2年中考1年模拟2016年中考数学 专题32 概率及其求法试题(含解析)

合集下载

北京市各区2016年中考数学一模汇编概率初步(含参考答案)

北京市各区2016年中考数学一模汇编概率初步(含参考答案)

北京市2016年各区中考一模汇编概率初步1.【2016东城一模,第03题】有五张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,5,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是A .15B .25C .35D .452.【2016丰台一模,第03题】五张完全相同的卡片上,分别写上数字-3,-2,-1,2,3,现从中随机抽取一张,抽到写有负数的卡片的概率是 A. 15 B. 25 C. 35 D. 453.【2016平谷一模,第03题】一枚质地均匀的六面骰子,六个面上分别刻有1,2,3,4,5,6点,投掷一次得到的点数为奇数的概率是A .16B .14C .13D .124.【2016朝阳一模,第03题】有一种推理游戏叫做“天黑请闭眼”,9位同学参与游戏,通过抽牌决定所扮演的角色,事先做好9张卡牌(除所写文字不同,其余均相同),其中有法官牌1张,杀手牌2张,好人牌6张.小易参与游戏,如果只随机抽取一张,那么小易抽到杀手牌的概率是A .21 B .13 C .29 D .19 5.【2016海淀一模,第03题】一个不透明的口供中装有3个红球和12个黄球,这些球除了颜色外,无其他差别,从中随机摸出一个球,恰好是红球的概率为 A.14 B. 34 C. 15 D. 456.【2016西城一模,第06题】老北京的老行当中有一行叫做“抓彩卖糖”:商贩将高丽纸裁成许多小条,用矾水在上面写上糖的块数,最少一块,多的是三块或五块,再将纸条混合一起.游戏时叫儿童随意抽取一张,然后放入小水罐中浸湿,即现出白道儿,按照上面的白道儿数给糖.一个商贩准备了10张质地均匀的纸条,其中能得到一块糖的纸条有5张,能得到三块糖的纸条有3张,能得到五块糖的纸条有2张.从中随机抽取一张纸条,恰好是能得到三块糖的纸条的概率是()A.110B.310C.15D.127.【2016通州一模,第06题】在一个不透明的盒子中装有m个除颜色外完全相同的球,这m个球中只有3个红球,从中随机摸出一个小球,恰好是红球的概率为15,那么m的值是A.12 B.15 C.18 D.218.【2016朝阳一模,第15题】在数学活动课上,小派运用统计方法估计瓶子中的豆子的数量.他先取出100粒豆子,给这些豆子做上记号,然后放回瓶子中,充分摇匀之后再取出100粒豆子,发现其中8粒有刚才做的记号,利用得到的数据可以估计瓶子中豆子的数量约为____________粒.详细解答1. C2. C3. D4. C5. C6. B7. B8.1250。

2023年数学中考真题模拟试卷(含解析)

2023年数学中考真题模拟试卷(含解析)

2023年数学中考真题模拟试卷(含解析)一、单选题1.不等式组21x x <⎧⎨>-⎩的解集在数轴上表示为()A .B .C .D .2.不等式组24030x x -<⎧⎨+≥⎩的解集在数轴上表示为()A .B .C .D .3.如图,AB 与CD 相交于点O ,OE 是AOC ∠的平分线,且OC 恰好平分EOB ∠,则下列结论中:①AOE EOC ∠=∠;②EOC COB ∠=∠;③AOD AOE ∠=∠;④2DOB AOD ∠=∠,正确的个数有()A .1个B .2个C .3个D .4个4.如果从1,2,3,4,5,6这六个数中任意选取一个数,那么取到的数恰好是3的整数倍的概率是()A .12B .13C .14D .165.如图所示,该几何体的俯视图是()A .B .C .D .6.如图,已知抛物线2y ax bx c =++的对称轴为直线1x =.给出下列结论:①<0abc ;②20a b +=;③0a b c -+=;④2am bm a b +≥+.其中,正确的结论有()A .1个B .2个C .3个D .4个7.如图,正方形ABCD 中,点P 、F 分别是边BC 、AB 的中点,连接AP 、DF 交于点E ,则下列结论错误的是()A .AP DF =B .AP DF ⊥C .CE CD =D .CE EP EF=+8.如图,正方形ABCD 的边长为定值,E 是边CD 上的动点(不与点C ,D 重合),AE 交对角线BD 于点F , FG AE ⊥交BC 于点G ,GH BD ⊥于点H ,连结AG 交BD 于点N .现给出下列命题:① AF FG =;②DF DE =;③FH 的长度为定值;④GE BG DE =+;⑤222BN DF NF +=.真命题有()A .2个B .3个C .4个D .5个二、填空题9.如图,直线a ∥b ,EF ⊥CD 于点F ,∠2=65°,则∠1的度数是_____.10.抛物线24(3)2y x =+-的顶点坐标是______.11.在一次数学探究活动课中,某同学有一块矩形纸片ABCD ,已知AD =13,AB =5,M 为射线AD 上的一个动点,将△ABM 沿BM 折叠得到△NBM ,若△NBC 是直角三角形,则所有符合条件的M 点所对应的AM 的和为__________.12.