磁盘阵列RAID技术简述.doc

合集下载

简述raid磁盘管理技术

简述raid磁盘管理技术

简述raid磁盘管理技术
RAID是一种磁盘管理技术,全称为Redundant Array of Independent Disks(独立磁盘阵列),目的是将多个磁盘组合
在一起,形成一个单一的高容量或高性能的存储设备。

RAID
通常用于数据备份或提高数据处理能力。

RAID技术有多种级别,其中最常见的是RAID 0、RAID 1、RAID 5和RAID 10。

RAID 0将多个磁盘组合在一起形成一个虚拟磁盘,提高了数
据读写速度,但没有冗余备份,一旦其中一个磁盘损坏,整个系统将失效。

RAID 1则是将数据完全复制到两个磁盘上,保证数据完整性,但需要花费更多的存储空间。

RAID 5采用奇偶校验来检测数据完整性,并将奇偶校验码分
布在各个磁盘上,提高存储效率和可用性。

RAID 10结合了RAID 1和RAID 0的优点,将多个RAID 1组
合在一起形成RAID 0。

RAID技术的使用有助于提高数据可用性、数据安全和数据处
理能力。

但需要注意的是,RAID不能完全防止数据丢失或毁坏,并且RAID技术需要更高的成本和更多的管理工作。

阵列技术RAID0、1、3、5、10、30、50介绍

阵列技术RAID0、1、3、5、10、30、50介绍

附录A Disk Array磁盘阵列基本原理 A.1 我们为什幺需要磁盘阵列 目前人们逐渐认识了磁盘阵列技术。

磁盘阵列技术可以详细地划分为若干个级别0-5 RAID技术,并且又发展了所谓的 RAID Level 10, 30, 50的新的级别,本章节都会一一介绍。

RAID是廉价冗余磁盘阵列(Redundant Array of Inexpensive Disk)的简称。

用RAID的好处简单的说就是: 安全性高,速度快,数据容量超大 某些级别的RAID技术可以把速度提高到单个硬盘驱动器的400%。

磁盘阵列把多个硬盘驱动器连接在一起协同工作,大大提高了速度,同时把硬盘系统的可靠性提高到接近无错的境界。

这些“容错”系统速度极快,同时可靠性极高。

 这本小册子将讨论这些新技术,以及不同级别RAID的优缺点。

我们并不想涉及那些关键性的技术细节问题,而是将磁盘阵列和RAID技术介绍给对它们尚不熟悉的人们。

相信这将帮助你选用合适的RAID技术。

 A.2 RAID级别的定义 下表提供了6级RAID的简单定义,本书其后部分将对各级RAID进行更详尽的描述。

 RAID级别 描述 速度* 容错性能 RAID 0 硬盘分段 硬盘并行输入/出 无 RAID 1 硬盘镜像 没有提高 有(允许单个硬盘错) RAID 2 硬盘分段加汉明码纠错 没有提高 有(允许单个硬盘错) RAID 3 硬盘分段加专用 奇偶校验盘 硬盘并行输入/出 有(允许单个硬盘错) RAID 4 硬盘分段加专用 奇偶校验盘需异步硬盘 硬盘并行输入/出 有(允许单个硬盘错) RAID 5 硬盘分段加奇偶校验 分布在各硬盘 硬盘并行输入/出比 RAID0稍慢 有(允许单个硬盘错) *对于单一容量昂贵硬盘(SLED)的性能提高 A.3 硬盘数据跨盘(Spanning) 数据跨盘技术使多个硬盘像一个硬盘那样工作,这使用户通过组合已有的资源或增加一些资源来廉价地突破现有的硬盘空间限制。

raid技术详解

raid技术详解

raid技术详解(raid大全)一、RAID 概述1988 年美国加州大学伯克利分校的 D. A. Patterson 教授等首次在论文“A Case of Redundant Array of Inexpensive Disks”中提出了 RAID 概念[1] ,即廉价冗余磁盘阵列( Redundant Array of Inexpensive Disks )。

