数字电源的特点与发展现状分析
第1章 数字电源技术及其应用概述

数字电源具有高性能和高可靠性的特点,其设计非常 灵活。随著IC厂商不断推出新型号、性能更好的数字电源 IC产品以及用户对数字电源认识的深入,数字电源的应用 将会得到普及。
数字电源技术及其应用涉及:
①电源控制技术; ②电源接口技术。
人民邮电出版社
第1章 数字电源技术及其应用导论
3
数字电源技术及其应用
数字电源技术及其应用
Boost变换器
L VD
n
VT
C
f
Uo
BOOST是一种升压型DC-DC变换电路,输出电压 大于输入电压,VT的占空比Dy必须小于1,输入电 流连续。输出电压Uo= Uin /(1-Dy)。
人民邮电出版社
第1章 数字电源技术及其应用导论
12
数字电源技术及其应用
假设条件: 1、所有元器件为理想器件 2、储能元件电感充放电过程电流连续 3、电感充放电电流相等 根据能量守恒原理 电感充电周期能量=电感放电周期能量,即: 电感充电电压*充电电流*充电时间=电感放电电压*放 电电流*放电时间 由假设条件3,得: 电感充电电压*充电时间=电感放电电压*放电时间 这就是伏秒平衡方程
数字电源技术及其应用
数字电源技术及其应用
人民邮电出版社
第1章 数字电源技术及其应用导论
1
数字电源技术及其应用
本课程主要内容
第1章 第2章 第3章 第4章 第5章
人民邮电出版社
概述 数字电源管理总线技术 电源的数字化控制 数字化处理技术 数字电源系统设计
第1章 数字电源技术及其应用导论
2
数字电源技术及其应用
人民邮电出版社
第1章 数字电源技术及其应用导论
27
数字电源技术及其应用
智能化数字电源的应用与发展研究

智能化数字电源的应用与发展研究作者:孔维成李悦袁赛杨海明来源:《电子世界》2012年第03期【摘要】数字电源以其高性能和高可靠性的特点在工农业生产、国防、航空航天及医疗设备等领域得到广泛应用。
文章介绍了数字电源具有电源管理功能完善、能面向用户设计等显著优点。
对当今数字电源的技术发展情况进行了分析,阐述了数字电源技术在未来各领域将得到广泛应用。
【关键词】数字电源;智能化;设计;应用;发展1.引言进入21世纪以来,开关电源正朝着智能化、数字化的方向发展。
新问世的数字电源以其优良特性和完备的监控功能,引起人们的广泛关注。
数字电源提供了智能化的适应性与灵活性,具备直接监控、远程故障诊断、故障处理等电源管理功能,能满足复杂的电源要求。
数字电源的这些特点使其在现在的诸多领域得到很好的应用,并将继续扩展它的应用范围。
因此对数字电源应用的研究十分重要。
2.数字电源的技术特性数字电源是以数字信号处理器DSP(Digital Signal Processing)或微控制器MCU(Micro Control Unit)为核心,将数字电源驱动器、PWM(Pulse Width Modulation)控制器等作为控制对象,能实现控制、管理和监测功能的电源产品,能提供管理和监控功能,并延伸到对整个回路的控制。
数字电源有用DSP控制的,还有用MCU控制的。
相对来讲,DSP控制的电源采用数字滤波方式,较MCU控制的电源更能满足复杂的电源需求、实时反应速度更快、电源稳压性能更好。
数字电源管理DPM(Design Pro-ject Manager)是指用数字信息来管理电源系统及其电源的整体运作。
有了DPM,就可以利用数字信号实现与电源的通信,可实现对电源系统加电、测序、负载分配和平衡、故障分析、热交换、维护保养及其它任务。
数字电源控制器DCP(Digitally Controlled Potentiometers)是指,用数字技术来控制电源单元内部的功率开关功能。
开关电源及发展现状

开关电源及发展现状一、开关电源的基本原理和发展概述在现代电子设备中,开关电源广泛应用于各种领域,如计算机、通信、工业控制等。