小红买书需用48元,付款时小红恰好用了1元和5元的纸币共12张,则小红所用的5元纸币为______张.13.阅读下列材料:在平面直角坐标系中,点00(,)P x y 到直线Ax +By +C =0(A 2+B 2≠0)的距离公式为:0022Ax By Cd A B ++=+.例如:求点P (1,3)到直线4330x y +-=的距离.解:由直线4330x y +-=知:A =4,B =3,C =-3,所以P (1,3)到直线4x +3y -3=0的距离为:224133343d ⨯+⨯-=+.根据以上材料,求点1(0,2)P 到直线51126y x =-的距离是_______.14.如图,AC 与BD 交于O ,AB CD =,要使ABC DCB ∆≅∆,可以补充一个边或角的条件是_______.15.已知,BD 为等腰三角形ABC 的腰上的高,=1BD ,tan 3ABD ∠=,则CD 的长为___________.16.如图,在平面直角坐标系中,直线l :33交x 轴于点A ,交y 轴于点B ,点A1、A2、A3,…在x 轴的正半轴上,点B1、B2、B3,…在直线l 上.若△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,则△A6B7A7的周长是______.三、解答题17.如图,平行四边形ABCD中E,F是直线AC上两点,且AE=CF.求证:BE∥DF.18.“五一”小长假期间,小李一家想到以下四个5A级风景区旅游:A.石林风景区;B.香格里拉普达措国家公园;C.腾冲火山地质公园;D.玉龙雪山景区.但因为时间短,小李一家只能选择其中两个景区游玩(1)若小李从四个景区中随机抽出两个景区,请用树状图或列表法求出所有可能的结果;(2)在随机抽出的两个景区中,求抽到玉龙雪山风景区的概率.19.某旅馆的客房有三人间和两人间两种,三人间每人每天25元,两人间每人每天35元.一个50人的旅游团到该旅馆住宿,租住了若干客房,且每个客房正好住满,一天共花去住宿费1510元.设该旅游团租住三人间客房x间,两人间客房y间,请列出满足题意的方程组_____.20.解不等式123214xx x +<⎧⎪⎨--≥-⎪⎩,并利用数轴确定该不等式组的解.21.如图,直线AB∥CD,直线EF与AB相交于点P,与CD相交于点Q,且PM⊥EF,若∠1=68°,求∠2的度数.22.2020年的全球新冠肺炎,使许多国家经济受到严重的打击,我国的疫情也很严重.某记者随机调查了部分市民,发现市民们对新冠肺炎成因所持的观点不一,经对调查结果整理,绘制了如下尚不完全的统计图表.组别观点频数(人数)A食用野生动物160B家禽感染人mC牲畜感染人nD有人制造病毒240E其他120请根据图表中提供的信息解答下列问题:(1)求出统计表中,m n的值,并求出扇形统计图中E组所占的百分比;(2)若宁波市常住人口约有850万人,请你估计其中持D组“观点”的市民人数;(3)若在这次接受调查的市民中,随机抽取一人,则此人持C组“观点”的概率是多少?(如23.在平面直角坐标系xOy中,已知点A坐标是(2,4),点B在x轴上,OB AB图所示),二次函数的图像经过点O、A、B三点,顶点为D.(1)求点B与点D的坐标;(2)求二次函数图像的对称轴与线段AB的交点E的坐标;(3)二次函数的图像经过平移后,点A落在原二次函数图像的对称轴上,点D落在线段AB上,求图像平移后得到的二次函数解析式.24.如图,抛物线与x轴交两点A(﹣1,0),B(3,0),过点A作直线AC与抛物线交于C点,它的坐标为(2,﹣3).(1)求抛物线及直线AC的解析式;(2)P是线段AC上的一个动点,(不与A,C重合),过P点作y轴的平行线交抛物线于E点,点E与点A、C围成三角形,求出△ACE面积的最大值;(3)点G为抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,直接写出所有满足条件的F点坐标;如果不存在,如果不存在,请说明理由.25.如图1,在平面直角坐标系xOy中,抛物线C:y=ax2+bx+c与x轴相交于A,B两点,顶点为D(0,4),AB2F(m,0)是x轴的正半轴上一点,将抛物线C 绕点F旋转180°,得到新的抛物线C′.(1)求抛物线C的函数表达式;(2)若抛物线C′与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围.(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C′上的对应点P′,设M是C上的动点,N是C′上的动点,试探究四边形PMP′N 能否成为正方形?若能,求出m的值;若不能,请说明理由.参考答案与解析1.B【分析】先求出不等式组的解集,然后根据“大于向右,小于向左,包括端点用实心,不包括端点用空心”的原则将不等式组的解集在数轴上表示出来,再比较得到答案.【详解】解:不等式组21x x <⎧⎨>-⎩的解集为:-1<x <2,解集在数轴上的表示为:.故选:B .