根是2B .数据2,0,3,2,3的方差是65C .正六边形的内角和为360°D .对角线互相垂直的四边形是菱形【答案】B【分析】A.根据算术平方根解题;B.根据方差、平均数的定义解题;C.根据多边形的内角和为180(n 2)︒⨯-解题;D.根据菱形、梯形的性质解题.【详解】A. 2=,2,故A 错误;B. 数据2,0,3,2,3的平均数是20323=25++++,方差是 2222216(22)(02)(32)(22)(32)55⎡⎤-+-+-+-+-=⎣⎦,故B 正确; C. 正六边形的内角和为180(62)720︒⨯-=︒,故C 错误;D. 对角线互相垂直的四边形不一定是菱形,可能是梯形,故D 错误,故选:B .【点睛】本题考查判断真命题,其中涉及算术平方根、方差、多边形内角和、梯形性质、菱形性质等知识,是基础考点,难度较易,掌握相关知识是解题关键.变式1-1.(2021·四川雅安市·中考真题)下列四个选项中不是命题的是( )A .对顶角相等B .过直线外一点作直线的平行线C .三角形任意两边之和大于第三边D .如果a b a c ==,,那么b c =【答案】B【分析】判断一件事情的语句,叫做命题.根据定义判断即可.【详解】解:由题意可知,A 、对顶角相等,故选项是命题;B 、过直线外一点作直线的平行线,是一个动作,故选项不是命题;C 、三角形任意两边之和大于第三边,故选项是命题;D 、如果a b a c ==,,那么b c =,故选项是命题;故选:B .【点睛】本题考查了命题与定理:判断一件事情的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.注意:疑问句与作图语句都不是命题.变式1-2.(2021·内蒙古通辽市·中考真题)从下列命题中,随机抽取一个是真命题的概率是( ) (1)无理数都是无限小数;(2)因式分解()()211ax a a x x -=+-; (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ;(4)弧长是20cm π,面积是2240cm π的扇形的圆心角是120︒.A .14B .12C .34D .1 【答案】C分别判断各命题的真假,再利用概率公式求解.【详解】解:(1)无理数都是无限小数,是真命题,(2)因式分解()()211ax a a x x -=+-,是真命题, (3)棱长是1cm 的正方体的表面展开图的周长一定是14cm ,是真命题,(4)设扇形半径为r ,圆心角为n ,∵弧长是20cm π,则180n r π=20π,则3600nr =,∵面积是2240cm π,则2360n r π=240π,则2nr =360×240, 则2360240243600nr r nr ⨯===,则n=3600÷24=150°, 故扇形的圆心角是150︒,是假命题, 则随机抽取一个是真命题的概率是34, 故选C.【点睛】本题考查了命题的真假,概率,扇形的弧长和面积,无理数,因式分解,正方体展开图,知识点较多,难度一般,解题的关键是运用所学知识判断各个命题的真假.变式1-3.(2021·湖北宜昌市·中考真题)能说明“锐角α,锐角β的和是锐角”是假命题的例证图是( ).A .B .C .D .【分析】先将每个图形补充成三角形,再利用三角形的外角性质逐项判断即得答案.【详解】解:A 、如图1,∠1是锐角,且∠1=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;B 、如图2,∠2是锐角,且∠2=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意;C 、如图3,∠3是钝角,且∠3=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是假命题,故本选项符合题意;D 、如图4,∠4是锐角,且∠4=αβ+,所以此图说明“锐角α,锐角β的和是锐角”是真命题,故本选项不符合题意.故选:C .【点睛】本题考查了真假命题、举反例说明一个命题是假命题以及三角形的外角性质等知识,属于基本题型,熟练掌握上述基本知识是解题的关键.变式1-4.(2021·安徽中考真题)已知点,,A B C 在O 上.则下列命题为真命题的是( ) A .若半径OB 平分弦AC .则四边形OABC 是平行四边形B .若四边形OABC 是平行四边形.则120ABC ∠=︒C .若120ABC ∠=︒.则弦AC 平分半径OBD .若弦AC 平分半径OB .则半径OB 平分弦AC【答案】B【分析】根据圆的有关性质、垂径定理及其推论、特殊平行四边形的判定与性质依次对各项判断即可.【详解】A .∵半径OB 平分弦AC ,∴OB ⊥AC ,AB=BC ,不能判断四边形OABC 是平行四边形,假命题;B .∵四边形OABC 是平行四边形,且OA=OC,∴四边形OABC 是菱形,∴OA=AB=OB ,OA ∥BC ,∴△OAB 是等边三角形,∴∠OAB=60º,∴∠ABC=120º,真命题;C .∵120ABC ∠=︒,∴∠AOC=120º,不能判断出弦AC 平分半径OB ,假命题;D .只有当弦AC 垂直平分半径OB 时,半径OB 平分弦AC ,所以是假命题,故选:B .【点睛】本题主要考查命题与证明,涉及垂径定理及其推论、菱形的判定与性质、等边三角形的判定与性质等知识,解答的关键是会利用所学的知识进行推理证明命题的真假.考查题型二写一个命题的逆命题典例2.(2021·广东广州市·九年级二模)下列命题的逆命题成立的是()A.全等三角形的对应角相等B.两个角都是45,则这两个角相等C.有两边相等的三角形是等腰三角形D.菱形的对角线互相垂直【答案】C【分析】写出每个命题的逆命题,然后逐一判断逆命题的真假,即可.【详解】A.全等三角形的对应角相等的逆命题是:“对应角相等的三角形是全等三角形”,不成立;B. 两个角都是45,则这两个角相等的逆命题是:“两个角相等,则这两个角都是45°”不成立;C. 有两边相等的三角形是等腰三角形的逆命题是:“等腰三角形有两边相等”,成立D. 