开关电源可以将交流电转换为直流电,并通过高频开关器件(如功率MOSFET、IGBT)进行高效率的电能转换,同时使用电感元件对电流进行滤波,使输出具有较低的波动和噪声。
随着电子技术的快速发展,开关电源在以下几个方面得到了显著的改进和发展:1. 尺寸和重量的减小:通过改进电路设计和采用高效的器件和材料,现代开关电源相对于传统的线性电源来说,体积和重量更小。
因此,在移动电子设备和便携式设备中得到广泛应用。
2. 高效率和能量节约:开关电源的输出效率较高,通常可以达到90%以上,更加有效地利用电能。
这不仅有助于减少能源消耗,降低发热量,同时也减小了对环境的影响。
3. 可调性和稳定性:现代开关电源通常具有可调的输出电压和电流,以适应不同设备的需求。
同时,通过采用反馈控制技术和高精度的电压/电流传感器,可以实现较高的输出稳定性和精度。
4. 数字化和智能化:随着微处理器和数字信号处理技术的广泛应用,开关电源实现了数字化控制和智能化管理。
这使得对电源状态、过载保护、故障诊断等进行实时监测和管理成为可能。
二、开关电源发展的现状目前,开关电源领域的发展主要集中在以下几个方面:1. 高频功率器件的改进:高频开关器件的性能和可靠性对于开关电源的效率和稳定性至关重要。
近年来,功率MOSFET和IGBT等器件的性能不断提高,使得开关电源可以实现更高的开关频率和更高的输出功率。
2. 多电平拓扑的应用:传统的开关电源通常采用单级拓扑结构,但这种结构在高功率和高频率应用中存在一定的限制。
近年来,基于多电平(Multi-level)拓扑的开关电源得到了广泛研究和应用,例如三电平、多电平变频和混合拓扑结构,能够提高电能转换效率和减小电磁干扰。
3. 新型材料和元件的应用:随着功率电子技术的发展,新型材料和元件的应用进一步推动了开关电源的发展。
数字电源创业项目计划书

数字电源创业项目计划书一、项目概述数字电源是一种新型的电源设备,可以根据用户的需求进行电源管理和控制,具有智能化和高效化的特点。
随着智能家居和智能设备的普及,数字电源在市场上具有广阔的发展前景。
本项目旨在开发一种高性能的数字电源产品,满足用户对电源管理的需求,提升用户体验,推动数字电源在市场上的应用。
二、市场分析1. 行业发展趋势随着智能家居和智能设备的普及,数字电源作为智能电源管理设备受到越来越多用户的关注。
数字电源通过智能化的控制和管理,可以提供更便捷、更高效的电源服务,满足用户在日常生活和工作中的需求。
2. 市场需求随着生活水平的提高,用户对电源管理的要求也越来越高。
传统的电源设备往往并不满足用户的需求,数字电源作为一种智能化的电源管理设备,可以根据用户的需求进行电源控制和管理,提升用户的使用体验。
3. 竞争分析当前数字电源市场竞争激烈,主要竞争对手有国内外知名的电源生产厂商,他们拥有丰富的技术和资源优势。
本项目打算通过研发和定制化的策略,提升产品的竞争力,赢得消费者的认可。
三、产品定位本项目将开发一款高性能、智能化的数字电源产品,主要定位于智能家居和智能办公市场。
产品具有智能控制和管理功能,可以根据用户的需求进行电源管理,提升用户的使用体验。
四、核心技术本项目的核心技术主要包括电源控制技术、智能化管理技术和数据分析技术。
通过这些技术的应用,可以实现对电源的精准控制和管理,提升用户的使用体验。
五、市场推广本项目将通过多种途径进行市场推广,包括线下渠道推广、线上平台推广和合作推广。
通过这些推广方式,可以让更多的用户了解和认可我们的产品,从而提升销售额。
六、团队建设本项目拥有一支优秀的研发团队和销售团队,他们具有丰富的行业经验和技术知识,可以保证产品的研发和销售过程顺利进行。
七、财务计划1. 初期投资:项目初期需要投资500万元,用于产品研发、市场推广和团队建设。
