简明物理习题详解 XX6版 (1)

合集下载

简明大学物理学范仰才课后答案第一章

简明大学物理学范仰才课后答案第一章

一选择题1-1 对质点的运动,有以下几种表述,正确的是[ ](A)在直线运动中,质点的加速度和速度的方向相同(B)在某一过程中平均加速度不为零,则平均速度也不可能为零(C)若某质点加速度的大小和方向不变,其速度的大小和方向可不断变化(D)在直线运动中,加速度不断减小,则速度也不断减小解析:速度是描述质点运动的方向和快慢的物理量,加速度是描述质点运动速度变化的物理量,两者没有确定的对应关系,故答案选C。

1-2 某质点的运动方程为,则该质点作[ ](A)匀加速直线运动,加速度沿轴正向(B)匀加速直线运动,加速度沿轴负向(C)变加速直线运动,加速度沿轴正向(D)变加速直线运动,加速度沿轴负向1-3 一质点在平面上作一般曲线运动,其瞬时速度为,瞬时速率为,某一段时间内的平均速率为,平均速度为,他们之间的关系必定有[ ](A), (B),(C),(D),解析:瞬时速度的大小即瞬时速率,故;平均速率,而平均速度,故。

答案选D。

1-4 质点作圆周运动时,下列表述中正确的是[ ](A)速度方向一定指向切向,所以法向加速度也一定为零(B)法向分速度为零,所以法向加速度也一定为零(C)必有加速度,但法向加速度可以为零(D)法向加速度一定不为零解析:质点作圆周运动时,,所以法向加速度一定不为零,答案选D。

1-5 某物体的运动规律为,式中,为大于零的常量。

当时,初速为,则速率与时间的函数关系为[ ](A) (B)(C) (D)解析:由于,所以,得到,故答案选B。

二填空题1-6 已知质点位置矢量随时间变化的函数关系为,则从到时的位移为,时的加速度为。

解析:,1-7 一质点以初速和抛射角作斜抛运动,则到达最高处的速度大小为,切向加速度大小为,法向加速度大小为,合加速度大小为。

解析:以初速、抛射角作斜抛的运动方程:到达最高处时,竖直方向上的速度大小,此时速度大小即为水平方向上的速度值。

切向加速度大小,法向加速度大小。

1-8 一飞轮做匀减速转动,在内角速度由减到,则飞轮在这内总共转过了圈,飞轮再经过的时间停止转动。

关于简明物理习题详解版

关于简明物理习题详解版

习题8选择题(1)在真空中有一根半径为R的半圆形细导线,流过的电流为I,则圆心处的磁感强度为[](A) 04I Rμπ; (B) 02IRμπ; (C) 0; (D) 04IRμ.[答案:D](2)对于安培环路定理的理解,正确的是:[](A)若环流等于零,则在回路L上必定是H处处为零;(B)若环流等于零,则在回路L上必定不包围电流;(C)若环流等于零,则在回路L所包围传导电流的代数和为零;(D)回路L上各点的H仅与回路L包围的电流有关。

[答案:C](3)磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R,x坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B-x的关系[ ][答案:B](4)对半径为R载流为I的无限长直圆柱体,距轴线r处的磁感应强度 B [ ](A)内外部磁感应强度B都与r成正比;(B)内部磁感应强度B与r成正比,外部磁感应强度B与r成反比;(C)内外部磁感应强度B都与r成反比;(D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。

[答案:B](5)在匀强磁场中,有两个平面线圈,其面积A1 =2 A2,通有电流I1= 2 I2,它们所受的最大磁力矩之比M1 / M2等于[](A) 1; (B) 2; (C) 4; (D) 1/4;[答案:C](6)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要 [ ](A)增加磁场B;(B)减少磁场B;(C)内外部磁感应强度B都与r成反比;(D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。

\[答案:B](7)一个100匝的圆形线圈,半径为5厘米,通过电流为安,当线圈在的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为()(A);(B);(C);(D)14J。

