高海拔对电气的影响
海拔高度对电器设备的影响

海拔高度对电气设备的影响随着海拔高度的增加,大气的压力下降,空气密度和湿度相应地减少,其特征为:a、空气压力或空气密度较低;b、空气温度较低,温度变化较大;c、空气绝对湿度较小;d、大阳辐射照度较高;e、降水量较少;f、年大风日多;g、土壤温度较低,且冻结期长; 这些特征对电工产品性能有下面四大影响规律,列出如下:1、空气压力或空气密度降低的影响;1对绝缘介质强度的影响空气压力或空气密度的降低,引起外绝缘强度的降低;在海拔至5000m 范围内,每升高1000m,即平均气压每降低~,外绝缘强度降低8%~13%.2对电气间隙击穿电压的影响对于设计定型的产品,由于其电气间隙已经固定,随空气压力的降低,其击穿电压也下降.为了保证产品在高原环境使用时有足够的耐击穿能力,必须增大电气间隙.高原用电工产品的电气间隙可按下表进行修正.3对电晕及放电电压的影响a、高海拔低气压使高压电机的局部放电起始电压降低,电晕起始电压降低,电晕腐蚀严重;b、高海拔低气压使电力电容器内部气压下降,导致局部放电起始电压降低;c、高海拔低气压使避雷器内腔电压降低,导致工频放电电压降低;4对开关电器灭弧性能的影响空气压力或空气密度的降低使空气介质灭弧的开关电器灭弧性能降低,通断能力下降和电寿命缩短;a、直流电弧的燃弧时间随海拔升高或气压降低而延长;b、直流与交流电弧的飞弧距离随海拔升高或气压降低而增加;5对介质冷却效应,即产品温升的影响空气压力或空气密度的降低引起空气介质冷却效应的降低;对于以自然对流、强迫通风或空气散热器为主要散热方式的电工产品,由于散热能力的下降,温升增加;在海拔至5000m范围内,每升高1000m,即平均气压每降低~,温升增加3%~10%.a、静止电器的温升随海拔升高的增高率,每100m一般在以内,但对高发热电器,如电炉、电阻器、电焊机等电器,温升随海拔升高的增高率,每100m达到2K以上;b、电力变压器温升随海拔的增高与冷却方式有关,其增加率每100m为:油浸自冷,额定温升的%;干式自冷,额定温升的%;油浸强迫风冷,额定温升的%;干式强迫风冷,额定温升的%;c、电机的温升随海拔升高的增高率每100m为额定温升的1%;6对产品机械结构和密封的影响a、引起低密度、低浓度、多孔性材料例如:电工绝缘材料、隔热材料等的物理和化学性质的变化;b、润滑剂的蒸发及塑料制品中增塑剂的挥发加速;c、由于内外压力差的增大,气体或液体易从密封容器中泄漏或泄露率增大,有密封要求的电工产品,间接影响到电气性能;d、引起受压容器所承受压力的变化,导致受压容器容易破裂;2、空气温度降低及温度变化包括日温差增大的影响1高原环境空气温度对产品温升的补偿平均空气温度和最高空气温度均随海拔升高而降低,电工绝缘材料的热老化寿命决定于平均空气温度;高原环境空气温度的降低可以部分或全部补偿因气压降低而引起电工产品运行中温升的增加;环境空气温度的补偿值为hm;2日温差或温度变化对产品结构的影响高原空气温度的日温差大;较大的温度变化使产品外壳容易变形、龟裂,密封结构容易破裂;3、空气绝对湿度减小的影响1、绝对湿度对外绝缘强度的影响平均绝对湿度随海拔升高而降低;绝对湿度降低时,电工产品的外绝缘强度降低,因此要考虑工频放电电压与冲击闪络电压的湿度修正;湿度修正以零海拔时的平均绝对湿度:11g/m3为基准,具体修正按中有关规定;2、绝对湿度对电机换向及炭刷磨损的影响绝对湿度的降低使换向器电机的换向火花增大,同时使电机炭刷的磨损率增加;4、太阳辐射照度,包括紫外线辐射照度增加的影响1高原热辐射增加的影响海拔5000m时最大太阳辐射度为低海拔时相应值的倍,热辐射对物体起加热作用;对于户外用电工产品,太阳热辐射的增加引起较大的表面附加温升,降低有机绝缘材料的材质性能,使材料变形,产生机械热应力等影响;2高原紫外线辐射增加的影响紫外线辐射照度随海拔升高的增加率比太阳总辐射照度的增加率大得多,