【点睛】本题考查了求解不等式组的解集,及把不等式的解集在数轴上表示出来,解题的关键是掌握在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.2.C【分析】先解不等式组,求出不等式组的解集,再根据“小于和大于用空心圆,有等于的时候用实心圆解集;找到那个数在数轴上位置,往上引垂线,大于左画,小于右画”判断即可.【详解】解:24030x x -<⎧⎨+≥⎩①②解不等式①得:2x <解不等式②得:3x ≥-∴不等式组的解集为:32x -≤<,在数轴上表示不等式组的解集为:故选:C .【点睛】本题考查的知识点是在数轴上表示不等式(组)的解集,解答本题的关键是正确的求出不等式组的解集.3.D【分析】根据角平分线的定义和对顶角的性质,逐项判断即可求解.【详解】解:∵OE 是AOC ∠的平分线,∴AOE EOC ∠=∠,故①正确;∵OC 恰好平分EOB ∠,∴EOC COB ∠=∠,故②正确;∴AOE COB ∠=∠,∵COB AOD ∠=∠,∴AOD AOE ∠=∠,故③正确;∵2AOC AOE ∠=∠,∴2AOC AOD ∠=∠,∵AOC BOD ∠=∠,∴2DOB AOD ∠=∠,故④正确;∴正确的有4个.故选:D【点睛】本题主要考查了角平分线的定义和对顶角的性质,熟练掌握一般地,从一个角的顶点出发,在角的内部把这个角分成两个相等的角的射线,叫做这个角的平分线;对顶角相等是解题的关键.4.B【分析】由题意得取到的数恰好是3的整数倍的数有3和6,进而问题可求解.【详解】解:由题意得:取到的数恰好是3的整数倍的数有3和6,∴取到的数恰好是3的整数倍的概率是2163P ==;故选B .【点睛】本题主要考查概率,熟练掌握概率的求解是解题的关键.5.B【分析】根据从上边看得到的图形是俯视图,可得答案.【详解】从上边看是1个正方形,左下角的正方形的边是浅线,故选B .【点睛】本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.6.C【分析】根据二次函数的图象与系数的关系,二次函数的性质即可求出答案.【详解】解:由图象可得:a <0,c >0,﹣2b a=1,∴b =-2a >0,∴<0abc ;∴①正确,∵﹣2b a=1,∴b =-2a ,∴20a b +=,∴②正确,∵对称轴为直线1x =,∴312x +=,解得x =-1,∴(3,0)的对称点为(-1,0)当x =﹣1时,y =a ﹣b +c ,∴a ﹣b +c =0,∴③正确,当x =m 时,y =a 2m +bm +c ,当x =1时,y 有最大值为a +b +c ,∴a 2m +bm +c ≤a +b +c ,∴a 2m +bm ≤a +b ,∴④不正确,故选:C .【点睛】本题考查了二次函数的图像,二次函数的对称轴,二次函数的最值,熟练掌握二次函数图像与各系数的关系,理解最值的意义是解题的关键.7.D【详解】分析:证明△ABP ≌△DAF 可判断AP 与DF 的位置关系与数量关系;延长AP 与DC 的延长线交于点G ,用EC 是斜边DG 上的中线证明;过点C 作CH ⊥EG 于点H ,可证PH =EF ,则EP =EF =EH ,比较EH 与EC 的关系.详解:A .易证△ABP ≌△DAF (SAS )得,AP =DF ;B .由△ABP ≌△DAF (SAS )得,∠BAP =∠ADF ,因为∠ADF +∠AFD =90°,所以∠BAP +∠AFD =90°,所以∠AEF =90°,所以AP ⊥DF ;C.延长AP与DC的延长线交于点G,易证△ABP≌△GCP(ASA),所以CG=AB,又AB=CD,所以CG=CD,因为∠DEG=90°,所以CE=CD;D.过点C作CH⊥EG于点H,易证△AEF≌△CHP(ASA),所以EF=HP,所以EP+EF=EP+PH=EH<EC,即EP+EF<CD.故选D.点睛:正方形中如果有中点,一般采用倍中线法,构建全等三角形,把已知条件和要解决的问题集中在一起.8.C【分析】根据题意,连接CF,由正方形的性质,可以得到△ABF≌△CBF,则AF=CF,∠BAF=∠BCF,由∠BAF=∠FGC=∠BCF,得到AF=CF=FG,故①正确;连接AC,与BD 相交于点O,由正方形性质和等腰直角三角形性质,证明△AOF≌△FHG,即可得到EH=AO,则③正确;把△ADE顺时针旋转90°,得到△ABM,则证明△MAG≌△EAG,得到MG=EG,即可得到EG=DE+BG,故④正确;②无法证明成立,即可得到答案.【详解】解:连接CF,在正方形ABCD 中,AB=BC ,∠ABF=∠CBF=45°,在△ABF 和△CBF 中,45AB BC ABF CBF BF BF =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABF ≌△CBF (SAS ),∴AF=CF ,∠BAF=∠BCF ,∵FG ⊥AE ,∴在四边形ABGF 中,∠BAF+∠BGF=360°-90°-90°=180°,又∵∠BGF+∠CGF=180°,∴∠BAF=∠CGF ,∴∠CGF=∠BCF∴CF=FG ,∴AF=FG ;①正确;连接AC 交BD 于O.