2. 预期收入:项目预期销售额为1000万元,利润率为20%,预计年利润为200万元。
数字电源与模拟电源工作原理

数字电源与模拟电源工作原理一、引言数字电源和模拟电源是电子设备中常见的两种电源类型。
它们在电子设备中起着不同的作用,也有着不同的工作原理。
本文将分别介绍数字电源和模拟电源的工作原理,并对它们的特点和应用进行简要说明。
二、数字电源的工作原理数字电源是一种由数字技术控制的电源,其工作原理主要包括数字控制模块、调整电路和输出电路。
1. 数字控制模块数字电源的核心部分是数字控制模块,它通常由微处理器或FPGA 芯片组成。
数字控制模块负责接收用户输入的控制信号,并根据这些信号来控制电源的工作状态。
用户可以通过数字控制模块设置电源的输出电压、电流等参数,并实现电源的开关、调节和保护功能。
2. 调整电路数字电源的调整电路主要负责根据数字控制模块的指令,对电源的输出电压、电流进行调整。
调整电路通常由参考电压源、比较器和反馈电路组成。
参考电压源提供一个稳定的参考电压,比较器将参考电压与反馈电压进行比较,并根据比较结果调整输出电压。
反馈电路用于采集电源输出端的电压信息,并将其与参考电压进行比较。
3. 输出电路数字电源的输出电路主要由功率放大器和输出滤波器组成。
功率放大器将调整电路输出的电压放大到所需的电压范围,并提供足够的电流供应给负载。
输出滤波器主要用于滤除输出电压中的高频干扰和纹波,以保证电源的输出质量。
数字电源具有调节范围广、精度高、响应快、稳定性好等优点,广泛应用于通信、计算机、工业自动化等领域。
三、模拟电源的工作原理模拟电源是一种基于模拟技术的电源,其工作原理主要包括变压器、整流电路和滤波电路。
1. 变压器模拟电源通常采用变压器将输入电压变换为所需的电压等级。
变压器是一种电磁装置,通过磁场的感应作用来实现电压的变换。
它由一对绕组组成,通过改变绕组的匝数比来实现输入电压和输出电压之间的变换。
2. 整流电路模拟电源的整流电路主要用于将交流输入电压转换为直流输出电压。
整流电路通常由整流器和滤波器组成。
整流器将交流电压转换为脉冲状的直流电压,滤波器则用于将脉冲电压中的纹波滤除,使输出电压更加稳定。
microchip数字电源方案

microchip数字电源方案数字电源方案是一种通过数字控制和管理电源输出的技术,它在现代电子设备中发挥着重要作用。
在数字电源方案中,微芯片(Microchip)公司是一家全球领先的提供数字电源芯片和解决方案的厂商。
本文将介绍Microchip数字电源方案的特点、应用以及未来的发展趋势。
一、Microchip 数字电源方案的特点Microchip的数字电源方案具有以下特点:1. 高度集成:Microchip的数字电源芯片集成了多种功能,如 DC-DC 转换器、PWM 控制器、锁相环、电流传感器等,能够实现高效率的功率转换和精确的电源管理。
这种高度集成的设计大大简化了电源系统的设计和布局,提高了系统的可靠性和性能。
2. 高性能:Microchip的数字电源方案采用先进的控制算法和优化的电源管理策略,能够精确地调节电压和电流输出,并提供高效率的能量转换。
这些特性使得数字电源方案适用于广泛的应用领域,如工业自动化、通信设备、汽车电子等。
3. 灵活可配置:Microchip的数字电源芯片具有灵活的配置和编程能力,能够适应不同的电源系统要求。
用户可以通过软件调整输入输出参数、控制模式和保护功能,以实现最佳的电源管理效果。
这种灵活性和可配置性使得数字电源方案能够满足不同应用的需求,提供定制化的解决方案。
4. 高度可靠:Microchip的数字电源芯片经过严格的质量控制和可靠性测试,具有高度的可靠性和稳定性。
这种可靠性保证了电源系统在长时间运行和恶劣环境下的稳定性能,为设备的可靠运行提供了保障。