海拔3000m时已达低海拔时相应值的2倍;紫外线引起有机绝缘材料的加速老化,使空气容易电离而导致外绝缘强度和电晕起始电压降低;从上述四大影响看出,高、低压成套开关设备使用在高原环境上的设计应该减低这些影响,提高绝缘配合,同时增大电气间隙,在选择材料上和器件上综合考虑,从结构设计和选择高原型器件入手,解决相关技术问题,其主要实现手段就是要从产品设计层面考虑;高海拔对电气设备主要的影响是绝缘和温升两方面;可以从两个方面思考:1、海拔高了后,容易放电,因此绝缘等级要升高;由于空气稀薄,对于空气冷却的部件散热降低,因此要降低功率使用,这个要根据具体的海拔和散热条件进行计算;对不同的电气设备影响的侧重点不同,因此设计时侧重点不同;一、高压开关设备海拔升高,气压降低,空气的绝缘强度减弱,使电器外绝缘降低而对内绝缘影响很小;由于设备的出厂试验是在正常海拔地点进行的,因此,根据IEC出版物694对于开关设备以其额定工频耐压值和额定脉冲耐压值来鉴定绝缘能力,对于使用地点超过1000M以上时,应作适当的校正;对于10KV开关柜来说,其额定电压为12KV;额定工频耐压值有效值为32KV对隔离距离和28KV各相之间及对地;额定脉冲耐压值峰值为85KV对隔离距离和75KV各相之间及对地;而随着海拔的升高,空气密度降低,散热条件变差,会使高压电器在运行中温升增加,但空气温度随海拔高度的增加而逐渐降低,基本可以补偿由海拔升高对电器温升的影响; 但对于阀式避雷器来说,情况就较为复杂;由于避雷器自身并不密封,其阀片的间距不可调,因此其火花间隙的放电电压易受空气密度的影响,所以应向设备厂商注明海拔高度,或使用高压型阀式避雷器;二、干式变压器三、低压电气设备对于低压电气设备,情况要稍好一些;根据JB/Z0103-11标准及科研部门的调查研究,现有普通型低压电器在高原地区的使用如下:1、温度:现有一般低压电器产品,使用于高原地区时,其动、静触头和导电体以及线圈等部分的温度随海拔高度的增加而递增;其温升递增率为海拔每升高100M,温升增加,但大多数产品均小于;而高原地区气温随海拔高度的增加而降低,其递减率为海拔每升高100M,气温降低足够补偿由海拔升高对电器温升的影响;因此,低压电器的额定电流值可以保持不变,对于连续工作的大发热量电器,可适当降低电源等级使用;2、绝缘耐压:普通型低压电器在海拔2500米时仍有60%的耐压裕度,且通过对国产常用继电器与转换开关等的试验表明,在海拔4000M及以下地区,均可在其额定电压下正常运行;3、动作特性:海拔升高时,双金属片热继电器和熔断器的动作特性有少许变化,但在海拔4000M下时,均在其技术条件规定的特性曲线"带"范围内RTO等国产常用熔断器的熔化特性最大偏差均在容许偏差的50%以内;而国产常用热继电器的动作稳定性较好,其动作时间随海拔升高有显着缩短,根据不同的型号,分别为正常动作时间和40%-73%;也可在现场调节电流整定值,使其动作特性满足要求;通过对低压熔断器非线性的环境温度对时间-电流特性曲线研究表明,熔体的载流能力在同样的较小的过载电流倍数情况下即轻过载熔断时间随环境温度减小而增加,在20度以下时,变化的程度则更大;而在同样的较大的过载电流倍数情况下即短路保护时,熔断时间随环境温度的变化可不作考虑;因此,在高原地区的使用熔断器开关作为配电线路的过载与短路保护时,其上下级之间的选择性应特别加以考虑;在采用低压断路器时,应留有一定的断路与工作余量;由此可见,熔断器在高原的使用环境下可靠性和保护特性更为理想;。
高海拔电器元件标准

高海拔电器元件标准一、高海拔电器元件标准的重要性嘿,宝子们!今天咱们来唠唠高海拔电器元件标准这事儿。
你想啊,在高海拔地区,那环境可和咱平常的地方不一样。
气压低、气温低、空气还稀薄呢。
这时候电器元件要是不按照特殊标准来,那可就容易出乱子啦。
就好比一个人在平原能活蹦乱跳,到了高原就可能喘不上气,电器元件在高海拔也是面临着巨大挑战的。