[答案:A](8)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要[](A)增加磁场B;(B)减少磁场B;(C)增加θ角;(D)减少速率v.[答案:B](9)磁介质有三种,用相对磁导率μr表征它们各自的特性时,(A)顺磁质μr >0,抗磁质μr<0,铁磁质μr>>1;(B)顺磁质μr >1,抗磁质μr=1,铁磁质μr>>1;(C)顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1;(D)顺磁质μr <0,抗磁质μr <1,铁磁质μr >0 .[答案:C]填空题(1)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求解(填能或不能)。

大学物理简明教程_课后答案_1章

大学物理简明教程_课后答案_1章

问题1.1 关于行星运动的地心说和日心说的根本区别是什么?答:地心说和日心说的根本区别在于描述所观测运动时所选取的参考系不同。

1.2 牛顿是怎样统一了行星运动的引力和地面的重力?答:用手向空中抛出任一物体,按照惯性定律,物体应沿抛出方向走直线,但是它最终却还会落到地面上。

这说明地球对地面物体都有一种吸引力。

平抛物体的抛速越大,落地时就离起点越远,惯性和地球吸引力使它在空中划出一条曲线。

地球吸引力也应作用于月球,但月球的不落地,牛顿认为这不过是月球下落运动曲线的弯曲度正好与地球表面的弯曲程度相同。

这样牛顿就把地球对地面物体的吸引力和地球对月球的吸引力统一起来了。

牛顿认为这种引力也作用在太阳和行星、行星与行星之间,称为万有引力。

并认为物体所受的重力就等于地球引力场的引力。

这样牛顿就统一了行星运动的引力和地面的重力。

1.3 什么是惯性? 什么是惯性系?答:任何物体都有保持静止或匀速直线运动状态的特性,这种特性叫惯性。

我们把牛顿第一定律成立的参考系叫惯性系。

而相对于已知惯性系静止或做匀速直线运动的参考系也是惯性系。

1.4 人推动车的力和车推人的力是作用力与反作用力,为什么人可以推车前进呢?答:人推动车的力和车推人的力是作用力与反作用力,这是符合牛顿第三定律的。

但这两两个力是分别作用在两个物体上的。

对于车这个研究对象来说,它就只受到人推动车的力(在不考虑摩擦力的情况下),所以人可以推车前进。

1.5 摩擦力是否一定阻碍物体的运动?答:不一定。

例如汽车前进时,在车轮与路面之间实际上存在着两种摩擦力:静摩擦和滚动摩擦。

前者是驱使汽车前进的驱动力,后者是阻碍汽车前进的阻力。

再如,拖板上放上一物体,拉动拖板,物体可以和拖板一起运动,其原因就是拖板给予了物体向前的摩擦力。

1.6 用天平测出的物体的质量,是引力质量还是惯性质量?两汽车相撞时,其撞击力的产生是源于引力质量还是惯性质量?1答:用天平测出的物体的质量和引力有关,是地球对物体和砝码的引力对天平刀口支撑点力矩平衡测出的质量,所以是引力质量。

物理学简明教程马文蔚第1至7章课后习题答案详细讲解

物理学简明教程马文蔚第1至7章课后习题答案详细讲解

1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v,t 至(t +Δt )时间的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s (2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠ v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |= v分析与解 (1) 质点在t 至(t +Δt )时间沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ≠r ,即|v |≠v . 但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C). 1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即(1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式t s d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, a t为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -4 质点的运动方程为23010t t x +-=和22015t t y -=,式中x ,y 的单位为m,t 的单位为s。

关于简明物理习题详解 版

关于简明物理习题详解 版

习题88.1选择题(1)在真空中有一根半径为R的半圆形细导线,流过的电流为I,则圆心处的磁感强度为[](A) 04I Rμπ;(B) 02IRμπ;(C) 0;(D) 04IRμ.[答案:D](2)对于安培环路定理的理解,正确的是:[](A)若环流等于零,则在回路L上必定是H处处为零;(B)若环流等于零,则在回路L上必定不包围电流;(C)若环流等于零,则在回路L所包围传导电流的代数和为零;(D)回路L上各点的H仅与回路L包围的电流有关。

[答案:C](3)磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R,x坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B-x的关系?[ ][答案:B](4)对半径为R载流为I的无限长直圆柱体,距轴线r处的磁感应强度B [ ](A)内外部磁感应强度B都与r成正比;(B)内部磁感应强度B与r成正比,外部磁感应强度B与r成反比;(C)内外部磁感应强度B都与r成反比;(D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。