二、Microchip 数字电源方案的应用Microchip的数字电源方案广泛应用于各种电子设备和应用领域,包括但不限于以下几个方面:1. 工业自动化:在工业自动化系统中,数字电源方案能够提供高效、稳定的电源供应,满足工业设备对电能质量和可靠性的要求。
例如,在机器人控制系统中,数字电源方案能够实现对电机驱动器的精确控制,提高机器人的运动性能和精度。
数字控制开关变化器发展现状

数字控制的开关变化器的发展现状【摘要】开关电源的模拟控制技术已经比较成熟,但是也存在一些问题,比如控制电路复杂,元器件繁多,系统调试不方便,而且一旦成型很难修改等,这都不利于电源朝小型化、轻携化发展。
而数字控制可以很容易实现各种算法,这就可以实现很多过去无法实现的功能,比如灵活的开关频率控制可以提高emi性能;采用自适应的反馈以及前馈环节能优化系统性能等等,这些措施无疑都会提高系统的性能。
同时数字控制还比较容易实现较为先进的功率管理技术。
【关键词】开关变化器数字控制1 数字控制器的硬件结构模拟开关变换器包括主电路,核心的主控芯片ic,i外围电路诸如电压补偿,电流补偿等等,与之相呼应的数字开关变换器则与之大不一样,首先核心的主控芯片是数字处理器,其次外围电路很简单,补偿网路以及pwm等等都是在处理器内部通过算法编程来完成的,结构上较模拟式要简单不少。
数字电源的结构大致可分为三部分,其一是adc采样,因为数字处理器处理的都是数字信号,所以首先就是要将模拟量变为数字量;其二是dpwm,功率器件工作在开关模式,而开关量是个时间函数,所以数字量转换为时间量在该阶段完成;其三是功率级,完成从时间信号到电信号的转换。
adc和dpwm与主电路通过接口相连,且通过与软件的相互配合从而实现我们期望的功能。
我们知道,ad常见的类型主要有并联比较型,反馈比较型,逐次逼近型这三种结构,每种结构都有其自身独特的特点,关键看我们应用的场合。
除此之外,目前闪速式,延迟式,流水线式的adc应用也较多。
因为数字电源要求实时性高,速度快,所以积分型的adc 显然不是很合适。
其中闪速式的adc在转换速率上有明显的优势,但是在功耗,和成本方面优势不是那么明显,所以在精度要求比较高的场合应用还是比较少的,一般用于输出电压范围比较窄,采样频率比较高的场合。
流水线的adc多用于对精度要求比较高的场合,但是采样速度不如闪速式的快。
延迟式的adc虽然可以保持较高的精度,但是只能实现小范围内的模数转换。
DCDC技术的现状及发展(精选)

DC/DC技术的现状及发展摘要:从工程实际的角度介绍了DC/DC技术的现状及发展,给出当今国际顶级DC/DC产品的实用技术、专利技术及普遍采用的特有技术。
指出了半导体技术进步给DC/DC技术带来的巨大变化。
并指出了DC/DC 的数字化方向。
关键词:有源箱位软开关同步整流级联拓朴 MCU控制高效率高功率密度DC/DC分布式电源系统应用的普及推广以及电池供电移动式电子设备的飞速发展,其电源系统需用的DC/DC电源模块越来越多。
对其性能要求越来越高。
除去常规电性能指标以外,对其体积要求越来越小,也就是对其功率密度的要求越来越高,对转换效率要求也越来越高,也即发热越来越少。
这样其平均无故障工作时间才越来越长,可靠性越来越好。
因此如何开发设计出更高功率密度、更高转换效率、更低成本更高性能的DC/DC转换器始终是近二十年来电力电子技术工程师追求的目标。
例如:二十年前Lucent公司开发出第一个半砖DC/DC时,其输出功率才30W,效率只有78%。
而如今半砖的DC/DC输出功率已达到300W,转换效率高达93.5%。
从八十年代末起,工程师们为了缩小DC/DC变换器的体积,提高功率密度,首先从大幅度提高开关电源的工作频率做起,但这种努力结果是大幅度缩小了体积,却降低了效率。
发热增多,体积缩小,难过高温关。