二、高海拔对电器元件性能的影响1. 绝缘性能在高海拔地区,空气稀薄,气压低,这就使得电气设备的绝缘强度会降低。
就像一个原本能承受很大压力的气球,在气压低的地方,它可能就更容易破了。
对于电器元件来说,绝缘性能下降,就很容易出现漏电等危险情况。
2. 散热性能高海拔气温低,按说散热应该好,但是空气稀薄又导致散热能力下降。
电器元件工作的时候会发热,要是散热不好,就像人发烧了退不了烧一样,元件就容易被烧坏。
3. 电气间隙和爬电距离在高海拔地区,由于气压等因素影响,电气间隙和爬电距离的要求会更高。
如果不满足这些要求,就可能会产生电弧等危险情况,这就好比两根电线离得太近就容易打火一样。
三、高海拔电器元件的材料要求1. 绝缘材料得选择那些在高海拔环境下绝缘性能依然良好的材料。
比如说某些特殊的陶瓷材料,它们能够在低气压环境下保持稳定的绝缘性能,就像坚强的战士,不管环境多么恶劣,都能坚守岗位。
2. 散热材料散热材料也要特殊对待。
像一些金属合金材料,它们具有良好的导热性能,能够在高海拔这种特殊环境下把电器元件产生的热量快速散发出去,避免元件因为过热而损坏。
四、高海拔电器元件的制造工艺要求1. 密封工艺在高海拔地区,密封就显得尤为重要。
如果电器元件密封不好,外部的冷空气、水汽等就容易进入,从而影响元件的性能。
就像一个房子,门窗要是关不严实,外面的风雨就会灌进来。
所以制造过程中,要采用高质量的密封材料和密封工艺,确保元件内部环境的稳定。
2. 组装工艺组装的时候要更加精确。
因为在高海拔地区,电器元件对于电气间隙和爬电距离的要求更高,所以组装过程中,每个零件的安装位置都要准确无误,就像搭积木一样,每一块都要放在正确的位置上,这样整个结构才稳定。
海拔高度对电器的影响

海拔高度对电器的影响,主要是温升和外绝缘的问题。
当海拔高度升高时,空气密度降低,散热条件变坏,是高压电器在运行中温升增加,但空气温度则随海拔高度的升高而相应递减,其值足以补偿由海拔升高对电器温升的影响,因而高压电器在高海拔地区(不超过4000米)使用时,其额定电流可以保持不变。
海拔升高,气压随之降低,空气绝缘强度减弱,使电器外绝缘降低而内绝缘没有影响。
当海拔为1000米时,对用于3-10千伏的变压器、断路器、互感器等电器,其绝缘尚有一定裕度,实际运行中未发现由于高海拔影响而造成绝缘事故,因此在设计中可暂时采用一般产品。
当海拔为2000—3500米时,对用于3-10千伏的高压电器,暂时采用额定电压提高一级的办法来增加绝缘强度,或与制造商协商解决。
低压电器绝缘问题?。
海拔高度对电器设备的影响

海拔高度对电器设备的影响标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]海拔高度对电气设备的影响随着海拔高度的增加,大气的压力下降,空气密度和湿度相应地减少,其特征为:a、空气压力或空气密度较低;b、空气温度较低,温度变化较大;c、空气绝对湿度较小;d、大阳辐射照度较高;e、降水量较少;f、年大风日多;g、土壤温度较低,且冻结期长。
这些特征对电工产品性能有下面四大影响规律,列出如下:1、空气压力或空气密度降低的影响。
1)对绝缘介质强度的影响空气压力或空气密度的降低,引起外绝缘强度的降低。
在海拔至5000m范围内,每升高1000m,即平均气压每降低~,外绝缘强度降低8%~13%.2)对电气间隙击穿电压的影响对于设计定型的产品,由于其电气间隙已经固定,随空气压力的降低,其击穿电压也下降.为了保证产品在高原环境使用时有足够的耐击穿能力,必须增大电气间隙.高原用电工产品的电气间隙可按下表进行修正.3)对电晕及放电电压的影响a、高海拔低气压使高压电机的局部放电起始电压降低,电晕起始电压降低,电晕腐蚀严重;b、高海拔低气压使电力电容器内部气压下降,导致局部放电起始电压降低;c、高海拔低气压使避雷器内腔电压降低,导致工频放电电压降低。