由于当时大容量磁盘比较昂贵, RAID 的基本思想是将多个容量较小、相对廉价的磁盘进行有机组合,从而以较低的成本获得与昂贵大容量磁盘相当的容量、性能、可靠性。

随着磁盘成本和价格的不断降低, RAID 可以使用大部分的磁盘,“廉价”已经毫无意义。

因此, RAID 咨询委员会( RAID Advisory Board, RAB )决定用“独立”替代“廉价”,于时 RAID 变成了独立磁盘冗余阵列( Redundant Array of Independent Disks )。

但这仅仅是名称的变化,实质内容没有改变。

RAID 这种设计思想很快被业界接纳, RAID 技术作为高性能、高可靠的存储技术,已经得到了非常广泛的应用。

RAID 主要利用数据条带、镜像和数据校验技术来获取高性能、可靠性、容错能力和扩展性,根据运用或组合运用这三种技术的策略和架构,可以把 RAID 分为不同的等级,以满足不同数据应用的需求。

D. A. Patterson 等的论文中定义了 RAID1-RAID5 原始 RAID 等级, 1988 年以来又扩展了 RAID0 和 RAID6 。

近年来,存储厂商不断推出诸如 RAID7 、 RAID10/01 、 RAID50 、 RAID53 、 RAID100 等 RAID 等级,但这些并无统一的标准。

目前业界公认的标准是 RAID0-RAID5 ,除 RAID2外的四个等级被定为工业标准,而在实际应用领域中使用最多的 RAID 等级是RAID0 、 RAID1 、 RAID3 、 RAID5 、 RAID6 和 RAID10。

RAID :性能增强的磁盘阵列配置方案

RAID :性能增强的磁盘阵列配置方案

RAID :性能增强的磁盘阵列配置方案RAID(Redundant Array of Independent Disks)是一种通过将多个硬盘组合在一起形成磁盘阵列来提高存储性能和数据冗余的技术。