∵四边形ABCD 是正方形,HG ⊥BD ,∴∠AOF=∠FHG=90°,∵∠OAF+∠AFO=90°,∠GFH+∠AFO=90°,∴∠OAF=∠GFH ,∵FA=FG ,∴△AOF ≌△FHG ,∴FH=OA=定值,③正确;如图,把△ADE 顺时针旋转90°,得到△ABM,∴AM=AE ,BM=DE ,∠BAM=∠DAE ,∵AF=FG ,AF ⊥FG ,∴△AFG 是等腰直角三角形,∴∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△AMG 和△AEG 中,45AM AE EAG MAG AG AG =⎧⎪∠=∠=︒⎨⎪=⎩,∴△AMG ≌△AEG ,∴MG=EG ,∵MG=MB+BG=DE+BG ,∴GE=DE+BG ,故④正确;如图,△ADE 顺时针旋转90°,得到△ABM ,记F 的对应点为P ,连接BP 、PN ,则有BP=DF ,∠ABP=∠ADB=45°,∵∠ABD=45°,∴∠PBN=90°,∴BP 2+BN 2=PN 2,由上可知△AFG 是等腰直角三角形,∠FAG=45°,∴∠MAG=∠BAG+∠DAE=45°,∴∠MAG=∠FAG ,在△ANP 和△ANF 中,45AP AF EAG MAG AN AN =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ANP ≌△ANF ,∴PN=NF ,∴BP 2+BN 2=NF 2,即DF 2+BN 2=NF 2,故⑤正确;根据题意,无法证明②正确,∴真命题有四个,故选C.【点睛】本题考查了正方形的性质,全等三角形的判定与性质等知识,解题的关键是作辅助线构造出等腰三角形和全等三角形.9.25°.【详解】∵a ∥b ,∴∠FDE =∠2=65°.∵EF ⊥CD ,∴∠EFD =90°.∴∠1=180°-∠EFD -∠FDE =180°-90°-65°=25°.10.()3,2--【分析】直接利用二次函数的顶点式解析式读取即可.【详解】解:∵()2432y x =+-,∴顶点坐标为()3,2--,故答案为:()3,2--.【点睛】本题考查了二次函数的顶点式解析式,解题关键是掌握()()20y a x h k a =++≠的顶点坐标为(),h k -.11.26【详解】解:①若M 接近A ,如图1,此时∠BNC =90°,但∠BNM =∠A =90°,∴M 、N 、C 共线,由面积法S △BMC =12MC •BN =12×13×5,∵BN =AB =5,∴MC =13,由勾股定理得:DM =12,AM =1.②若M 在AD 上,但使∠ABM >45°,如图2,此时∠BNC >∠BNM =∠A =90°,∴△BCN 不可能是直角三角形.③若M 在AD 的延长线上,如图3,要使∠BNC =∠BNM =∠A =90°,则M 、C 、N 共线.设MD =x ,则,AM =13+x ,MN =13+x .∵CN =12,∴MC =13+x -12=x +1.在R t △CDM 中,由勾股定理得:2225(1)x x +=+,解得:x =12,∴AM =25.综上所述:所有MA 的和=1+25=26.故答案为26.【点睛】本题是矩形与折叠问题.解题的关键是分三种情况讨论.难度比较大.12.9【分析】设小红所用的1元纸币为x 张,小红所用的5元纸币为y 张,根据“买书需用48元,用了1元和5元的纸币共12张”列方程组,解方程组即可得.【详解】解:设小红所用的1元纸币为x 张,小红所用的5元纸币为y 张,54812x y x y +=⎧⎨+=⎩解得:39x y =⎧⎨=⎩∴小红所用的1元纸币为3张,5元纸币为9张,故答案为:9.【点睛】本题考查了二元一次方程组的应用,理解题意得出等量关系是列方程组求解的关键.13.2【分析】根据点到直线的距离公式,列出方程即可解决问题.【详解】解:∵51126y x =-,∴51220x y --=,∴求点1(0,2)P 到直线51220x y --=的距离为:26213d ===;故答案为:2.【点睛】本题考查一次函数图象上点的坐标特征,点到直线的距离公式的知识,解题的关键是理解题意,学会把直线的解析式转化为Ax+By+C=0的形式,学会构建方程解决问题.14.AC BD =或ABC DCB ∠=∠或A D ∠=∠或ABO DCO∠=∠【分析】由已知可知有两条边对应相等,据此结合全等三角形的判定定理,针对边角进行分析判断即可得到答案.【详解】解:由题意,∵AB CD =,BC 为公共边,∴当AC BD =,满足SSS ,符合题意;当ABC DCB ∠=∠,满足SAS ,符合题意;当A D ∠=∠,先证明△ABO ≌△DCO ,然后得到ABC DCB ∠=∠,符合题意;当ABO DCO ∠=∠,先证明△ABO ≌△DCO ,然后得到ABC DCB ∠=∠,符合题意;故答案为:AC BD =或ABC DCB ∠=∠或A D ∠=∠或ABO DCO ∠=∠.【点睛】本题考查了全等三角形的判定定理,熟练掌握SSS ,SAS ,ASA ,AAS 证明三角形全等的方法是解题的关键.15.(2+或(2【分析】分两种情况,当A ∠为锐角时,当A ∠为钝角时,利用勾股定理求解.