4)对开关电器灭弧性能的影响空气压力或空气密度的降低使空气介质灭弧的开关电器灭弧性能降低,通断能力下降和电寿命缩短。
a)、直流电弧的燃弧时间随海拔升高或气压降低而延长;b)、直流与交流电弧的飞弧距离随海拔升高或气压降低而增加。
5)对介质冷却效应,即产品温升的影响空气压力或空气密度的降低引起空气介质冷却效应的降低。
对于以自然对流、强迫通风或空气散热器为主要散热方式的电工产品,由于散热能力的下降,温升增加。
在海拔至5000m范围内,每升高1000m,即平均气压每降低~,温升增加3%~10%.a、静止电器的温升随海拔升高的增高率,每100m一般在以内,但对高发热电器,如电炉、电阻器、电焊机等电器,温升随海拔升高的增高率,每100m达到2K以上。
海拔高度与电气绝缘标准

海拔高度与电气绝缘标准电气绝缘是指在电气设备中,通过绝缘材料将电流限制在预定的路径中,以防止电流泄漏或电击事故发生。
而海拔高度则是指地面以上的高度,通常以海平面为基准。
海拔高度的变化会对电气绝缘产生一定的影响,因此在设计和使用电气设备时,需要考虑海拔高度对电气绝缘的影响。
海拔高度的变化主要影响电气设备的绝缘强度和绝缘材料的性能。
随着海拔高度的增加,大气压力会逐渐降低,这会导致电气设备中的绝缘材料受到的电压应力增加。
因此,在高海拔地区使用电气设备时,需要对绝缘材料进行特殊设计,以确保其能够承受更高的电压应力。
此外,海拔高度的变化还会影响电气设备中的放电现象。
在高海拔地区,由于大气压力的降低,电气设备中的放电现象更容易发生。
这可能导致电气设备的绝缘性能下降,从而增加电气事故的风险。
因此,在高海拔地区使用电气设备时,需要采取相应的措施,如增加绝缘材料的厚度或使用更好的绝缘材料,以提高电气设备的绝缘性能。
为了确保电气设备在不同海拔高度下的安全运行,国际上制定了一系列的电气绝缘标准。
这些标准规定了电气设备在不同海拔高度下的绝缘强度要求,以及相应的测试方法和评估标准。
通过遵守这些标准,可以确保电气设备在不同海拔高度下具有足够的绝缘性能,从而减少电气事故的发生。
在实际应用中,根据不同的海拔高度,电气设备需要选择适当的绝缘材料和绝缘结构。
一般来说,对于低海拔地区,常规的绝缘材料和结构就可以满足要求。
而对于高海拔地区,需要选择具有更高绝缘强度的绝缘材料,并采取更严格的绝缘结构设计。
此外,还需要进行相应的测试和评估,以确保电气设备在高海拔地区的安全运行。
总之,海拔高度对电气绝缘有一定的影响。
在设计和使用电气设备时,需要考虑海拔高度的变化,选择适当的绝缘材料和绝缘结构,并遵守相应的电气绝缘标准,以确保电气设备在不同海拔高度下的安全运行。
这对于保障电气设备的可靠性和安全性具有重要意义。
海拔高度和温度对电气产品的影响

海拔高度对电气产品的影响随着海拔高度的增加,大气的压力下降,空气密度和湿度相应地减少,其特征为:a、空气压力或空气密度较低;b、空气温度较低,温度变化较大;c、空气绝对湿度较小;d、大阳辐射照度较高;e、降水量较少;f、年大风日多;g、土壤温度较低,且冻结期长。
这些特征对电工产品性能有下面四大影响规律,列出如下:1、空气压力或空气密度降低的影响1)对绝缘介质强度的影响空气压力或空气密度的降低,引起外绝缘强度的降低。
在海拔至5000m范围内,每升高1000m,即平均气压每降低7.7~10.5kPa,外绝缘强度降低8%~13%.2)对电气间隙击穿电压的影响对于设计定型的产品,由于其电气间隙已经固定,随空气压力的降低,其击穿电压也下降.为了保证产品在高原环境使用时有足够的耐击穿能力,必须增大电气间隙.高原用电工产品的电气间隙可按下表进行修正.3)对电晕及放电电压的影响a、高海拔低气压使高压电机的局部放电起始电压降低,电晕起始电压降低,电晕腐蚀严重;b、高海拔低气压使电力电容器内部气压下降,导致局部放电起始电压降低;c、高海拔低气压使避雷器内腔电压降低,导致工频放电电压降低。