[答案:B](5)在匀强磁场中,有两个平面线圈,其面积A1 = 2 A2,通有电流I1 = 2 I2,它们所受的最大磁力矩之比M1 / M2等于[](A) 1;(B) 2;(C) 4;(D) 1/4;[答案:C](6)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要[ ](A)增加磁场B;(B)减少磁场B;(C)内外部磁感应强度B都与r成反比;(D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。

\[答案:B](7)一个100匝的圆形线圈,半径为5厘米,通过电流为0.1安,当线圈在1.5T的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为()(A)0.24J;(B)2.4J;(C)0.14J;(D)14J。

[答案:A](8)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要[](A)增加磁场B;(B)减少磁场B;(C)增加θ角;(D)减少速率v.[答案:B](9)磁介质有三种,用相对磁导率μr表征它们各自的特性时,(A)顺磁质μr >0,抗磁质μr <0,铁磁质μr >>1;(B)顺磁质μr >1,抗磁质μr =1,铁磁质μr >>1;(C)顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1;(D)顺磁质μr <0,抗磁质μr <1,铁磁质μr >0 .[答案:C]8.2填空题(1)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求解(填能或不能)。

物理学简明教程马文蔚课后习题答案详解

物理学简明教程马文蔚课后习题答案详解

1 -1 质点作曲线运动,在时刻t 质点的位矢为r ,速度为v ,速率为v ,t 至(t +Δt )时间内的位移为Δr , 路程为Δs , 位矢大小的变化量为Δr ( 或称Δ|r |),平均速度为v ,平均速率为v . (1) 根据上述情况,则必有( )(A) |Δr |= Δs = Δr(B) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d s ≠ d r(C) |Δr |≠ Δr ≠ Δs ,当Δt →0 时有|d r |= d r ≠ d s(D) |Δr |≠ Δs ≠ Δr ,当Δt →0 时有|d r |= d r = d s(2) 根据上述情况,则必有( )(A) |v |= v ,|v |= v (B) |v |≠v ,|v |≠v(C) |v |= v ,|v |≠ v (D) |v |≠v ,|v |=v分析与解 (1) 质点在t 至(t +Δt )时间内沿曲线从P 点运动到P′点,各量关系如图所示, 其中路程Δs =PP′, 位移大小|Δr |=PP ′,而Δr =|r |-|r |表示质点位矢大小的变化量,三个量的物理含义不同,在曲线运动中大小也不相等(注:在直线运动中有相等的可能).但当Δt →0 时,点P ′无限趋近P 点,则有|d r |=d s ,但却不等于d r .故选(B).(2) 由于|Δr |≠Δs ,故ts t ΔΔΔΔ r ,即|v |≠v .但由于|d r |=d s ,故ts t d d d d =r ,即|v |=v .由此可见,应选(C).1 -2 一运动质点在某瞬时位于位矢r (x,y )的端点处,对其速度的大小有四种意见,即 (1)t r d d ; (2)t d d r ; (3)t s d d ; (4)22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x . 下述判断正确的是( )(A) 只有(1)(2)正确 (B) 只有(2)正确(C) 只有(2)(3)正确 (D) 只有(3)(4)正确分析与解 tr d d 表示质点到坐标原点的距离随时间的变化率,在极坐标系中叫径向速率.通常用符号v r 表示,这是速度矢量在位矢方向上的一个分量;td d r 表示速度矢量;在自然坐标系中速度大小可用公式ts d d =v 计算,在直角坐标系中则可由公式22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=t y t x v 求解.故选(D). 1 -3 一个质点在做圆周运动时,则有( )(A) 切向加速度一定改变,法向加速度也改变(B) 切向加速度可能不变,法向加速度一定改变(C) 切向加速度可能不变,法向加速度不变(D) 切向加速度一定改变,法向加速度不变分析与解 加速度的切向分量a t起改变速度大小的作用,而法向分量a n 起改变速度方向的作用.质点作圆周运动时,由于速度方向不断改变,相应法向加速度的方向也在不断改变,因而法向加速度是一定改变的.至于a t是否改变,则要视质点的速率情况而定.质点作匀速率圆周运动时, a t恒为零;质点作匀变速率圆周运动时, at为一不为零的恒量,当a t改变时,质点则作一般的变速率圆周运动.由此可见,应选(B).1 -4 质点的运动方程为23010t t x +-=和22015t t y -=,式中x ,y 的单位为m,t 的单位为s。