【详解】解: BD 为等腰三角形ABC 的腰上的高,=1BD ,tan ABD ∠=,当A ∠为锐角时,如图1,当=AB AC 时,tan AD ABD BD∠==,∴AD =2AB ∴=,2AC AB ∴==,2CD AC AD ∴=-=-;如图2,当=AC BC 时,tan AD ABD BD∠==,∴AD =设=CD x ,则AC AD CD x BC =--=,)2221x x ∴=+,解得3x =,即3CD =;当A ∠为钝角时,如图3,当=AB AC 时,tan AD ABD BD ∠==,∴AD =2AB ∴=,2CD AC AD ∴=+=+综上所述,CD 的长度为(2+或(2或3.【点睛】本题主要考查了等腰三角形的性质,勾股定理,分类讨论是解答本题的关键.16.【详解】试题解析:当x=0时,y=1,则B (0,1),当y=0时,x=A 0),∴OB=1,∵tan ∠OAB=3OB OA ==,∴∠OAB=30°,∵△OB1A1,△A1B2A2,△A2B3A3,…均为等边三角形,∴∠A1OB1=∠A2A1B2=∠A3A2B3=60°,∴∠OB1A=∠AB2A1=∠AB3A2=30°,∴OB1=OA=,A1B2=AA1,A2B3=AA2,则OA1=OB1A1B2=AA1∴A1A2=A1B2=AA1=2OA1同理:A2A3=A2B3=2A1A2A3A4=2A2A3A4A5=2A3A4A5A6=2A4A5∴A6A7=2A5A6∴△A6B7A7的周长是:17.见解析【分析】根据平行四边形的性质,证得△CFD≌△AEB,即可得证结论.【详解】证:∵四边形ABCD是平行四边形,∴AB=CD,AB∥CD,∴∠ACD=∠CAB.∵CF=AE,∴△CFD≌△AEB(SAS),∴∠F=∠E,∴BE∥DF.【点睛】此题考查了平行四边形的性质和全等三角形的证明,熟练掌握平行四边形的有关性质和全等三角形的证明是解题的关键.18.(1)共有12种等可能结果;(2)12【分析】(1)用A、B、C、D分别表示石林风景区;香格里拉普达措国家公园;腾冲火山地质公园;玉龙雪山景区四个景区,然后画树状图展示所有12种等可能的结果数;(2)在12种等可能的结果中找出玉龙风景区被选中的结果数,然后根据概率公式求解.【详解】解:(1)画树状图如下:由树状图知,共有12种等可能结果;(2)∵抽到玉龙雪山风景区的结果数为6,∴抽到玉龙雪山风景区的概率为12.【点睛】本题考查利用列举法求概率,学生们要熟练掌握画树状图法和列表法,是解本题的关键.19.325075701510x y x y +=⎧⎨+=⎩【分析】因为求两个未知量,因此可设两个未知数,设租住三人间x 间,两人间y 间,根据题意可列二元一次方程组即可.【详解】解:根据题意可得三人间每间住宿费为25×3=75元;两人间每间住宿费为:35×2=70元;设租住三人间x 间,两人间y 间,可列方程:325075701510x y x y +=⎧⎨+=⎩20.21x -£<,数轴见解析【分析】分别计算出各不等式的解集,再求出其公共解集即可.【详解】解:123214x x x +<⎧⎪⎨--≥-⎪⎩①②由①得,1x <由②得,2x ≥-在数轴上表示为:,故原不等式组的解集为:21x -£<.【点睛】本题考查解一元一次不等式组,掌握不等式组取解集的方法“同大取大,同小取小,大小小大中间找,大大小小无解了”是解题的关键.21.∠2=22°.【分析】根据平行线的性质求得∠1=∠QPA=50°,由于∠2+∠QPA=90°,即可求得∠2的度数.【详解】解:∵AB ∥CD ,∠1=68°,∴∠1=∠QPA=68°.∵PM ⊥EF ,∴∠2+∠QPA=90°.∴∠2+68°=90°,∴∠2=22°.【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是本题的关键.22.(1)80m =;200n =;15%;(2)255万人;(3)14【分析】(1)总人数=A 组人数÷所占百分比,m =总人数×所占百分比,n =总人数-80-m -120-60,E 组的百分比=E 组的人数除以总人数;(2)算出D 组所占的百分比,然后用850乘以D 组所占的百分几即可求解;(3)根据概率公式计算即可.【详解】解:(1)总人数为16020%800÷=(人),80010%80m =⨯=,80016080240120200n =----=,E 组所占的百分比为120100%15%800⨯=;(2)240850255800⨯=(万人);(3)P (持C 组观点)20018004==.【点睛】本题考查扇形统计图,以及用样本来估计总体,掌握扇形统计图的统计意义是解题的关键.23.(1)点B 的坐标为(5,0),点D 的坐标为(52,256)(2)(52,103)(3)()228333y x =--+【分析】(1)设点B 的坐标为(m ,0),经过A 、B 、O 三点的二次函数解析式为2y ax bx c =++,先根据OB =AB ,利用勾股定理求出点B 的坐标,然后用待定系数法求出二次函数解析式即可求出点D 的坐标;(2)先求出直线AB 的解析式,再根据(1)所求得到抛物线对称轴,即可求出点E 的坐标;(3)只需要求出平移后的抛物线顶点坐标即可得到答案.