4)对开关电器灭弧性能的影响空气压力或空气密度的降低使空气介质灭弧的开关电器灭弧性能降低,通断能力下降和电寿命缩短。
a)、直流电弧的燃弧时间随海拔升高或气压降低而延长;b)、直流与交流电弧的飞弧距离随海拔升高或气压降低而增加。
5)对介质冷却效应,即产品温升的影响空气压力或空气密度的降低引起空气介质冷却效应的降低。
对于以自然对流、强迫通风或空气散热器为主要散热方式的电工产品,由于散热能力的下降,温升增加。
在海拔至5000m 范围内,每升高1000m,即平均气压每降低7.7~10.5kPa,温升增加3%~10%.a、静止电器的温升随海拔升高的增高率,每100m一般在0.4K以内,但对高发热电器,如电炉、电阻器、电焊机等电器,温升随海拔升高的增高率,每100m达到2K以上。
高海拔对电气设备影响

高海拔对电气设备影响高海拔对电气设备主要的影响是绝缘和温升两方面。
对不同的电气设备影响的侧重点不同。
一、高压开关设备海拔升高,气压降低,空气的绝缘强度减弱,使电器外绝缘降低而对内绝缘影响很小。
由于设备的出厂试验是在正常海拔地点进行的,因此,根据IEC出版物694对于开关设备以其额定工频耐压值和额定脉冲耐压值来鉴定绝缘能力,对于使用地点超过1000M以上时,应作适当的校正。
对于10KV开关柜来说,其额定电压为12KV;额定工频耐压值(有效值)为32KV(对隔离距离)和28KV(各相之间及对地);额定脉冲耐压值(峰值)为85KV(对隔离距离)和75KV(各相之间及对地)。
而随着海拔的升高,空气密度降低,散热条件变差,会使高压电器在运行中温升增加,但空气温度随海拔高度的增加而逐渐降低,基本可以补偿由海拔升高对电器温升的影响。
但对于阀式避雷器来说,情况就较为复杂。
由于避雷器自身并不密封,其阀片的间距不可调,因此其火花间隙的放电电压易受空气密度的影响,所以应向设备厂商注明海拔高度,或使用高压型阀式避雷器。
二、干式变压器环氧树脂干式变压器,国家标准关于以上两个因素有着明确的校正方法。
根据GB6450)《干式变压器》中第,对于在超过1000M海拔处运行,并在正常海拔进行试验的变压器,其温升限值应相应递减,超过1000M海拔部分以第500M为一级,温升限值接自冷变压器2.5%、风冷变压器5%减小;额定短时工频耐受电压值同时增加6.25%。
三、低压电气设备对于低压电气设备,情况要稍好一些。
根据JB/Z0103-11标准及科研部门的调查研究,现有普通型低压电器在高原地区的使用如下:1、温度:现有一般低压电器产品,使用于高原地区时,其动、静触头和导电体以及线圈等部分的温度随海拔高度的增加而递增。
其温升递增率为海拔每升高100M,温升增加0.1-0.5K,但大多数产品均小于0.4K。
而高原地区气温随海拔高度的增加而降低,其递减率为海拔每升高100M,气温降低足够补偿由海拔升高对电器温升的影响。
试论高海拔对电气设备的特殊要求

试论高海拔对电气设备的特殊要求1. 引言1.1 高海拔对电气设备的影响高海拔地区对电气设备的影响是一个备受关注的话题。
由于高海拔地区的气压较低、空气稀薄、温度变化大等特点,这些环境因素都将对电气设备的正常运行产生重要影响。
在高海拔地区,由于气压较低,空气中的氧含量也相应较低,这将导致电气设备的散热效果降低,给设备的稳定性和功率输出带来挑战。
高海拔地区的温度变化大,白天温度较高,夜晚温度较低,这将加剧电气设备的热循环负荷,影响设备的寿命和稳定性。
高海拔地区的强紫外线辐射和氧化性气体也会对电气设备的绝缘材料和导电件造成损害,增加设备的故障率。
针对高海拔地区的这些特殊影响,我们需要重视电气设备在高海拔环境下的特殊要求,以确保设备的安全可靠运行。
2. 正文2.1 高海拔环境下电气设备需考虑的因素在高海拔环境下,电气设备需要考虑的因素是多方面的。
高海拔地区气压低、氧气稀薄,这可能导致电器设备散热困难,影响设备的工作效率和寿命。