大学物理简明教程课后习题加答案43页

大学物理简明教程习题解答习题一1-1 |r ∆|与r ∆有无不同?t d d r 和t d d r 有无不同? t d d v 和t d d v有无不同?其不同在哪里?试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆; (2)t d d r 是速度的模,即t d d r ==v tsd d . t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆtr t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ (v =v 表轨道节线方向单位矢),所以式中dt dv就是加速度的切向分量.(t tr d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论) 1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确?为什么?两者差别何在?解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,故它们的模即为而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作其二,可能是将22d d d d t r tr 与误作速度与加速度的模。

在1-1题中已说明t r d d 不是速度的模,而只是速度在径向上的分量,同样,22d d t r 也不是加速度的模,它只是加速度在径向分量中的一部分⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫⎝⎛-=222d d d d t r t r a θ径。

大学物理简明教程课后习题加答案

大学物理简明教程习题解答习题一1-1 |r ∆|与r ∆有无不同t d d r 和t d d r 有无不同 t d d v 和t d d v有无不同其不同在哪里试举例说明.解:(1)r ∆是位移的模,∆r 是位矢的模的增量,即r ∆12r r -=,12r r r-=∆;(2)t d d r 是速度的模,即t d d r ==v t sd d .t rd d 只是速度在径向上的分量.∵有r r ˆr =(式中r ˆ叫做单位矢),则t ˆr ˆt r t d d d d d d r rr += 式中t rd d 就是速度径向上的分量,∴t r t d d d d 与r 不同如题1-1图所示.题1-1图(3)t d d v 表示加速度的模,即t v a d d =,t v d d 是加速度a 在切向上的分量. ∵有ττ(v =v 表轨道节线方向单位矢),所以t v t v t v d d d d d d ττ+=式中dt dv就是加速度的切向分量.(t t r d ˆd d ˆd τ 与的运算较复杂,超出教材规定,故不予讨论)1-2 设质点的运动方程为x =x (t ),y =y (t ),在计算质点的速度和加速度时,有人先求出r =22y x +,然后根据v =t rd d ,及a =22d d t r 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即v =22d d d d ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛t y t x 及a =222222d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛t y t x 你认为两种方法哪一种正确为什么两者差别何在解:后一种方法正确.因为速度与加速度都是矢量,在平面直角坐标系中,有j y i x r+=,jt y i t x t r a jt y i t x t r v222222d d d d d d d d d d d d +==+==∴故它们的模即为222222222222d d d d d d d d ⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛=+=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=+=t y t x a a a t y t x v v v y x y x而前一种方法的错误可能有两点,其一是概念上的错误,即误把速度、加速度定义作22d d d d t r a tr v ==其二,可能是将22d d d d t r t r 与误作速度与加速度的模。

大学简明物理课后习题答案解析

1.1 一质点在Oxy 平面内运动,运动方程为)SI (53+=t x ,)SI (432/2-+=t t y 。

(1)以时间t 为变量,写出质点位矢的表达式;(2)求出质点速度分量的表达式,并计算s 4=t 时,质点速度的大小和方向;(3)求出质点加速度分量的表达式,并计算出s 4=t 时,质点加速度的大小和方向。

解:(1))SI (53+=t x ,)SI (432/2-+=t t y 质点位矢的表达式为:j t t i t j y i x r )432/()53(2-+++=+=;(2)m/s 3)53(=+==t dt d dt dx v x ,m/s )3()432/(2+=-+==t t t dt d dt dy v ys 4=t ,m/s 3=x v ,m/s 7=y v ,m/s 6.7m/s 5822==+=y x v v v设θ是v 和x v 的夹角,则37tan ==x y v v θ,8.66=θ°; (3)2m/s 0)3(===dt d dt dv a x x ,2m/s 1)3(=+==t dt d dt dv a y ys 4=t ,2m/s 0=x a ,2m/s 1=y a ,222m/s 1=+=y x a a a方向沿y 轴方向。