菱形的对角线互相垂直的逆命题是:“对角形相互垂直的四边形是菱形”,不成立故选C.【点睛】本题主要考查命题的逆命题,熟练掌握全等三角形的性质,等腰三角形的定义,菱形的性质,是解题的关键.变式2-1.(2021·莆田擢英中学九年级零模)下列命题中,逆命题为真命题的是()A.对顶角相等B.邻补角互补C.两直线平行,同位角相等D.互余的两个角都小于90°【答案】C【分析】先写出各个命题的逆命题,再进一步判断真假,即可.【详解】A.对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题;B.邻补角互补的逆命题是互补的角是邻补角,逆命题是假命题;C.两直线平行,同位角相等逆命题是同位角相等,两直线平行,逆命题是真命题;D.互余的两个角都小于90°的逆命题是都小于90°的角互余,逆命题是假命题;故选:C.【点睛】本题主要考查逆命题与真假命题,能写出原命题的逆命题是解题的关键.变式2-2.数学中有一些命题的特征是:原命题是真命题,但它的逆命题却是假命题.例如:如果a >2,那么a2>4.下列命题中,具有以上特征的命题是()A.两直线平行,同位角相等B.如果|a|=1,那么a=1C.全等三角形的对应角相等D.如果x>y,那么mx>my【答案】C【分析】分别判断原命题和其逆命题的真假后即可确定正确的选项.【详解】解:A、原命题正确,逆命题为同位角相等,两直线平行,正确,为真命题,不符合题意;B 、原命题错误,是假命题;逆命题为如果a =1,那么|a |=1,正确,是真命题,不符合题意;C 、原命题正确,是真命题;逆命题为:对应角相等的三角形全等,错误,是假命题,符合题意;D 、当m =0时原命题错误,是假命题,不符合题意,故选:C .【点睛】考查了命题与定理的知识,解题的关键是能够正确的写出一个命题的逆命题,难度不大. 考查题型三 用反证法证明命题典例3.(2021·河北九年级二模)求证:两直线平行,内错角相等如图1,若//AB CD ,且AB 、CD 被EF 所截,求证:AOF EO D '∠=∠以下是打乱的用反证法证明的过程①如图2,过点O 作直线A B '',使A OF EO D ''∠=∠,②依据理论依据1,可得//A B CD '',③假设AOF EO D '∠≠∠,④AOF EO D '∴∠=∠.⑤与理论依据2矛盾,∴假设不成立.证明步骤的正确顺序是( )A .①②③④⑤B .①③②⑤④C .③①④②⑤D .③①②⑤④【答案】D【分析】根据反证法的证明步骤分析即可.【详解】解:假设AOF EO D '∠≠∠,如图2,过点O 作直线A B '',使A OF EO D ''∠=∠,∴//A B CD '',这与平行公理“过直线外一点,有且只有一条直线与已知直线平行”矛盾,∴假设不成立,∴AOF EO D '∠=∠.故选:D【点睛】本题考查了反证法,反证法的证明步骤一般先假设与要求证结的相反的命题,再根据已知条件进行正面,最后得出的结论与已知或数学定理矛盾,从而说明要求证命题正确.变式3-1.(2021·浙江九年级其他模拟)能说明命题“若a >b ,则3a >2b “为假命题的反例为( )A .a =3,b =2B .a =﹣2,b =﹣3C .a =2,b =3D .a =﹣3,b =﹣2【答案】B【分析】本题每一项代入题干命题中,不满足题意即为反例.【详解】解:当a =﹣2,b =﹣3时,﹣2>﹣3,而3×(﹣2)=2×(﹣3),即a >b 时,3a =2b ,∴命题“若a >b ,则3a >2b ”为假命题,故选:B .【点睛】本题考查的是假命题的证明,任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.变式3-2.(2021·浙江杭州市·八年级其他模拟)用反证法证明“ABC 中,若A B C ∠∠∠>>,则A 60∠>”,第一步应假设()A .A 60∠=B .A 60∠<C .A 60∠≠D .A 60∠≤【答案】D【分析】反证法的步骤中,第一步是假设结论不成立,反面成立,可据此进行判断;需注意的是∠A >60°的反面有多种情况,应一一否定.【详解】解:∠A 与60°的大小关系有∠A >60°,∠A=60°,∠A <60°三种情况,因而∠A >60°的反面是∠A≤60°.因此用反证法证明“∠A >60°”时,应先假设∠A≤60°.故选:D变式3-3.(2021·河北唐山市·中考模拟)已知:ABC ∆中,AB AC =,求证:90O B ∠<,下面写出可运用反证法证明这个命题的四个步骤:①∴180O A B C ∠+∠+∠>,这与三角形内角和为180O 矛盾,②因此假设不成立.∴90O B ∠<,③假设在ABC ∆中,90O B ∠≥,④由AB AC =,得90O B C ∠=∠≥,即180O B C ∠+∠≥.这四个步骤正确的顺序应是( )A .③④②①B .③④①②C .①②③④D .④③①②【答案】B【分析】根据反证法的证明步骤“假设、合情推理、导出矛盾、结论”进行分析判断即可.【详解】题目中“已知:△ABC 中,AB=AC ,求证:∠B <90°”,用反证法证明这个命题过程中的四个推理步骤:应该为:(1)假设∠B≥90°,(2)那么,由AB=AC ,得∠B=∠C≥90°,即∠B+∠C≥180°,(3)所以∠A+∠B+∠C >180°,这与三角形内角和定理相矛盾,(4)因此假设不成立.∴∠B <90°,原题正确顺序为:③④①②,故选B .【点睛】本题考查反证法的证明步骤,弄清反证法的证明环节是解题的关键.变式3-4.(2021·浙江宁波市·九年级一模)能说明命题“若一次函数经过第一、二象限,则k+b >0”是假命题的反例是( )A .y 2x 3=+B .y 2x 3=-C .y 3x 2=--D .y 3x 2=-+【答案】D【分析】利用命题与定理,首先写出假命题进而得出答案.【详解】解:一次函数y=kx+b的图象经过第一、二象限,则k>0,b>0或k<0,b>0,故选D.【点睛】此题主要考查了反证法的证明举例,训练了学生对举反例法的掌握情况.。