RAID有不同的级别,每个级别都有不同的特点和适用场景。

在本文中,我们将重点讨论几种常见的RAID配置方案,以及它们如何增强性能。

1. RAID 0:大幅提升读写速度RAID 0是最简单的RAID级别之一,它将两个或更多的硬盘组合在一起,并将数据分割成块,然后分别写入每个硬盘。

由于数据的并行读写操作,RAID 0将大幅提升存储系统的读写速度。

然而,RAID 0没有冗余功能,一旦其中一个硬盘出现故障,所有数据都将丢失。

2. RAID 1:提供数据冗余和备份RAID 1使用镜像技术,将相同的数据同时写入两个或多个硬盘。

这样,当其中一个硬盘出现故障时,系统可以从其他硬盘中获取相同的数据。

RAID 1提供了数据的冗余和备份功能,使得系统更加可靠。

然而,RAID 1并不能提升系统的读写速度,因为所有数据都要同时写入多个硬盘。

3. RAID 5:提供读取性能和数据冗余RAID 5是一种将数据分布在多个硬盘上并提供容错能力的RAID级别。

RAID 5至少需要三个硬盘,其中一个硬盘用于存储奇偶校验信息。

奇偶校验信息允许在一个硬盘故障的情况下恢复数据。

RAID 5在读取方面具有良好的性能,但在写入方面可能会稍慢。

4. RAID 10:融合RAID 1和RAID 0的优势RAID 10是将RAID 1和RAID 0结合起来的一种配置方案,它同时提供数据冗余和读写性能的优势。

RAID 10需要至少四个硬盘,它将硬盘分成两组,每组都是一个独立的RAID 1阵列,然后将这两个RAID 1阵列组成一个RAID 0阵列。

这样做的好处是不仅可以提供数据的冗余和备份功能,还可以大幅提升系统的读写性能。

5. RAID 6:提供更高的容错能力RAID 6是在RAID 5基础上进一步增强的配置方案,它使用两个奇偶校验信息来提供更高的容错能力。

磁盘阵列详解

磁盘阵列详解

磁盘阵列详解RAID:是一种将多块磁盘形成一个有机整体,使之能够在硬盘故障时提供数据保护的技术. RAID分级取决于三个因素:分条Striping:将数据分散到不同物理硬盘上,使读写数据时可以同时访问多块硬盘!数据镜像Mirroring:将同一数据写在两块不同硬盘上,从而产生该数据两个副本!奇偶校验Parity (Error Correction ):通过数学方法而不是单纯重复写同样数据来实现数据保护.注:独立磁盘奇偶校验:校验信息单独存在磁盘上,一旦出现磁盘损坏,用校验值减去其它磁盘上对应位臵的值,就能找回数据!RAID 0单纯依靠分条提高I/O性能,无数据保护!适用:I/O量大但不需要数据保护的应用 e.g.图像处理!RAID 1通过数据镜像提升容错性!同一数据写在不同硬盘上!可以承受一块甚至几块硬盘同时坏掉,但不优化读取性能!适用:数据安全可靠性要求非常高的应用 e.g. 人事会计系统!RAID 2带海明码的RAID!RAID 3通过分条提高性能,利用奇偶校验提升容错性。

在存储普通的信息的硬盘以外,用一块专门的硬盘存储校验信息!RAID 4通过分条提高性能,利用奇偶校验提升容错性!在存储普通的信息的硬盘以外,用一块专门的硬盘存储校验信息。