高海拔地区日晒时间长、紫外线强度高,电气设备的外壳和绝缘材料需要具备耐热、耐紫外线的特性,以防止设备损坏和安全事故发生。
高海拔地区气候多变,温差大,电气设备需要具备良好的耐温性能,避免温度变化对设备造成影响。
高海拔地区风力强,可能带来电器设备受损的风险,因此电气设备在设计和安装时需要考虑防风措施,确保设备的稳定性和安全性。
高海拔地区可能会受雷击影响,电气设备需要具备较强的抗雷击能力,避免雷击造成设备损坏或人员伤害。
在高海拔环境下,电气设备需要考虑气候特点、环境影响、安全防护等因素,以确保设备的正常运行和可靠性。
只有全面考虑这些因素,才能有效应对高海拔环境对电气设备的特殊要求,保障设备的工作效率和安全性。
2.2 高海拔环境下电气设备的特殊要求在高海拔环境下,电气设备面临着诸多特殊要求。
由于高海拔地区气压低,氧含量稀少,电气设备在这种环境下容易受到电弧放电的影响,因此需要特殊的设计和保护措施确保设备的安全运行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
以下是一部分内容,有图有表,字数还有限制,不好发的,你可以在网上找,也可将邮箱告诉我,我给你发过去。
中华人民共和国国家标准电气装置安装工程电气设备交接试验标准GB 50150-91中华人民共和国建设部发布1992-07-01施行第一章总则第1.0.1条为适应电气装置安装工程电气设备交接试验的需要,促进电气设备交接试验新技术的推广和应用,特制订本标准。
第1.0.2条本标准适用于500kV及以下新安装电气设备的交接试验。
本标准不适用于安装在煤矿井下或其它有爆炸危险场所的电气设备。
第1.0.3条断电保护、自动、远动、通讯、测量、整流装置以及电气设备的机械部分等的交接试验,应分别按有关标准或规范的规定进行。
第1.0.4条电气设备应按照本标准进行耐压试验,但对110kV及以上的电气设备,当本标准条款没有规定时,可不进行交流耐压试验。
交流耐压试验时加至试验标准电压后的持续时间,无特殊说明时,应为1min。
耐压试验电压值以额定电压的倍数计算时,发电机和电动机应按铭牌额定电压计算,电缆可按电缆额定电压计算。
非标准电压等级的电气设备,其交流耐压试验电压值,当没有规定时,可根据本标准规定的相邻电压等级按比例采用插入法计算。
进行绝缘试验时,除制造厂装配的成套设备外,宜将连接在一起的各种设备分离开来单独试验。
同一试验标准的设备可以连在一起试验。
为便于现场试验工作,已有出厂试验记录的同一电压等级不同试验标准的电气设备,在单独试验有困难时,也可以连在一起进行试验。
试验标准应采用连接的各种设备中的最低标准。
油浸式变压器、电抗器及消弧线圈的绝缘试验应在充满合格油静置一定时间,待气泡消除后方可进行。
静置时间按产品要求,当制造厂无规定时,对电压等级为500kV的,须静置72h以上;220~330kV的为48h 以上;110kV及以下的为24h以上。
第1.0.5条进行电气绝缘的测量和试验时,当只有个别项目达不到本标准的规定时,则应根据全面的试验记录进行综合判断,经综合判断认为可以投入运行者,可以投入运行。
第1.0.6条当电气设备的额定电压与实际使用的额定工作电压不同时,应按下列规定确定试验电压的标准:一、采用额定电压较高的电气设备在于加强绝缘时,应按照设备的额定电压的试验标准进行;二、采用较高电压等级的电气设备在于满足产品通用性及机械强度的要求时,可以按照设备实际使用的额定工作电压的试验标准进行;三、采用较高电压等级的电气设备在于满足高海拔地区要求时,应在安装地点按实际使用的额定工作电压的试验标准进行。
第1.0.7条在进行与温度及湿度有关的各种试验时,应同时测量被试物温度和周围的温度及湿度。
绝缘试验应在良好天气且被试物温度及仪器周围温度不宜低于5℃,空气相对湿度不宜高于80%的条件下进行。