人教版七年级数学下册课件: 命题、定理、证明

人教版七年级数学下册课件: 命题、定理、证明
【例4】(人教七下P24改编)判断下列命题是真命题还
是假命题,是假命题的举反例加以说明.
(1)如果AB=BC,那么C是AB的中点;
(2)如果 = ,那么a=b.
思路点拨:(1)利用分类讨论思想可说明命题为假命
题;(2)分别取a,b的值说明这是假命题.
解:(1)这是假命题.
反例:当点C在AB的延长线上时,虽然AB=BC,但点
条件,另一个作为结论构成一个命题,根
据平行线的判定和性质及对顶角相等进行
证明.
图5-10-1
解:命题为“如果∠1=∠2,∠B=∠C,那么∠A=
∠D”.
证明:∵∠1=∠CGD,
∠1=∠2,
∴∠CGD=∠2.
∴EC∥BF.
∴∠AEC=∠B.
又∵∠B=∠C,∴∠AEC=∠C.
∴AB∥CD.
∴∠A=∠D.(答案不唯一)
(2)这是假命题.
反例:如答图5-10-1,∠1与∠2为
同位角,但∠1≠∠2.
答图5-10-1
典例精析
【例5】(创新题)如图5-10-1,有三个条件:①∠1
=∠2;②∠B=∠C;③∠A=∠D,请你从中任选两个
作为条件,另一个作为结论构成一个命题,并证明该命
题的正确性.
思路点拨:根据题意,从中任选两个作为
举一反三
10. (创新题)如图5-10-2,在四边形ABCD中,①
AB∥CD;②∠A=∠C;③AD∥BC.
(1)请你以其中两个为条件,第三个为结论,写出一
个命题;
(2)判断这个命题是否为真命题,
并说明理由.
图5-10-2
解:(1)命题为“如果AB∥CD,∠A=∠C,那么
AD∥BC”.
(2)这个命题是真命题. 理由如下:

命题、证明及平行线的判定定理+知识点+例题

命题、证明及平行线的判定定理+知识点+例题

命题、证明及平行线的判定定理(基础)知识讲解【学习目标】1.了解定义、命题的含义,会区分命题的条件(题设)和结论;2. 体会检验数学结论的常用方法:实验验证、举出反例、推理;4.了解公理和定理的定义,并能正确的写出已知和求证,掌握证明的基本步骤和书写格式;5.掌握平行线的判定方法,并能简单应用这些结论.【要点梳理】要点一、定义与命题1.定义:一般地,用来说明一个名词或者一个术语的意义的句子叫做定义.要点诠释:(1)定义实际上就是一种规定.(2)定义的条件和结论互换后的命题仍是真命题.2.命题:判断一件事情的句子叫做命题.真命题:正确的命题叫做真命题.假命题:不正确的命题叫做假命题.要点诠释:(1)命题的结构:命题通常由条件(或题设)和结论两部分组成.条件是已知事项,结论是由已知事项推出的事项,一般地,命题都可以写成”如果……那么……”的形式,其中“如果”开始的部分是条件,“那么”后面是结论.(2)命题的真假:对于真命题来说,当条件成立时,结论一定成立;对于假命题来说,当条件成立时,不能保证结论正确,即结论不成立.要点二、证明的必要性要判断一个命题是不是真命题,仅仅依靠经验、观察、实验和猜想是不够的,必须一步一步、有根有据地进行推理. 推理的过程叫做证明.要点三、公理与定理1.公理:通过长期实践总结出来,并且被人们公认的真命题叫做公理.要点诠释:欧几里得将“两点确定一条直线”等基本事实作为公理.2.定理:通过推理得到证实的真命题叫做定理.要点诠释:证明一个命题的正确性要按已知、求证、证明的顺序和格式写出.其中“已知”是命题的条件,“求证”是命题的结论,而“证明”则是由条件(已知)出发,根据已给出的定义、公理、已经证明的定理,经过一步一步的推理,最后证实结论(求证)的过程.要点四、平行公理及平行线的判定定理1.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.要点诠释:(1)平行公理特别强调“经过直线外一点”,而非直线上的点,要区别于垂线的第一性质.(2)公理中“有”说明存在;“只有”说明唯一.(3)“平行公理的推论”也叫平行线的传递性.2.平行线的判定定理判定方法1:同位角相等,两直线平行.如上图,几何语言:∵ ∠3=∠2∴ AB ∥CD (同位角相等,两直线平行)判定方法2:内错角相等,两直线平行.如上图,几何语言:∵ ∠1=∠2∴ AB ∥CD (内错角相等,两直线平行)判定方法3:同旁内角互补,两直线平行.如上图,几何语言:∵ ∠4+∠2=180°∴ AB ∥CD (同旁内角互补,两直线平行)要点诠释:平行线的判定是由角相等或互补,得出平行,即由数推形.【典型例题】类型一、定义与命题1.请说出下列名词的定义:(1)无理数 (2)直角三角形【答案与解析】解:(1)无理数:无限不循环小数叫做无理数.(2)直角三角形:有一个角是直角的三角形叫做直角三角形.【总结升华】对学过的定义要准确地牢记.举一反三:【变式】指出下列句子哪些是定义.(1)两直线平行,内错角相等;(2)两腰相等的梯形叫等腰梯形;(3)有一个角是钝角的三角形是钝角三角形;(4)等腰三角形的两底角相等;(5)平行四边形的对角线互相平分;(6)连结三角形两边中点的线段叫做三角形的中位线.【答案】(2),(3),(6)是定义.2.说出下列命题的条件和结论,并判断它是真命题还是假命题:(1)如果,>>a b b c ,那么>a c ;(2)如果两个角相等, 那么它们是对顶角.【答案与解析】解:(1)条件:,>>a b b c ;结论:>a c .它是真命题.(2)条件:两个角相等;结论:这两个角是对顶角.它是假命题.反例,你书的左下角和右下角两个角都是直角,相等,但不是对顶角.【总结升华】要判断一个命题是假命题,只要能够举出一个例子,使之具备命题的条件,而不具备命题的结论,就可以说明这一命题是假命题,这种例子通常称为反例.举一反三:【变式】(2013•贵港)下列四个命题中,属于真命题的是( ).A .若2a m =,则a m =B .若a >b ,则am >bmC .两个等腰三角形必定相似D .位似图形一定是相似图形【答案】D类型二、公理、定理及证明3.证明:等角的余角相等.【思路点拨】如果题目中没有明确指出“条件”和“结论”,应先写出已知、求证、证明,如果需要的话并画出图形,再证明.【答案与解析】已知:∠1=∠2,∠1+∠3=90°,∠2+∠4=90°.求证:∠3=∠4.证明:∵∠1+∠3=90°,∠2+∠4=90°,(已知)∴∠3=90°-∠1,∠4=90°-∠2.(等式的性质)∵∠1=∠2(已知),∴∠3=∠4(等量代换).【总结升华】“等角的余角相等”与“等角的补角相等”可以作为今后证明的依据.此外,在等式或不等式中,一个量可以用它的等量来代替,简称为“等量代换”.举一反三:【变式】“垂线段最短”是( ).A .定义B .定理C .公理D .不是命题【答案】B类型三、平行线的判定定理4. 如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.【思路点拨】根据同位角相等,两直线平行证明OB ∥AC ,根据同旁内角互补,两直线平行证明OA∥BC.【答案与解析】解:OA∥BC,OB∥AC.∵∠1=50°,∠2=50°,∴∠1=∠2,∴OB∥AC,∵∠2=50°,∠3=130°,∴∠2+∠3=180°,∴OA∥BC.【总结升华】本题考查的是平行线的判定,掌握平行线的判定定理:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解题的关键.举一反三:【变式】如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.4【答案】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.5.如图,AB∥CD,AE平分∠BAD,CD与AE相交于F,∠CFE=∠E.求证:AD∥BC.【答案与解析】证明:∵AE平分∠BAD,∴∠1=∠2,∵AB∥CD,∠CFE=∠E,∴∠1=∠CFE=∠E,∴∠2=∠E,∴AD∥BC.【总结升华】主要考查角平分线的性质以及平行线的判定定理.举一反三:【变式】已知,如图,EF⊥EG,GM⊥EG,∠1=∠2,AB与CD平行吗?请说明理由.【答案】解:AB∥CD.理由如下:如图:∵EF⊥EG,GM⊥EG (已知),∴∠FEQ=∠MGE=90°(垂直的定义).又∵∠1=∠2(已知),∴∠FEQ -∠1=∠MGE -∠2 (等式性质),即∠3=∠4.∴AB∥CD (同位角相等,两直线平行).。