但允许某一数据单元(block)可以从单块磁盘中读写,而无需访问整个条带,所以数据读取的速度高!RAID 5通过分条提高性能,利用奇偶校验提升容错性。

允许某一数据单元(block)可以从单块磁盘中读写,而无需访问整个条带。

校验信息分布在所有磁盘上!比RAID4写性能好,容易恢复!RAID 6基本与RAID5一样,但引入第二校验元素应对两块磁盘同时失效的情况。

写代价也因此比RAID5高,恢复也比RAID5耗时长!RAID 1+0分条的镜像数据先被镜像,再分条,数据恢复简单,迅速。

RAID 0+1镜像的分条数据先被分条,再镜像,一旦一块硬盘坏掉,级数下降成RAID0,恢复起来较RAID1+0麻烦。

RAID技术简介

RAID技术简介

RAID技术简介1简介本章主要介绍RAID技术(冗余磁盘阵列)的一般意义本章描述的RAID结构并不反映其他特殊情况,它们只代表典型的结构特征。

关于RAID技术的描述主要提供给对此项技术并不熟悉的用户。

2RAID概念RD15 RAID存储系统具有高速的读/写性能和数据冗余性,主要因为它采用了一种数据存储新技术,即冗余磁盘阵列(RAID)。

RAID概念由美国UC Berkeley大学于1987年提出。

RAID具有以下三个特征:⏹在用户看来,它实际上就是捆绑一个或多个逻辑盘形成一个磁盘组。

⏹数据通过定义好的方式传送到磁盘组。

⏹倘若磁盘失效,冗余性或数据重建性可以使数据重新恢复。

Berkeley大学介绍了五种不同的RAID级别,定义为RAID 0至5。

最常用的级别为0,1,3和5。

●RAID 0在RAID0里,数据被分成多种片段同时写进多个磁盘(图1-1)。

无奇偶校验,不检查保存的磁盘信息。

数据通过多个磁盘同时读取,这种配置可以使I/O速率最大化,但没有数据保护。

RAID0最适合需要高I/O速度但无数据冗余要求的应用。

●RAID1RAID1采用镜像技术来达到高数据可用性。

数据被分成块(blocks),相同块被同时写入两个磁盘,读取时从两个镜像盘的某一个盘里读取(图1-2)。

这种技术的缺点就是有一半的可用磁盘用来进行数据保护。

RAID1特别适合数据库及文件服务器等需要高可用性的应用。

●RAID3在RAID3里,数据被分成不同的片段(segments)并同时写入不同的磁盘。

另有一个单独的磁盘用来存储其他盘上写数据的奇偶校验信息(图1-3)。

一旦磁盘失效数据丢失,数据仍可从其余盘上恢复。

这种结构保证了有高I/O吞吐量、高速数据传输速度和数据保护。

但它读写小块数据的效率低。

它最适合有大的数据块读写操作的应用。

●RAID5RAID5采用阵列/校验分配方式,数据被分成一条条(stripes),数据与校验信息采用交互方式同时写进磁盘(图1-4)。

RAID__磁_盘_阵_列详细介绍

RAID__磁_盘_阵_列详细介绍

服务器磁盘RAID(一)RAID 磁盘阵列RAID是 Redundant Array of Inexpensive Disks 的缩写. 中文叫磁盘阵列. 的确, 它是由一组廉价的磁盘(或叫硬盘)所组成. 通过一个特定的计算方程式和数据分布方法, 数据是可以有根据地重新计算出来. 我们做光盘镜像时由于数据量非常庞大. 单靠磁盘组, 即把几个硬盘在NT的磁盘管理器上接起来成为一个大硬盘是完全没有可靠性可言. 一旦发生什么问题, 这个庞大的数据库必须重新由头再做. 非常费时失事.所以我们用磁盘阵列. Raid有分 0, 1, 0+1, 3, 5等好几类. 其中Raid 5 可以说是光盘镜像的必然选择.