因为当时MOSFET的开关速度还不够快,大幅提高频率使MOSFET的开关损耗驱动损耗大幅度增加。
工程师们开始研究各种避开开关损耗的软开关技术。
虽然技术模式百花齐放,然而从工程实用角度仅有两项是开发成功且一直延续到现在。
一项是VICOR公司的有源箝位ZVS软开关技术;另一项就是九十年代初诞生的全桥移相ZVS软开关技术。
有源箝位技术历经三代,且都申报了专利。
第一代系美国VICOR公司的有源箝位ZVS技术,其专利已经于2002年2月到期。
VICOR公司利用该技术,配合磁元件,将DC/DC的工作频率提高到1MHZ,功率密度接近200W/in3,然而其转换效率却始终没有超过90%,主要原因在于MOSFET的损耗不仅有开关损耗,还有导通损耗和驱动损耗。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字电源的特点与发展现状分析随着半导体工艺技术的不断升级,电路板上的元器件运行速度更快、体积更小,而且还要求更多、更低的供电电压和更大的供电电流;最终系统的功能不断增加,平均售价却不断下降。
此外,用户对电源的故障修复时间、电源运行状态的感知与控制的要求越来越高,电源设计人员不再满足于实时监控电流、电压、温度,还提出了诊断电源供应情况、灵活设定每个输出电压参数的要求。
这些需求已是今日的模拟解决方案难以满足的。
因此,作为电源管理发展的新思路的数字电源应运而生,其目标就是将电源转换与电源管理架构用数字方法集成到单芯片中,实现智能、高效的转换与控制及通信。
数字电源是采用数字方式实现电源的控制、保护回路与通信接口的新型电源技术。
可编程、响应性和数字环路控制是表征数字电源的3个主要特征。
随着电源系统的性能和功率的不断提高,实现电源性能指标所必需的元件数量和成本也随之增加,越来越多的控制需要通过具有成本效益的数字电路实现。
一般认为,在设计DC/DC变换器时,通常100W以上的系统中会应用数字控制技术;而在设计AC/DC变换器时,250W以上的系统会应用数字技术,这样电源的经济性会更高一些。
因此,在未来的电源系统中,模拟与数字技术将共存相当一段时间。
30年前,电源行业转向开关电源是一个很大的变化,而电源数字化趋势将会是一个更大的变化。
模拟电源的优势与不足目前,除了一些专门用于微处理器的转换器之外,市场上大多数砖形转换器、中间总线转换器及负载点POL转换器仍采用模拟控制。
这是因为许多模拟电源系统经过了多年的检验,可靠性还是很高的。
可尽管模拟电源解决方案的成本、性能(如负载变化时的电源响应时间)、占板面积等指标都优于当前的数字电源解决方案,但对开发人员来说,它完全是一种固定模式的黑盒应用,抑制了开发人员发挥创造力的激情。
对电源进行同步跟踪、电压排序、故障诊断及适应环境变化的能力还是比较差的。
目前,许多高性能的DC/DC转换器仍通过简单的无源器件产生的模拟信号进行设置和控制。
即使是具有最先进拓扑结构的高性能转换器,也还需要使用外部电阻、电容来确定诸如启动时间、输出点值及开关频率等参数。
这些电阻、电容的值都是设计调试时确定的,制造完成后不可轻易更改,因此自适应的电源管理方案也就不可能实现。
而且,为实现更多功能,就要设计更多的直接反馈电路,所以模拟控制环路会变得非常复杂。
传统的模拟控制架构已经使用多年,但仍有不少缺陷。
举例来说,模拟控制电路因为使用许多元器件而需要很大空间,这些元器件本身的值还会随使用时间、温度和其他环境条件的变化而变动,从而对系统稳定性和响应能力造成负面影响。
模拟控制的控制-响应特性是由分立元器件的值决定的,它总是面向一个范围狭窄的特定负载,因此无法为所有电压值或负载点提供最优化的控制响应。
换句话说,如果你需要一个可以在很多产品中重复使用而不必更换部件的设计平台,则模拟方案难以胜任。
除此之外,模拟系统的测试和维修都非常困难。