1.2 质点在Oxy 平面内运动,运动方程为)SI (3t x =,)SI (22t y -=。

(1)写出质点运动的轨道方程;(2)s 2=t 时,质点的位矢、速度和加速度。

解:(1)质点运动方程)SI (3t x =,)SI (22t y -=, 质点运动的轨道方程为:9/2)3(222x xy -=-=或2189x y -=;(2)j t i t j y i x r )2()3(2-+=+=,s 2=t 时: j i r 26-=j t i v 23-=,s 2=t 时:j i v43-= j a 2-=,s 2=t 时:j a2-=1.3质点沿直线运动,其坐标x 与时间t 有如下关系:)SI (cos t Ae x tωβ-=(A 和β皆为常量)。

关于简明物理习题详解版

习题8选择题(1)在真空中有一根半径为R的半圆形细导线,流过的电流为I,则圆心处的磁感强度为[](A) 04I Rμπ; (B) 02IRμπ; (C) 0; (D) 04IRμ.[答案:D](2)对于安培环路定理的理解,正确的是:[](A)若环流等于零,则在回路L上必定是H处处为零;(B)若环流等于零,则在回路L上必定不包围电流;(C)若环流等于零,则在回路L所包围传导电流的代数和为零;(D)回路L上各点的H仅与回路L包围的电流有关。

[答案:C](3)磁场由沿空心长圆筒形导体的均匀分布的电流产生,圆筒半径为R,x坐标轴垂直圆筒轴线,原点在中心轴线上.图(A)~(E)哪一条曲线表示B-x的关系[ ][答案:B](4)对半径为R载流为I的无限长直圆柱体,距轴线r处的磁感应强度 B [ ](A)内外部磁感应强度B都与r成正比;(B)内部磁感应强度B与r成正比,外部磁感应强度B与r成反比;(C)内外部磁感应强度B都与r成反比;(D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。

[答案:B](5)在匀强磁场中,有两个平面线圈,其面积A1 =2 A2,通有电流I1= 2 I2,它们所受的最大磁力矩之比M1 / M2等于[](A) 1; (B) 2; (C) 4; (D) 1/4;[答案:C](6)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要 [ ](A)增加磁场B;(B)减少磁场B;(C)内外部磁感应强度B都与r成反比;(D)内部磁感应强度B与r成反比,外部磁感应强度B与r成正比。

\[答案:B](7)一个100匝的圆形线圈,半径为5厘米,通过电流为安,当线圈在的磁场中从θ=0的位置转到180度(θ为磁场方向和线圈磁矩方向的夹角)时磁场力做功为()(A);(B);(C);(D)14J。

[答案:A](8)质量为m电量为q的粒子,以速率v与均匀磁场B成θ角射入磁场,轨迹为一螺旋线,若要增大螺距则要[](A)增加磁场B;(B)减少磁场B;(C)增加θ角;(D)减少速率v.[答案:B](9)磁介质有三种,用相对磁导率μr表征它们各自的特性时,(A)顺磁质μr >0,抗磁质μr<0,铁磁质μr>>1;(B)顺磁质μr >1,抗磁质μr=1,铁磁质μr>>1;(C)顺磁质μr >1,抗磁质μr <1,铁磁质μr >>1;(D)顺磁质μr <0,抗磁质μr <1,铁磁质μr >0 .[答案:C]填空题(1)计算有限长的直线电流产生的磁场 用毕奥——萨伐尔定律,而 用安培环路定理求解(填能或不能)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题11.1选择题(1) 一运动质点在某瞬时位于矢径),(y x r的端点处,其速度大小为 ( )(A)dtdr(B)dt r d(C)dtr d ||(D) 22)()(dt dy dt dx答案:(D)。

(2) 一质点作直线运动,某时刻的瞬时速度s m v /2 ,瞬时加速度2/2s m a ,则一秒钟后质点的速度 ( )(A)等于零 (B)等于-2m/s (C)等于2m/s (D)不能确定。

答案:(D)。

(3) 一质点沿半径为R 的圆周作匀速率运动,每t 秒转一圈,在2t 时间间隔中,其平均速度大小和平均速率大小分别为 ( )(A)t R t R 2,2 (B) tR2,0 (C) 0,0 (D) 0,2tR答案:(B)。