磁盘阵列其实也分为软阵列 (Software Raid)和硬阵列 (Hardware Raid) 两种. 软阵列即通过软件程序并由计算机的CPU提供运行能力所成. 由于软件程式不是一个完整系统故只能提供最基本的RAID容错功能.其他如热备用硬盘的设置, 远程管理等功能均一一欠奉. 硬阵列是由独立操作的硬件提供整个磁盘阵列的控制和计算功能. 不依靠系统的CPU资源. 由于硬阵列是一个完整的系统, 所有需要的功能均可以做进去. 所以硬阵列所提供的功能和性能均比软阵列好. 而且, 如果你想把系统也做到磁盘阵列中, 硬阵列是唯一的选择. 故我们可以看市场上RAID 5 级的磁盘阵列均为硬阵列. 软阵列只适用于Raid 0 和Raid 1. 对于我们做镜像用的镜像塔, 肯定不会用 Raid 0或 Raid 1 RAID的分类 :1 [ 请输入资料RAID 0 - 由两个或以上的硬盘组成. 容量是它们的总和. 数据是平均的写到两个硬盘上. 好处是速度快因读和写均由两个硬盘同时分担.但一点容错能力都没有. 当有一个硬盘失效时, 所有的数据即时失去.RAID 1 - 即硬盘镜像(Hard Disk Mirroring) 由两个硬盘所组成. 其中一个是主, 另外一个是副. 系统不停的把在主硬盘上发生的变化写录到副硬盘上. 容错能力是 100%. 但由于两个硬盘只提供一个硬盘的容量故使用率很低.RAID 5 - 由三个或以上的硬盘所组成. 容量是它们中最低容量X (硬盘总数- 1). 如果在硬盘容量固定的情况下, 5个硬盘作RAID5只能有4个硬盘的容量. 如果有一些硬盘的容量比较大, 系统只能按最低容量的硬盘算. 所以我们做RAID 5时, 所有硬盘均是同一个容量的. 数据和容错信息会平均的分布到这几个硬盘中. 万一有一个硬盘失效时,系统和根据其他几个硬盘的容错信息计算出失效硬盘应该提供的信息. 故其容错率也是100%. 但约有两个硬盘同时失效, 所有数据均会即时掉失. 当然, 两个硬盘同时失效的机会不是很高, 故我们也不用过分担忧. 如果你是不怕一万, 只怕万一的人. 世达XRAID系统同时提供热备用硬盘的功能. 令你的风险降到最低.主题:服务器磁盘RAID(二)一 RAID技术的优越性所谓RAID,是指将多个磁盘连成一个阵列,然而以某种方式书写磁盘。

RAID技术简介

RAID技术简介

RAID技术简介RAID是利用若干台小型硬磁盘驱动器加上控制器按一定的组合条件,而组成的一个大容量、快速响应、高可靠储子系统。

由于可有多台驱动器并行工作,大大提高了存储容量和数据传输率,而且由于采用了纠错技术,提可靠性。

硬盘阵列是视频网络系统中非常重要的一个环节,硬盘阵列的容量、速度、稳定性往往决定整个网络能。

RAID通常是由在硬盘阵列塔中的RAID控制器或电脑中的RAID卡来实现的。

在通常情况下,RAID有如分类:RAID0:由多个硬盘并发协同工作完成数据的读写,数据被均匀分布在各个硬盘上,一般情况下,使用的硬盘读写的速度越快。

RAID0的特点是读写速度快,并且价格便宜;缺点是安全性相对较差,因为在RAID0中的一盘出现故障时,整个阵列的数据将会丢失。

RAID0是最快和最有效的磁盘阵列类型,但没有容错功能。

RAID1:称为磁盘镜像。

原理是在两个硬盘之间建立完全的镜像,即所有数据会被同时存放到两个物理硬盘一个磁盘出故障时,仍可从另一个硬盘中读取数据,因此安全性得到保障。

但系统的成本大大提高,因为系统际有效硬盘空间仅为所有硬盘空间的一半。

RAID 0+1:为RAID0和RAID1的组合,即由两个完全相同配置的RAID0形成镜像关系,既提高了阵列的读度,又保障了阵列数据的安全性,当然,为此付出的代价同样是价格昂贵。