数字电源的优势与不足数字电源正是为了克服现代电源的复杂性而提出的,它实现了数字和模拟技术的融合,提供了很强的适应性与灵活性,具备直接监视、处理并适应系统条件的能力,能够满足几乎任何电源要求。
数字电源还可通过远程诊断以确保持续的系统可靠性,实现故障管理、过电压(流)保护、自动冗余等功能。
由于数字电源的集成度很高,系统的复杂性并不随功能的增加而增加过多,外围器件很少(数字电源的快速响应能力还可以降低对输出滤波电容的要求),减少了占板面积,简化了设计制造流程。
同时,数字电源的自动诊断、调节的能力使调试和维护工作变得轻松。
数字电源管理芯片易于在多相以及同步信号下进行多相式并联应用,可扩展性与重复性优秀,轻松实现负载均流,减少EMI,并简化滤波电路设计。
数字控制的灵活性能把电源组合成串联或并联模型,形成虚拟电源。
而且,数字电源的智能化可保证在各种输入电压和负载点上都具有最优的功率转换效率。
相对模拟控制技术,数字技术的独特优势还包括在线可编程能力、更先进的控制算法、更好的效率优化、更高的操作精确度和可靠性、优秀的系统管理和互联功能。
数字电源不存在模拟电源中常见的误差、老化(包括模拟器件的精度)、温度影响、漂移、补偿等问题,无须调谐、可靠性好,可以获得一致、稳定的控制参数。
数字电源的运算特性使它更易于实现非线性控制(可改善电源的瞬态响应能力)和多环路控制等高级控制算法;更新固件即可实现新的拓扑结构和控制算法,更改电源参数也无须变更板卡上的元器件。
数字控制还能让硬件平台重复使用,通过设计不同固件即可满足各种最终系统的独特要求,从而加快产品上市,减少开发成本、元器件库存与风险。
数字电源已经表现出相当多的优点,但仍有一些缺点需要克服。
例如,模拟控制对信号状态的反应是瞬时的,而数字电源需要一个采样、量化和处理的过程来对负载的变化做出反馈,因此它对负载变化的响应速度目前还比不上模拟电源。
数字电源的占板面积要大于模拟电源,精度和效率也比模拟电源稍差。
虽然数字控制方法的优点在负载点(POL)系统中非常明显,但模拟电源在分辨率、带宽、与功率元件的电压兼容性、功耗、开关频率和成本(在简单应用中)等方面仍然占有优势。
不过,如果考虑到数字电源解决方案具有的优点,使用模拟电路搭建功能相似的电路,成本并不一定就比数字电源低。
数字电源中包含的技术无疑是复杂的,但它的使用并不一定就复杂。
不过它要求设计人员具有一定的程序设计能力,而目前的电源设计人员普遍都是模拟设计为主,缺乏编程方面的训练。
这对数字电源的推广也造成了一定的障碍。
人们对数字电源还有一个担心就是它还不像模拟电源那样经过多年应用的考验,因而可靠性不高。
但就像数字电路在概念上就优于模拟电路一样,可靠性是设计的问题,而不是数字化的问题。
不过,成本显然是约束数字电源广泛应用的一个主要因素。
由于数字实现方式的成本看似高于相似的模拟实现方式,而且人们对于数字电源产品的采用存在顾虑,所以,从用户的角度来说,也只有当数字电源的成本等于或低于模拟电源(因为成本是中国市场考虑的第一市场因素),同时又能提供模拟电源做不到的许多先进功能的时候,数字电源才会被考虑。
综上所述,在简单易用、参数变更不多的应用场合,模拟电源产品更具优势,因为其应用的针对性可以通过硬件固化来实现。
而在可控因素较多、需要更快实时反应速度、需要管理多个电源、复杂的高性能系统应用中,数字电源则具有优势。
数字电源的实现与进展数字电源有几种不同的含意,实现方式也各不相同。
最简单的是数字检测,包括监视开关电源的状态,如温度、输入/出电流、输入/出电压、开关频率(占空比)等,并根据需求向主机报告。
故障状态信息甚至时间标记等信息可以存储在非易失性存储器中,并在将来某个时间上报这些信息。
第二个定义是在“数字检测”的基础上通过数字接口控制开关电源,一般是通过I2C或类似的数字总线控制输出电压、开关频率、多通道电源的(上/下电)排序、上升斜率、跟踪、(软)启动、裕度控制、故障保护等等。