命题与证明PPT教学课件

命题与证明PPT教学课件
AF
2020/10/16
B C
E
D
23
(2)求∠A+ ∠B+ ∠C+ ∠D+ ∠E的度数
A
B
E
C
2020/10/16
D
24
THANKS
FOR WATCHING
演讲人: XXX
PPT文档·教学课件
谢谢大家!本文档为精心编制而成,您可以在下载后自由修改和打印,希望下载对您有帮助!
2020/10/16
6
三角形外角与内角的关系 【看一看】∠ABD与∠CBA的位置。 【想一想】∠ABD与∠CBA有什么关系?
D
相邻的内角 B 外角角+相邻的内角=180 ˚(互补)
2020/10/16
7
探究
三角形的外角与它不相邻的内 角之间有什么关系呢?
C
E
A
B
D
2020/10/16
学一学
例1:如图,D是△ABC的BC边上一点,
∠B=∠BAD,∠ADC=80°,∠BAC=70°.
求:(1)∠B的度数;
(2)∠C的度数.
B
70°
A
80°
D
C
问:(1)中为什么∠ADC=∠B+∠BAD?
(2)中求∠C的度数还有其他方法吗?
2020/10/16
22
拓展
(1)求∠A+ ∠B+ ∠C+ ∠D+ ∠E+ ∠F的度数
13.2命题与证明 (3) 外角
回顾与思考
❖ 1、什么叫做命题 ❖ 2、命题的类型 ❖ 3、命题的结构(命题的组成部分) ❖ 4、命题的一般形式 ❖ 5、什么样的两个命题叫做互逆命题 ❖ 6、什么样的命题只可举出反例就行

命题与证明

命题与证明

命题与证明知识导引1命题:判断某一件事情的句子,由条件和结论两部分组成,正确的命题叫做真命题,不正确的命题叫做假命题。

把一个命题的条件和结论互换就得到它的逆命题,每个命题都有逆命题。

2、从命题的条件出发,经过逐步推理来判断命题的结论是否正确的过程叫做证明。

要证明一个命题是真命题,就是要证明凡是符合条件的所有情况都能得出结论。

要证明一个命题是假命题,只需要举出一个反例说明命题不能成立。

证明一个命题的一般步骤如下:(1)按照题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”一项中写出条件,在“求证”一项中写出结论;(3)在“证明”一项中写出全部推理过程。

3、证明的两种思路:综合与分析(1)利用已知条件和某些数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立,这种证明方法叫做综合法。

(2)从要证明的结论出发,逐步寻求使它成立的充分条件,直到最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定理、定义、公理等)为止,这种证明方法叫做分析法。

典例精析例1:判断下列命题是真命题还是假命题,如果是假命题,请举出一个反例。

(1)两条直线被第三条直线所截,同位角相等;(2)如果a>b,那么ac>bc;(3)两个锐角的和是钝角。

例2:下列命题中:①三角形中,至少有两个锐角;②三角形中,至少有一个直角或钝角;③三角形中,两个锐角的和等于90°;④三角形中,三个内角不可能都小于60°。

其中,真命题的个数是()A、1个B、2个C、3个D、4个例3:证明:两条平行线被第三条直线所截,一组同位角的角平分线互相平行。

例4:已知:如图,AM 、CM 分别平分∠BAD 和∠BCD,求证:∠M=21(∠B+∠D)例5:在△ABC 中,BO 平分∠ABC,点P 为直线AC 上一动点,PO⊥BO 于点O 。

(1)如图1,当∠ABC=40°,∠BAC=60°,点P 与点C 重合时,教APO = (2)如图2,当点P 在AC 的延长线时,求证:∠APO=21(∠ACB-∠BAC ) (3)如图3,当点P 在边AC 上时,请直接写出∠APO 与∠ACB,∠BAC 的等量关系 式探究活动例:已知:如图,在△ABC 中有D ,E 两点,求证:BD +DE +CE <AB +AC学力训练A 组 务实基础1、以下各数中可用来证明命题“能被5整除的数的末位数一定是5”是假命题的反例为( )A 、5B 、24C 、25D 、30 2、下列命题中,真命题是( )A 、同位角相等B 、在同一平面内,若直线a ⊥b ,b ⊥c ,则a ⊥cC 、三角形的一个外角大于任何一个内角D 、直角三角形的两个锐角互余 3、如图所示,∠A=28°,∠BFC=92°,∠B=∠C,则∠BDC 的度数是( ) A 、85° B、75° C 、64° D、60°(第3题图) (第4题图)4、如图所示,∠A=50°,∠B=40°,∠C=30°,则∠BDC 等于( ) A 、120° B、100° C、115° D、150°5、已知α,β是两个钝角,计算)(61βα+的值。