(1)解:设点B 的坐标为(m ,0),经过A 、B 、O 三点的二次函数解析式为2y ax bx c =++,∵OB =AB ,∴()22224m m =-+,∴5m =,∴点B 的坐标为(5,0),∴42425500a b c a b c c ++=⎧⎪++=⎨⎪=⎩,∴231030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴二次函数解析式为22210252533326y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴点D 的坐标为(52,256);(2)解:设直线AB 的解析式为1y kx b =+,∴112450k b k b +=⎧⎨+=⎩,∴143203k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线AB 的解析式为42033=-+y x ,∵二次函数解析式为22210252533326y x x x ⎛⎫=-+=--+ ⎪⎝⎭,∴二次函数的对称轴为直线52x =,当52x =时,4520103233y =-⨯+=,∴点E 的坐标为(52,103);(3)解:∵二次函数的图像经过平移后,点A 落在原二次函数图像的对称轴上,∴点A 向右平移了51222-=个单位长度;∴平移后抛物线的顶点的横坐标为51322+=,当3x =时,42083333y =-⨯+=,∴平移后的抛物线顶点坐标为(3,83),∴平移后的抛物线解析式为()228333y x =--+.【点睛】本题主要考查了勾股定理,一次函数与二次函数综合,待定系数法求函数解析式,二次函数图象的平移等等,熟知二次函数的相关知识是解题的关键.24.(1)直线AC 的函数解析式是y=﹣x ﹣1;(2)S △ACE =278;(3)存在4个符合条件的F 点.【分析】(1)将A 、B 坐标代入y=x 2+bx+c ,利用待定系数法可求得二次函数解析式,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入,利用待定系数法即可求得直线AC 的解析式;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),由S △ACE =12PE•|x C ﹣x A |,而|x C ﹣x A |的值是确定的,因此只要求得PE 的最大值即可;(3)分CG 与AF 平行、CF 与AG 平行,分别画出符合题意的图形,分别进行求解即可得.【详解】(1)将A (﹣1,0),B (3,0)代入y=x 2+bx+c ,得01093b c b c =-+⎧⎨=++⎩,解得:23b c =-⎧⎨=-⎩,∴y=x 2﹣2x ﹣3,设直线AC 的解析式为:y=mx+n ,将A 、C 坐标代入得032m n m n =-+⎧⎨-=+⎩,解得:11m n =-⎧⎨=-⎩,∴直线AC 的函数解析式是y=﹣x ﹣1;(2)设点P 的横坐标为x (﹣1≤x≤2),则P (x ,﹣x ﹣1),E (x ,x 2﹣2x ﹣3),∵点P 在点E 的上方,∴PE=(﹣x ﹣1)﹣(x 2﹣2x ﹣3)=﹣x 2+x+2=﹣(x ﹣12)2+94,∴当x=12时,PE 的最大值为94,∴S △ACE =12PE•|x C ﹣x A |=12×94×3=278;(3)①如图,连接C 与抛物线和y 轴的交点,∵C (2,﹣3),G (0,﹣3)∴CG ∥X 轴,此时AF=CG=2,∴F 点的坐标是(﹣3,0);②如图,AF=CG=2,A 点的坐标为(﹣1,0),因此F 点的坐标为(1,0);③如图,此时C,G两点的纵坐标互为相反数,因此G点的纵坐标为3,代入抛物线中即可得出G点的坐标为(73),由于直线GF的斜率与直线AC的相同,因此可设直线GF 的解析式为y=﹣x+h,将G点代入后可得出直线的解析式为y=﹣7.因此直线GF与x轴的交点F的坐标为(70);④如图,同③可求出F的坐标为(47,0);综合四种情况可得出,存在4个这样的点F ,分别是F 1(1,0),F 2(﹣3,0),F 3(7,0),F 4(47,0).【点睛】本题考查了待定系数法求抛物线解析式、一次函数解析式,二次函数的性质,平行四边形的性质等,综合性较强,熟练掌握待定系数法是解题的关键.25.(1)2142y x =-+;(2)2<m <22;(3)m =6或m 173.【分析】(1)由题意抛物线的顶点C (0,4),A (220),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题;(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题;(3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (220),设抛物线的解析式为24y ax =+,把A(0)代入可得a =12-,∴抛物线C 的函数表达式为2142y x =-+.(2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解得2<m<∴满足条件的m 的取值范围为2<m<(3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H.由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m﹣3﹣3(舍弃),∴m﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m =6或m ﹣3时,四边形PMP ′N 是正方形.。