试验时,应注意环境温度的影响,对油浸式变压器、电抗器及消弧线圈,应以变压器、电抗器及消弧线圈的上层油温作为测试温度。
本标准中使用常温为10~40℃;运行温度为75℃。
第1.0.8条本标准中所列的绝缘电阻测量,应使用60s的绝缘电阻值;吸收比的测量应使用60s与15s绝缘电阻值的比值;极化指数应为10min与1min的绝缘电阻值的比值。
第1.0.9条多绕组设备进行绝缘试验时,非被试绕组应予短路接地。
第1.0.10条测量绝缘电阻时,采用兆欧表的电压等级,在本标准未作特殊规定时,应按下列规定执行:一、100V以下的电气设备或回路,采用250V兆欧表;二、500V以下至100V的电气设备或回路,采用500V兆欧表;三、3000V以下至500V的电气设备或回路,采用1000V兆欧表;四、10000V以下至3000V的电气设备或回路,采用2500V兆欧表;五、10000V及以上的电气设备或回路,采用2500V或5000V兆欧表。
第1.0.11条本标准的高压试验方法,应按现行国家标准《高电压试验技术》的规定进行。
第二章同步发电机及调相机第2.0.1条容量6000kW及以上的同步发电机及调相机的试验项目,应包括下列内容:一、测量定子绕组的绝缘电阻和吸收比;二、测量定子绕组的直流电阻;三、定子绕组直流耐压试验和泄漏电流测量;四、定子绕组交流耐压试验;五、测量转子绕组的绝缘电阻;六、测量转子绕组的直流电阻;七、转子绕组交流耐压试验;八、测量发电机或励磁机的励磁回路连同所连接设备的绝缘电阻,不包括发电机转子和励磁机电枢;九、发电机或励磁机的励磁回路连同所连接设备的交流耐压试验,不包括发电机转子和励磁机电枢;十、定子铁芯试验;十一、测量发电机、励磁机的绝缘轴承和转子进水支座的绝缘电阻;十二、测量埋入式测温计的绝缘电阻并校验温度误差;十三、测量灭磁电阻器、自同期电阻器的直流电阻;十四、测量超瞬态电抗和负序电抗;十五、测量转子绕组的交流阻抗和功率损耗;十六、测录三相短路特性曲线;十七、测录空载特性曲线;十八、测量发电机定子开路时的灭磁时间常数;十九、测量发电机自动灭磁装置分闸后的定子残压;二十、测量相序;二十一、测量轴电压。
注:①容量6000kW以下、电压1kV以上的同步发电机应进行除第十四款以外的其余各款的试验。
②电压1kV及以下的同步发电机不论其容量大小,均应按本条第一、二、四、五、六、七、八、九、十一、十二、十三、二十、二十一款进行试验。
③无起动电动机的同步调相机或调相机的起动电动机只允许短时运行者,可不进行本条第十六、十七款的试验。
第2.0.2条测量定子绕组的绝缘电阻和吸收比,应符合下列规定:一、各相绝缘电阻的不平衡系数不应大于2;二、吸收比:对沥青浸胶及烘卷云母绝缘不应小于1.3;对环氧粉云母绝缘不应小于1.6。
注:①进行交流耐压试验前,电机绕组的绝缘应满足第一、二款的要求。
②水内冷电机应在消除剩水影响的情况下进行。
③交流耐压试验合格的电机,当其绝缘电阻在接近运行温度、环氧粉云母绝缘的电机则在常温下不低于其额定电压每千伏1MΩ时,可不经干燥投入运行。
但在投运前不应再拆开端盖进行内部作业。
④对水冷电机,应测量汇水管及引水管的绝缘电阻。
阻值应符合制造厂的规定。
第2.0.3条测量定子绕组的直流电阻,应符合下列规定:一、直流电阻应在冷状态下测量,测量时绕组表面温度与周围空气温度之差应在±3℃的范围内;二、各相或各分支绕组的直流电阻,在校正了由于引线长度不同而引起的误差后,相互间差别不应超过其最小值的2%;与产品出厂时测得的数值换算至同温度下的数值比较,其相对变化也不应大于2%。
第2.0.4条定子绕组直流耐压试验和泄漏电流测量,应符合下列规定:一、试验电压为电机额定电压的3倍。
二、试验电压按每级0.5倍额定电压分阶段升高,每阶段停留1min,并记录泄漏电流;在规定的试验电压下,泄漏电流应符合下列规定:1.各相泄漏电流的差别不应大于最小值的50%,当最大泄漏电流在20μA以下,各相间差值与出厂试验值比较不应有明显差别;2.泄漏电流不应随时间延长而增大;当不符合上述规定之一时,应找出原因,并将其消除。