RAID3:是把数据分成多个“块”,按照一定的容错算法,存放在N+1个硬盘上,实际数据占用的有效空间为硬盘的空间总和,而第N+1个硬盘上存储的数据是校验容错信息,当这N+1个硬盘中的其中一个硬盘出现故从其它N个硬盘中的数据也可以恢复原始数据,这样,仅使用这N个硬盘也可以带伤继续工作(如采集和回放素当更换一个新硬盘后,系统可以重新恢复完整的校验容错信息。

由于在一个硬盘阵列中,多于一个硬盘同时出障率的几率很小,所以一般情况下,使用RAID3,安全性是可以得到保障的。

与RAID0相比,RAID3在读写速面相对较慢。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
RAID 0+1: 也被称为RAID 10标准,实际是将RAID 0和RAID 1标准结合的产物,在连续地以位或字节为单位分割数据并且并行读/写多个磁盘的同时,为每一块磁盘作磁盘镜像进行冗余。它的优点是同时拥有RAID 0的超凡速度和RAID 1的数据高可靠性,但是CPU占用率同样也更高,而且磁盘的利用率比较低。
一、RAID技术规范简介
RAID技术主要包含RAID 0~RAID 7等数个规范,它们的侧重点各不相同,常见的规范有如下几种:
RAID 0:RAID 0连续以位或字节为单位分割数据,并行读/写于多个磁盘上,因此具有很高的数据传输率,但它没有数据冗余,因此并不能算是真正的RAID结构。RAID 0只是单纯地提高性能,并没有为数据的可靠性提供保证,而且其中的一个磁盘失效将影响到所有数据。因此,RAID 0不能应用于数据安全性要求高的场合。
磁盘阵列对于个人电脑用户,还是比较陌生和神秘的。印象中的磁盘阵列似乎还停留在这样的场景中:在宽阔的大厅里,林立的磁盘柜,数名表情阴郁、早早谢顶的工程师徘徊在其中,不断从中抽出一块块沉重的硬盘,再插入一块块似乎更加沉重的硬盘……终于,随着大容量硬盘的价格不断降低,个人电脑的性能不断提升,IDE-RAID作为磁盘性能改善的最廉价解决方案,开始走入一般用户的计算机系统。
RAID 7:这是一种新的RAID标准,其自身带有智能化实时操作系统和用于存储管理的软件工具,可完全独立于主机运行,不占用主机CPU资源。RAID 7可以看作是一种存储计算机(Storage Computer),它与其他RAID标准有明显区别。除了以上的各种标准(如表1),我们可以如RAID 0+1那样结合多种RAID规范来构筑所需的RAID阵列,例如RAID 5+3(RAID 53)就是一种应用较为广泛的阵列形式。用户一般可以通过灵活配置磁盘阵列来获得更加符合其要求的磁盘存储系统。
磁盘阵列RAID技术简述(转)
在计算机发展的初期,“大容量”硬盘的价格还相当高,解决数据存储安全性问题的主要方法是使用磁带机等设备进行备份,这种方法虽然可以保证数据的安全,但查阅和备份工作都相当繁琐。1987年, Patterson、Gibson和Katz这三位工程师在加州大学伯克利分校发表了题为《A Case of Redundant Array of Inexpensive Disks(廉价磁盘冗余阵列方案)》的论文,其基本思想就是将多只容量较小的、相对廉价的硬盘驱动器进行有机组合,使其性能超过一只昂贵的大硬盘。这一设计思想很快被接受,从此RAID技术得到了广泛应用,数据存储进入了更快速、更安全、更廉价的新时代。
面向ห้องสมุดไป่ตู้人用户的IDE-RAID芯片一般只提供了RAID 0、RAID 1和RAID 0+1(RAID 10)等RAID规范的支持,虽然它们在技术上无法与商用系统相提并论,但是对普通用户来说其提供的速度提升和安全保证已经足够了。随着硬盘接口传输率的不断提高,IDE-RAID芯片也不断地更新换代,芯片市场上的主流芯片已经全部支持ATA 100标准,而HighPoint公司新推出的HPT 372芯片和Promise最新的PDC20276芯片,甚至已经可以支持ATA 133标准的IDE硬盘。在主板厂商竞争加剧、个人电脑用户要求逐渐提高的今天,在主板上板载RAID芯片的厂商已经不在少数,用户完全可以不用购置RAID卡,直接组建自己的磁盘阵列,感受磁盘狂飙的速度
RAID 6:与RAID 5相比,RAID 6增加了第二个独立的奇偶校验信息块。两个独立的奇偶系统使用不同的算法,数据的可靠性非常高,即使两块磁盘同时失效也不会影响数据的使用。但RAID 6需要分配给奇偶校验信息更大的磁盘空间,相对于RAID 5有更大的“写损失”,因此“写性能”非常差。较差的性能和复杂的实施方式使得RAID 6很少得到实际应用。
RAID 4:RAID 4同样也将数据条块化并分布于不同的磁盘上,但条块单位为块或记录。RAID 4使用一块磁盘作为奇偶校验盘,每次写操作都需要访问奇偶盘,这时奇偶校验盘会成为写操作的瓶颈,因此RAID 4在商业环境中也很少使用。
RAID 5:RAID 5不单独指定的奇偶盘,而是在所有磁盘上交叉地存取数据及奇偶校验信息。在RAID 5上,读/写指针可同时对阵列设备进行操作,提供了更高的数据流量。RAID 5更适合于小数据块和随机读写的数据。RAID 3与RAID 5相比,最主要的区别在于RAID 3每进行一次数据传输就需涉及到所有的阵列盘;而对于RAID 5来说,大部分数据传输只对一块磁盘操作,并可进行并行操作。在RAID 5中有“写损失”,即每一次写操作将产生四个实际的读/写操作,其中两次读旧的数据及奇偶信息,两次写新的数据及奇偶信息。
RAID 1:它是通过磁盘数据镜像实现数据冗余,在成对的独立磁盘上产生互 为备份的数据。当原始数据繁忙时,可直接从镜像拷贝中读取数据,因此RAID 1可以提高读取性能。RAID 1是磁盘阵列中单位成本最高的,但提供了很高的数据安全性和可用性。当一个磁盘失效时,系统可以自动切换到镜像磁盘上读写,而不需要重组失效的数据。
开始时RAID方案主要针对SCSI硬盘系统,系统成本比较昂贵。1993年,HighPoint公司推出了第一款IDE-RAID控制芯片,能够利用相对廉价的IDE硬盘来组建RAID系统,从而大大降低了RAID的“门槛”。从此,个人用户也开始关注这项技术,因为硬盘是现代个人计算机中发展最为“缓慢”和最缺少安全性的设备,而用户存储在其中的数据却常常远超计算机的本身价格。在花费相对较少的情况下,RAID技术可以使个人用户也享受到成倍的磁盘速度提升和更高的数据安全性,现在个人电脑市场上的IDE-RAID控制芯片主要出自HighPoint和Promise公司,此外还有一部分来自AMI公司(如表2)。
RAID 2:将数据条块化地分布于不同的硬盘上,条块单位为位或字节,并使用称为“加重平均纠错码(海明码)”的编码技术来提供错误检查及恢复。这种编码技术需要多个磁盘存放检查及恢复信息,使得RAID 2技术实施更复杂,因此在商业环境中很少使用。
RAID 3:它同RAID 2非常类似,都是将数据条块化分布于不同的硬盘上,区别在于RAID 3使用简单的奇偶校验,并用单块磁盘存放奇偶校验信息。如果一块磁盘失效,奇偶盘及其他数据盘可以重新产生数据;如果奇偶盘失效则不影响数据使用。RAID 3对于大量的连续数据可提供很好的传输率,但对于随机数据来说,奇偶盘会成为写操作的瓶颈。
相关文档
最新文档