2023年河南省郑州市金水重点学校中考数学二模试卷(含解析)

2023年河南省郑州市金水重点学校中考数学二模试卷(含解析)

绝密★启用前2023年河南省郑州市金水重点学校中考数学二模试卷一、选择题(本大题共10小题,共30.0分。

在每小题列出的选项中,选出符合题目的一项)1. 以下实数中,是无理数的是( )A. πB. 1.010010001C. 35D. 92. “燕山雪花大如席,片片吹落轩辕台.”这是诗仙李白眼里的雪花.单个雪花的重量其实很轻,只有0.00003kg左右,0.00003用科学记数法可表示为( )A. 3×10−5B. 3×10−4C. 0.3×10−4D. 0.3×10−53. 下列运算正确的是( )A. 4a2÷2a2=2a2B. a2+3a2=4a2C. (n+m)2=n2+m2D. (−a2)a4=a84. 下列说法中,正确的是( )A. 雨后见彩虹是随机事件B. 为了检查飞机飞行前的各项设备,应选择抽样调查C. 将一枚硬币抛掷20次,一定有10次正面朝上D. 气象局调查了甲、乙两个城市近5年的降水量,它们的平均降水量都是800毫米,方差分别是s2甲=3.4,s2乙=4.3,则这两个城市年降水量最稳定的是乙城市5.如图是一个正方体的展开图,将它折叠成正方体后,“数”字的对面上的文字是( )A. 考B. 试C. 加D. 油6.把一张对边互相平行的纸条折成如图所示那样,EF是折痕,若∠EFB=34°,则∠FGC为( )A. 34°B. 48°C. 56°D. 68°7. 如图,在△ABC中,∠C=90°,AC=BC.以点A为圆心,以任意长为半径作弧交AB,ACDE长为半径作弧,在∠BAC内两弧相交于点P;于D,E两点;分别以点D,E为圆心,以大于12作射线AP交BC于点F,过点F作FG⊥AB,垂足为G.若AB=8cm,则△BFG的周长等于( )A. (42+2)cmB. 8cmC. 82cmD. 6cm8. 在“双减政策”的推动下,某校学生课后作业时长有了明显的减少.去年上半年平均每周作业时长为a分钟,经过去年下半年和今年上半年两次整改后,现在平均每周作业时长比去年上半年减少了70%,设每半年平均每周作业时长的下降率为x,则可列方程为( )A. a(1−x)2=70%aB. a(1+x)2=70%aC. a(1−x)2=30%aD. 30%(1+x)2a=a9. 给出下列函数:①y=−3x+2;②y=3;③y=2x2;④y=−5(x−1)2,上述函数中满x足“当x>1时,函数值y随自变量x增大而增大”的是( )A. ①B. ②C. ③D. ④10. 如图,在Rt△ABO中,AB=OB,顶点A的坐标为(2,0),以AB为边向△ABO的外侧作正方形ABCD,将组成的图形绕点O逆时针旋转,每次旋转45°,则第98次旋转结束时,点D的坐标为( )A. (1,−3)B. (−1,3)C. (−1,2+2)D. (1,3)二、填空题(本大题共5小题,共15.0分)11. 分解因式:6x2y−3xy=.12. 若关于x的一元二次方程ax2+2x−1=0无解,则a的取值范围是______ .13. 不透明的袋子中装有2个红球和1个白球,除颜色外无其他差别,随机摸出一个球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率是______ .14.如图,在矩形ABCD中,∠BAC=30°,AB=15,以点B为圆心,BC为半径画弧交矩形的边AB于点E,交对角线AC于点F,则图中阴影部分的面积为______ .15. 如图,在△ABC中,∠ABC=90°,AB=8,BC=12,点E是边BC上一点,且BE=5,点F是边AB上一动点,连接EF,△BEF与△PEF关于EF所在的直线对称,连接BP,当点P恰好在直角△ABC直角边的垂直平分线上时,BP的长为______ .三、解答题(本大题共8小题,共64.0分。

四川省自贡市富顺县中考数学模拟试卷(三)(含解析)-人教版初中九年级全册数学试题

四川省自贡市富顺县中考数学模拟试卷(三)(含解析)-人教版初中九年级全册数学试题

某某省某某市富顺县2016年中考数学模拟试卷(三)一.选择题(共10个小题,每小题4分,共40分)1.在﹣3,4,﹣5,﹣6,7中,任取两个数相乘,积最大的是()A.15 B.18 C.28 D.302.下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9 C. =a﹣1 D.(﹣2x)3=﹣8x33.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C. a,D.,4.把分式的x、y均扩大为原来的10倍后,则分式的值()A.不变 B.为原分式值的10倍C.为原分式值的D.为原分式值的5.下列各式中,不能用完全平方公式分解的个数为()①x2﹣4x+8;②﹣x2﹣2x﹣1;③4m2+4m﹣1;④﹣m2+m﹣;⑤4a4﹣a2+.A.1个B.2个C.3个D.4个6.