八年级数学上册讲解命题、定理与证明命题课件

八年级数学上册讲解命题、定理与证明命题课件
⑴同位角相等,两直线平行; 条件: 同位角相等 结论: 两直线平行 如果同位角相等,那么两直线平行.
7
课程讲授
1 命题
例2 指出下列命题的条件和结论,并改写成“如果……, 那么……”的形式:
⑵三个角都相等的三角形是等边三角形. 条件: 一个三角形的三个角相等 结论: 这个三角形是等边三角形 如果一个三角形的三边相等,那么这个三角 形是等边三角形.
3
课程讲授
1 命题
如果两个角是对顶角,那么这两个角相等; 正确 两直线平行,同旁内角相等; 错误
定义:它们都是判断某一件事情的语句,像这样表
示判断的语句叫做命题.
4
课程讲授
1 命题
例1 判断下列语句是否为命题. (1)长度相等的两条线段是相等的线段吗? 不是
(2)两条直线相交,有且只有一个交点; 是 3 不相等的两个角不是对顶角; 是 4 欢迎前来参加北京冬奥会!不是 5 两个锐角的和是钝角; 是
(1)全等三角形的对应边相等; 条件: 两个三角形全等 结论:这两个三角形的对应边相等
如果两个三角形全等,那么它们的对应边相等
13
随堂练习
2.把下列命题改写成“如果……,那么……”的形式,并分 别指出它们的条件和结论: (2)在同一平面内,垂直于同一条直线的两条 直线互相平行.
条件: 在同一平面内,有两条直线分别垂直于第三条直线 结论:这两条直线互相平行
15
课堂小结
命题
定义 表示判断的语句叫做命题.
真命题与假 命题
如果条件成立,那么结论一定成立. 像这样的命题,称为真命题.
当条件成立时,不能保证结论总是正 确,或者说结论不成立,像这样的命 题,称为假命题.
16
第13章 全等三角形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

命题与证明知识讲解【学习目标】1.了解命题、定义、公理、定理的含义,会区分命题的题设(条件)和结论,会在简单情况下判断一个命题的真假;2.理解逆命题、逆定理的概念,会识别互逆命题与互逆定理,并知道原命题成立时其逆命题不一定成立;3.能用基本的逻辑术语、几何证明的步骤、格式和规范进行演绎证明;4.了解证明的含义,理解证明的必要性,体会证明的过程要步步有据.【要点梳理】要点一、演绎证明、演绎推理演绎证明从已知的概念、条件出发,依据已被确认的事实和公认的逻辑规则,推导出某结论为正确的过程.演绎推理演绎推理是数学证明一种常用的、完全可靠的方法.演绎证明是一个严格的数学证明,是我们将要学习的证明方法,演绎证明也称为证明.要点诠释:演绎推理的过程就是演绎证明,并不是所有的真理都可以进行演绎证明.要点二、命题、公理、定理定义能界定某个对象含义的句子叫做定义.命题判断一件事情的句子叫命题.其判断为正确的命题叫做真命题;其判断为错误的命题叫做假命题.命题通常由题设、结论两个部分组成,通常可以写成“如果……那么……”的形式.要点诠释:命题属于判断句或陈述句,是对一件事情作出判断,与判断的正确与否没有关系.其中命题的题设是已知事项,结论是由已知事项推出的事项.当证明一个命题是假命题时只要举出一个反例就可以.公理人们从长期的实践中总结出来的真命题叫做公理,它们可以作为判断其他命题真假的原始依据.定理从公理或其他真命题出发,用推理方法证明为正确的,并进一步作为判断其他命题真假的原始依据.要点诠释:也就是说同时满足以下两个条件的真命题称为定理:(1)其正确性可通过公理或其它真命题逻辑推理而得到.(2)其又可作为判断其它命题真假的依据.要点三、逆命题和逆定理互逆命题在两个命题中,如果第一个命题的题设是第二个命题的结论,而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题.如果把其中一个命题叫做原命题,那么另一个命题叫做它的逆命题.互逆定理如果一个定理的逆命题经过证明也是定理,那么这两个定理叫做互逆定理,其中一个叫做另一个的逆定理.【典型例题】类型一、命题1. 判断下列语句在表述形式上,哪些对事情作了判断?哪些没有对事情作出判断?做出判断的哪些是正确的?哪些是错误的?(1)对顶角相等; (2)画一个角等于已知角;(3)两直线平行,同位角相等; (4)a ,b 两条直线平行吗?(5)鸟是动物; (6)若24a =,求a 的值;(7)若22a b =,则a =b .【答案与解析】句子(1)(3)(5)(7) 对事情作了判断,其中 (1)(3)(5)判断是正确的,(7)判断是错误的. 句子(2)(4)(6)没有对事情作出判断.其中(2)属于操作性语句,(4)属于问句,都不是判断性语句.【总结升华】主要考察命题的定义.举一反三:【变式】下列语句中,哪些是命题,哪些不是命题?(1)若a b <,则<-b a -;(2)三角形的三条高交于一点;(3)在ΔABC 中,若AB >AC ,则∠C >∠B 吗?(4)两点之间线段最短;(5)解方程2230x x --=;(6)1+2≠3.【答案】(1)(2)(4)(6)是命题,(3)(5)不是命题.2. 下列命题是真命题的是( )A .如果|a|=1,那么a=1B .有两条边相等的三角形是等腰三角形C .如果a 为实数,那么a 是有理数D .有两边和一角相等的两个三角形全等;【答案】C【解析】如果|a|=1,那么a=±1,故A 错误;如果a 为有理数,那么a 是实数,故C 错误;有两边和夹角相等的两个三角形全等,故D 错误;而B 根据等腰三角形的定义可判断正确;【总结升华】主要考查命题的真假,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的定义.举一反三:【变式】下列命题中,真命题的个数有()①对顶角相等②同位角相等③4的平方根是2 ④若a>b,则-2a>-2b A.3个B.1个C.4个D.2个【答案】B3.指出下列命题的条件和结论,并改写成“如果……那么……”的形式:(1)三条边对应相等的两个三角形全等;(2)在同一个三角形中,等角对等边;(3)对顶角相等;(4)同角的余角相等;【答案与解析】(1)“三条边对应相等”是对两个三角形来说的,因此写条件时最好把“两个三角形”这句话添加上去,即命题的条件是“两个三角形的三条边对应相等”,结论是“这两个三角形全等”.可以改写成“如果两个三角形有三条边对应相等,那么这两个三角形全等”.(2)“等角对等边含义”是指有两个角相等所对的两条边相等。