(4) 质点作曲线运动,r 表示位置矢量,v 表示速度,a表示加速度,S 表示路程, a 表示切向加速度,下列表达式中, ( ) ① a t d /d v , ② v t r d /d , ③ v t S d /d , ④ a t d /d v.(A) 只有①、④是对的. (B) 只有②、④是对的.(C) 只有②是对的.(D) 只有③是对的. 答案:(D)。

(5)一质点在平面上作一般曲线运动,其瞬时速度为v,瞬时速率为 ,某一时间内的平均速度为v,平均速率为v ,它们之间的关系必定有: ( ) (A )v v v,v (B )v v v,v(C )v v v,v (D )v v v,v答案:(D)。

1.2填空题(1) 一质点,以1s m 的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是 ;经过的路程是 。

答案: 10m ; 5πm 。

(2) 一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI),如果初始时刻质点的速度v 0为5m·s -1,则当t 为3s 时,质点的速度v= 。

答案: 23m·s -1 .(3) 一质点从静止出发沿半径R=1 m 的圆周运动,其角加速度随时间t 的变化规律是α=12t 2-6t (SI),则质点的角速度 =__________________;切向加速度 a =_________________.答案:4t 3-3t 2 (rad/s), 12t 2-6t (m/s 2)(4) 一质点作直线运动,其坐标x 与时间t 的关系曲线如题1.2(4)图所示.则该质点在第___ 秒瞬时速度为零;在第 秒至第 秒间速度与加速度同方向.题1.2(4)图答案:3, 3 6;(5) 一质点其速率表示式为 v s 12,则在任一位置处其切向加速度为 。

答案:)1(22ss1.3 下面几个质点运动学方程,哪个是匀变速直线运动?(1)x=4t-3;(2)x=-4t 3+3t 2+6;(3)x=-2t 2+8t+4;(4)x=2/t 2-4/t 。

给出这个匀变速直线运动在t=3s 时的速度和加速度,并说明该时刻运动是加速的还是减速的。

(x 单位为m ,t 单位为s )解:匀变速直线运动即加速度为不等于零的常数时的运动。

加速度又是位移对时间的两阶导数。

于是可得(3)为匀变速直线运动。

其速度和加速度表达式分别为22484dxv t dtd x a dtt=3s 时的速度和加速度分别为v =20m/s ,a =4m/s 2。

因加速度为正所以是加速的。

1.4 在以下几种运动中,质点的切向加速度、法向加速度以及加速度哪些为零?哪些不为零?(1) 匀速直线运动;(2) 匀速曲线运动;(3) 变速直线运动;(4) 变速曲线运动。

解:(1) 质点作匀速直线运动时,其切向加速度、法向加速度及加速度均为零; (2) 质点作匀速曲线运动时,其切向加速度为零,法向加速度和加速度均不为零; (3) 质点作变速直线运动时,其法向加速度为零,切向加速度和加速度均不为零; (4) 质点作变速曲线运动时,其切向加速度、法向加速度及加速度均不为零。

1.5 一质点沿x 轴作直线运动,t 时刻的坐标为x = 4.5 t 2 – 2 t 3 (SI) .试求:(1) 第2秒内的平均速度;(2)第2秒末的瞬时速度; (3) 第2秒内的路程. 解:(1) 5.0/ t x v m/s(2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s(3) 由v =9t - 6t 2 可得:当t<1.5s 时,v>0; 当t>1.5s 时,v<0. 所以 S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m1.6 两辆车A 和B ,在笔直的公路上同向行使,它们在同一起始线上同时出发,并且由出发点开始计时,行使的距离x(m)与行使的时间t(s)的函数关系式:A 为x A =4t+t 2,B 为x B =2t 2+2t 3 ,则它们刚离开出发点时,行使在前面的一辆车是哪辆车?并分别求出出发后两辆车行使距离相同的时刻和出发后B 车相对A 车速度为零的时刻?解:(1)因为v A =dx A /dt =4+2t ,v B =dx B /dt =4t +6t 2,即A 车的初速不为零,所以A 车在前。