3.泄漏电流随电压不成比例地显著增长时,应及时分析。
三、氢冷电机必须在充氢前或排氢后且含氢量在3%以下时进行试验,严禁在置换氢过程中进行试验。
四、水内冷电机试验时,宜采用低压屏蔽法。
第2.0.5条定子绕组交流耐压试验所采用的电压,应符合表2.0.5的规定。
现场组装的水轮发电机定子绕组工艺过程中的绝缘交流耐压试验,应按现行国家标准《水轮发电机组安装技术规范》的有关规定进行。
水内冷电机在通水情况下进行试验,水质应合格;氢冷电机必须在充氢前或排氢后且含氢量在3%以下时进行试验,严禁在置换氢过程中进行。
表 2.0.5 定子绕组交流耐压试验电压容量(kW) 额定电压(V) 试验电压(V)10000以下36以上1.5Un+75010000及以上3150~6300 1.875Un6300以上1.5Un+2250注:Un为发电机额定电压。
第2.0.6条测量转子绕组的绝缘电阻,应符合下列规定:一、转子绕组的绝缘电阻值不宜低于0.5MΩ;二、水内冷转子绕组使用500V及以下兆欧表或其它仪器测量,绝缘电阻值不应低于5000Ω;三、当发电机定子绕组绝缘电阻已符合起动要求,而转子绕组的绝缘电阻值不低于2000Ω时,可允许投入运行;四、可在电机额定转速时超速试验前、后测量转子绕组的绝缘电阻;五、测量绝缘电阻时采用兆欧表的电压等级,当转子绕组额定电压为200V以上,采用2500V兆欧表;200V 及以下,采用1000V兆欧表。
第2.0.7条测量转子绕组的直流电阻,应符合下列规定:一、应在冷状态下进行,测量时绕组表面温度与周围空气温度之差应在±3℃的范围内。
测量数值与产品出厂数值换算至同温度下的数值比较,其差值不应超过2%;二、显极式转子绕组,应对各磁极绕组进行测量;当误差超过规定时,还应对各磁极绕组间的连接点电阻进行测量。
第2.0.8条转子绕组交流耐压试验,应符合下列规定:一、整体到货的显极式转子,试验电压应为额定电压的7.5倍,且不应低于1200V;二、工地组装的显极式转子,其单个磁极耐压试验应按制造厂规定进行。
组装后的交流耐压试验,应符合下列规定:1.额定励磁电压为500V及以下,为额定励磁电压的10倍,并不应低于1500V;2.额定励磁电压为500V以上,为额定励磁电压的2倍加4000V。
三、隐极式转子绕组不进行交流耐压试验,可采用2500V兆欧表测量绝缘电阻来代替。
第2.0.9条测量发电机和励磁机的励磁回路连同所连接设备的绝缘电阻值,不应低于0.5MΩ。
回路中有电子元器件设备的,试验时应将插件拔出或将其两端短接。
注:不包括发电机转子和励磁机电枢的绝缘电阻测量。
第2.0.10条发电机和励磁机的励磁回路连同所连接设备的交流耐压试验,其试验电压应为1000V;水轮发电机的静止可控硅励磁的试验电压,应按第2.0.8条第二款的规定进行;回路中有电子元器件设备的,试验时应将插件拔出或将其两端短接。
注:不包括发电机转子和励磁机电枢的交流耐压试验。
第2.0.11条定子铁芯试验,应符合下列规定:一、采用0.8~1.0T的磁通密度进行试验。
当各点温度按1.0T磁通密度折算时,铁芯齿部的最高温升不应超过45℃;各齿的最大温度差不应超过30℃。
新机的铁芯齿部温升不应超过25℃,温差不应超过15℃;试验持续时间为90min。
二、当制造厂已进行过试验,且有出厂试验报告时,可不进行试验。
第2.0.12条测量发电机、励磁机的绝缘轴承和转子进水支座的绝缘电阻,应符合下列规定:一、应在装好油管后,采用1000V兆欧表测量,绝缘电阻值不应低于0.5MΩ;二、对氢冷发电机应测量内、外挡油盖的绝缘电阻,其值应符合制造厂的规定。
第2.0.13条测量检温计的绝缘电阻并校验温度误差,应符合下列规定:一、采用250V兆欧表测量;二、检温计指示值误差不应超过制造厂规定值。