可以改写成“如果在同一个三角形中有两个角相等,那么这两个角所对的边也相等。

”值得注意的是,命题中包含了一个前提条件:“在同一个三角形中”,在改写时不能遗漏.(3)这个命题的条件是“两个角是对顶角”,结论是“两个角相等”.这个命题可以改写成“如果两个角是对顶角,那么这两个角相等”.(4)条件是“两个角是同一个角的余角”,结论是“这两个角相等”.这个命题可以改写成“如果两个角是同一个角的余角,那么这两个角相等”.4.下列命题中,逆命题正确的是()A.对顶角相等B.直角三角形两锐角互余C.全等三角形面积相等D.全等三角形对应角相等【答案】B【解析】A选项逆命题是相等的角是对顶角,不对;B选项逆命题是两个锐角互余的三角形是直角三角形,对的;C选项逆命题是面积相等的三角形是全等三角形显然不对;D选项的逆命题是对应角相等的三角形是全等三角形,不一定,也可能是相似三角形.【总结升华】判断逆命题是否正确,能举出反例即可.举一反三:【变式】试将下列各个命题的题设和结论相互颠倒,得到新的命题,并判断这些命题的真假.(1)对顶角相等;(2)两直线平行,同位角相等;(3)若a=0,则ab=0;(4)两条直线不平行,则一定相交;【答案】(1)对顶角相等(真);相等的角是对顶角(假);(2)两直线平行,同位角相等(真);同位角相等,两直线平行(真);(3)若a=0,则ab=0(真);若ab=0,则a=0(假);(4)两条直线不平行,则一定相交(假);两条直线相交,则一定不平行(真);类型二、证明举例(1)平行线的性质与判定进行几何证明:5.已知,如图,∠1=∠ACB,∠2=∠3,FH⊥AB于H.问CD与AB有什么关系?【答案与解析】解:CD⊥AB;理由如下:∵∠1=∠ACB,∴DE∥BC,∠2=∠DCB,又∵∠2=∠3,∴∠3=∠DCB,故CD∥FH,∵FH⊥AB∴CD⊥AB.【总结升华】本题考查的是平行线的判定和性质的综合应用.举一反三:【变式】如图所示,E在直线DF上,B在直线AC上,若∠AGB=∠EHF,∠C=∠D,试判断∠A 与∠F的关系,并说明理由.【答案】∠A=∠F.证明:∵∠AGB=∠DGF,∠AGB=∠EHF,∴∠DGF=∠EHF,∴BD∥CE;∴∠C=∠ABD,又∵∠C=∠D,∴∠D=∠ABD,∴DF∥AC;∴∠A=∠F.(2)与三角形有关的几何证明:6.如图,已知三角形ABC的三个内角平分线交于点I,IH⊥BC于H,试比较∠CIH和∠BID的大小.【答案与解析】∵AI、BI、CI为三角形ABC的角平分线,∴∠BAD=12∠BAC,∠ABI=12∠ABC,∠HCI=12∠ACB.∴∠BAD+∠ABI+∠HCI=12∠BAC+12∠ABC+12∠ACB=12(∠BAC+∠ABC+∠ACB)=12×180°=90°.∴∠BAD+∠ABI=90°-∠HCI.∵IH⊥BC,∴∠IHC=90°∴90°-∠HCI=∠CIH,∴∠CIH=∠BAD+∠ABI∵∠BID=∠BAD+∠ABI(三角形的一个外角等于与其不相邻的两个内角的和)∴∠BID=∠CIH.【总结升华】考查了角平分线的定义及三角形内角和定理:三角形三个内角的和为180°,在推导角的关系时,一定不要忘记与三角形有关的角中还有一个特别重要的性质:三角形的一个外角等于与其不相邻的两个内角的和.(3)与全等三角形有关的几何证明7.如图,在Rt△ABC中,∠BAC=90°,AC=2AB,点D是AC的中点.将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A、D重合,连接BE、EC.试猜想线段BE和EC的数量及位置关系,并证明你的猜想.【答案与解析】数量关系为:BE=EC,位置关系是:BE⊥EC.