(2)令x A =x B , 即4t+t 2=2t 2+2t 3整理,得 2t 2+t-4=0 解此方程,得t=1.19s(3)B 车相对A 车速度为零的时刻,即v A =v B , 4+2t = 4t +6t 2 整理,得3t 2+t-2=0 解此方程,得t=0.67s1.7 质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度与时间t 的函数关系为2kt (k 为常量).已知s t 2 时,质点P 的速度值为32 m/s .试求1 t s 时,质点P 的速度与加速度的大小. 解:根据已知条件确定常量k222/rad 4//s Rt t k v ω24t , 24Rt R vt=1s 时, v = 4Rt 2 = 8 m/s2s /168/m Rt dt d a v 22s /32/m R a n v8.352/122 na a a m/s 21.8 一石头从空中由静止下落,由于空气阻力,石头并非作自由落体运动。

现已知加速度a=A-Bv ,式中A 、B 为常量。

试求石头的速度随时间的变化关系。

解:根据加速度 Bv A tvad d 可得dt BvA vd由初始条件,两边定积分 dt Bv A vt vd可得 )1(ABt e Bv1.9 质点沿x 轴运动,其加速度和位置的关系为 a =2+62x ,a 的单位为2s m ,x 的单位为 m. 质点在x =0处,速度为101s m ,试求质点在任何坐标处的速度值. 解: ∵ xv v t x x v t v a d d d d d d d d分离变量: 2d (26)d v v adx x x 两边积分得c x x v 322221 由题知,0 x 时,100 v ,∴50 c∴ 13s m 252 x x v1.10 已知一质点作直线运动,其加速度为 a =4+3t 2s m ,开始运动时,x =5 m ,v =0,求该质点在t =10s 时的速度和位置. 解:∵ t tva 34d d分离变量,得 t t v d )34(d 积分,得 12234c t t v 由题知,0 t ,00 v ,∴01 c故 2234t t v 又因为 2234d d t t t x v分离变量, t t t x d )234(d 2积分得 232212c t t x由题知 0 t ,50 x ,∴52 c 故 521232t t x 所以s 10 t 时m70551021102s m 190102310432101210x v1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:(1) t =2 s 时,质点的切向和法向加速度;(2)当加速度的方向和半径成45°角时,其角位移是多少?解: t tt t 18d d ,9d d 2(1)s 2 t 时, 2s m 362181 R a2222s m 1296)29(1 R a n(2)当加速度方向与半径成ο45角时,有145tanna a即 R R 2亦即 t t 18)9(22则解得 923t 于是角位移为322323 2.67rad 9t1.12 质点沿半径为R 的圆周按s =2021bt t v的规律运动,式中s 为质点离圆周上某点的弧长,0v ,b 都是常量,求:(1)t 时刻质点的加速度;(2) t 为何值时,加速度在数值上等于b .解:(1) bt v tsv0d d Rbt v R va b tva n 202)(d d则 240222)(R bt v b a a a n加速度与半径的夹角为20)(arctanbt v Rb a a n (2)由题意应有2402)(Rbt v b b a 即 0)(,)(4024022bt v Rbt v b b ∴当bv t 0时,b a1.13 一质点在半径为0.4 m 的圆形轨道上自静止开始作匀角加速转动,其角加速度为α= 0.2 rad ·2s ,求t =2s 时质点的速度、法向加速度、切向加速度和合加速度. 解:当s 2 t 时,4.022.0 t 1s rad 则16.04.04.0 R v 1s m064.0)4.0(4.022 R a n 2s m08.02.04.0 R a 2s m22222s m 102.0)08.0()064.0( a a a n*1.14 一船以速率1v =30km ·h -1沿直线向东行驶,另一小艇在其前方以速率2v =40km ·h -1沿直线向北行驶,问在船上看小艇的速度为多少?在艇上看船的速度又为多少?解:(1)大船看小艇,则有1221v v v,依题意作速度矢量图如题1.14图(a)题1.14图由图可知 1222121h km 50v v v方向北偏西 87.3643arctan arctan21v v (2)小艇看大船,则有2112v v v,依题意作出速度矢量图如题1.14图(b),同上法,得5012 v 1h km方向南偏东o87.36.。

相关文档
最新文档