实际上,目前市场上的很多电源管理集成电路都以这种方式工作。
第三个定义是用数字电路彻底取代开关电源中的所有模拟电路,这是真正的原生数字电源。
只须编写几行简单的代码,一个核心数字电源集成电路就可以配置成升压稳压器、降压稳压器、负输出、SEPIC、反激式或正激式转换器,这样将使开关电源更容易设计、配置而且更稳定。
但要实现这点从目前看来是相当困难的,因为从物理定律上来说,电流是模拟信号,即使用ADC和DSP取代误差放大器和脉冲宽度调制器的数字开关电源也仍然需要电压基准、电流检测电路和FET驱动器,这些组件目前只有模拟形式的产品。
此外,电感器、变压器以及电容器等模拟元器件在实现数字电源时也是不能没有的。
传统的模拟电源是以模拟控制环路为基础的,如果在模拟控制环路外添加模拟量采样、量化电路,并辅以通信电路,即可构成上面第一个定义中所指的带数字检测的比较初级的数字电源。
目前的数字电源大都是按照上面第二个定义(即数字控制+数字监视)实现的,电源内部的模拟控制环路由数字控制环路替代。
未来是属于数字电源的,但数字化是个渐进的过程,其发展很可能由同时使用模拟和数字技术的混合系统开始,进而演进到全数字实现。
以前,数字化是以采用高成本的复杂多芯片电路方案为代价的。
例如,一个具有电压、电流监视及控制能力的应用可能需要很多集成电路,如高稳定度基准源、高精度多通道ADC、DAC和专用微控制器,此外还需要不小的软件开发工作量。
如果再考虑成本、复杂性、线路板空间限制和严苛的产品上市时间要求,以数字方式管理电源的确需要人们付出不菲的代价。
最近出现的数字电源产品的集成度和易用性已经达到一个更高的高度。
包括传统的模拟电源厂商和新兴的数字电源芯片设计厂商在内的大部分厂商都在着手解决纯粹的电源转换以外的问题,包括添加监测功能,提供可与系统通信的数字接口,以及建立数字控制反馈环路,即在模拟变换器外面使用“ 数字外壳”。
常见的方案有两种:(1)单芯片控制器方案。
通过外接A/D转换芯片进行取样,取样后对得到的数据进行运算处理,再把结果通过D/A转换后传送到PWM芯片,从而实现单芯片控制器对开关电源的控制。
这种方案的技术目前已经比较成熟,设计方法容易掌握,而且对单芯片控制器的要求不高,成本比较低。
但是整套电路用到多个芯片,电路比较复杂;且经过A/D和D/A转换等步骤,会造成比较大的信号延迟,进而影响电源的动态性能和稳压精度。
有些单芯片控制器整合了PWM输出,但一般单芯片控制器的运行频率有限,无法产生足够高的频率和精度的PWM输出信号。
(2)通过高性能数字芯片(如 DSP或MCU)对电源实现直接控制的方案。
数字芯片完成信号采样、处理和PWM输出等工作。
由于数字PWM输出的信号功率不足以驱动开关管,一般还需通过一个驱动芯片驱动开关管,即数字控制器与功率级之间的接口由MOSFET驱动器提供。
由于这些数字芯片有较高的取样速度(DSP片内的AD转换器完成一次A/D转换只需数百纳秒,相较之下,一般8位MCU控制器要数微秒之久)和指令周期,输出的PWM信号的分辨率仅数百皮秒,过流检测和关闭电源仅须数十纳秒,可以快速有效的实现各种复杂的控制算法,使设计具备较高的动态性能和稳压精度。
此外,在微处理器的支持下添加RS232/485、USB、以太网等扩展通信手段也非常方便。
数字控制的电源产品能够实现大部分数字电源的功能需求,但如果不添加一些额外部件,还实现不了全部功能需求。
这种“数字外壳”的架构存在以下问题:为了保证电源有较高的稳压精度,A/D 转换器必需要有较高精度的取样,但高精度的取样频率需要更长的A/D转换时间,造成回路的实时反应能力变差。
而且,高速的采样和运算将产生巨大的运算量,能达到实时要求的核心处理器还是很少的。