证明:∵△AED是直角三角形,∠AED=90°,且有一个锐角是45°,∴∠EAD=∠EDA=45°,∴AE=DE,∵∠BAC=90°,∴∠EAB=∠EAD+∠BAC=90°+45°=135°,∠EDC=∠ADC-∠EDA=180°-45°=135°,∴∠EAB=∠EDC ,∵D 是AC 的中点,∴AC=2DC ,∵AC=2AB ,∴AB=DC ,在△EAB 和△EDC 中AE DE EAB EDC AB DC =⎧⎪∠=∠⎨⎪=⎩∴△EAB ≌△EDC ,∴EB=EC ,且∠AEB=∠DEC ,∴∠BEC=∠DEC+∠BED=∠AEB+∠BED=∠AED=90°,∴BE ⊥EC .【总结升华】本题是先猜想在证明,主要考查了全等三角形的判定与应用,证明线段相等的问题一般的解决方法是转化为证明三角形全等,而当有等腰三角形出现时,相等的两腰通常作为判定三角形全等的一组条件来用,从而是问题简单化.举一反三:【变式】如图,在△ABC 的外部,分别以AB 、AC 为直角边,点A 为直角顶点,作等腰直角△ABD 和等腰直角△ACE ,CD 与BE 交于点P .试证:(1)CD=BE ;(2)∠BPC=90°.【答案】证明:(1)在等腰直角△ABD 和等腰直角△ACE 中AD=AB ,AC=AE , ∠BAD =∠EAC=90°,∴∠BAD+∠BAC=∠EAC ∠BAC∴∠DAC =∠BAE .在△DAC 和△BAE 中AD AB DAC BAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴△BAE ≌△DAC∴CD=BE .(2)由△BAE ≌△DAC 得到∠ABE=∠ADC .∵∠ADB+∠ABD=90°,∴∠ADC+∠ABD+∠BDC=90°=∠ABE+∠ABD+∠BDC ,即∠DBP+∠BDC=90°.∴∠BPC=90°.(4)添加辅助线的方法进行几何证明:8、已知,如图,△ABC 中,D 是BC 中点,DE⊥DF,试判断BE +CF 与EF 的大小关系,并证明你的结论. F ED C B A【答案与解析】BE +CF >EF ;证明:延长FD 到G ,使DG =DF,连结BG 、EG∵D 是BC 中点∴BD=CD又∵DE⊥DF在△EDG 和△EDF 中ED ED EDG EDF DG DF =⎧⎪∠=∠⎨⎪=⎩∴△EDG ≌△EDF (S.A.S )∴EG=EF在△FDC 与△GDB 中⎪⎩⎪⎨⎧=∠=∠=DG DF BD CD 21∴△FDC≌△GDB(S .A.S)∴CF=BG∵BG+BE >EG∴BE+CF >EF【总结升华】因为D 是BC 的中点,按倍长中线法,倍长过中点的线段DF ,使DG =DF,证明△EDG ≌△EDF ,△FDC≌△GDB,这样就把BE 、CF 与EF 线段转化到了△BEG 中,利用两边之和大于第三边可证.有中点的时候作辅助线可考虑倍长中线法(或倍长过中点的线段).(5)文字命题的证明:9、求证:等边三角形内部任一点到三边的距离之和为定值.【答案与解析】已知:如图,△ABC 是等边三角形,P 是三角形内任一点,PE⊥AB,PG⊥AC,PF⊥BC.垂足分别为E、G、F,求证:PE+PG+PF为定值.证明:设等边三角形△ABC的边长为a,面积为S.连结PA、PB、PC,则S△APB=12a•PE,S△CPB=12a•PF,S△APC=12a•PG,于是S△APB+S△CPB+S△APC=12a•PE+12a•PF+12a•PG,即12a•PE+12a•PF+12a•PG=S,PE+PF+PG=2Sa,为定值.【总结升华】对于文字命题的证明要根据文字所描述的内容自己写出已知和求证,然后在证明.。

相关文档
最新文档