若关于x的一元二次方程nx2﹣2x﹣1=0无实数根,则一次函数y=(n+1)x﹣n的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限7.如图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个8.如若正方形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=(x>0)的图象上,则E点的坐标是()A.B.C.D.(1,1)9.△ABC经过一定的运动得到△A1B1C1,然后以点A1为位似中心按比例尺A1B2:A1B1=2:1,△A1B1C1放大为△A1B2C2,如果△ABC上的点P的坐标为(a,b),那么这个点在△A1B2C2中的对应点P2的坐标为()A.(a+3,b+2) B.(a+2,b+3) C.(2a+6,2b+4)D.(2a+4,2b+6)10.已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()A.B.C.D.二.填空题(共5个小题,每小题4分,共20分)11.已知在Rt△ABC中,∠C=90°,若sinA=,则tanA的值为______.12.一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率P(A)=(M和D 分别表示相应区域的面积).如图,现有一边长为a的等边△ABC,分别以此三角形的三个顶点为圆心,以一边的一半长为半径画圆与△ABC的内切圆有重叠(见图中阴影部分);现在在等边△ABC内注射一个点,则该点落在△ABC内切圆中的概率是______.13.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为______.14.观察下列的有序数对:(3,﹣1),,根据你发现的规律,第2016个有序数对是______.15.二次函数y=ax2+bx+c(a、b、c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④2a+b=0;⑤b2﹣4ac<0;⑥当﹣1<x<3时,y>0.其中正确的是______ (把正确的序号都填上).三.解答题(共2个题,每题8分,共16分)16.计算:﹣2|1﹣|.17.解不等式组:,并在数轴上表示出解集.四、解答题(共2个题,每小题8分,共16分)18.在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(2016•富顺县校级模拟)近几年我国高速公路的建设有了飞速的发展,现正在修建中的某段高速公路要招标.现有甲乙两个工程队,若甲、乙两队合作,24天可完成任务,需要费用120万元;若甲队单独做20天,剩下的工程由乙做,还需要40天才能完成此项工程,这样需要110万元,问:(1)甲乙两队单独完成此项工程,各需多少天?(2)甲乙两队单独完成此项工程,各需费用多少万元.五、解答题(共2个题,每题10分,共20分)20.(10分)(2016•富顺县校级模拟)在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边上的中点,点M是AB上的一动点(不与点A重合),延长ME交射线CD于点N,连结MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM=______ 时,四边形AMDN是矩形;②当AM=______ 时,四边形AMDN是菱形.21.(10分)(2016•富顺县校级模拟)如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.六、解答题(本题满分12分)22.(12分)(2016•富顺县校级模拟)用换元法解分式方程: =2解:设=m,则原方程可化为m﹣=2;去分母整理得:m2﹣2m﹣3=0解得:m1=﹣1,m2=3即: =﹣1或=3;解得:x=或x=﹣经检验:x=或 x=﹣是原方程的解.故原方程的解为:x1=,x2=﹣.请同学们借鉴上面换元法解分式方程的方法,先解下列方程,然后再化简求值:已知a是方程的根,并求代数式的值?七、解答题(本题满分12分)23.(12分)(2001•某某)如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问:(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上述结论是否成立?请说明理由;(2)如果AB=AC=5cm,sinA=,那么圆心O在AB的什么位置时,⊙O与AC相切?八、解答题(本题满分14分)24.(14分)(2009•某某)已知:抛物线y=ax2+bx+c(a≠0)的对称轴为x=﹣1,与x轴交于A,B两点,与y轴交于点C,其中A(﹣3,0),C(0,﹣2).(1)求这条抛物线的函数表达式;(2)已知在对称轴上存在一点P,使得△PBC的周长最小.请求出点P的坐标;(3)若点D是线段OC上的一个动点(不与点O、点C重合).过点D作DE∥PC交x轴于点E.连接PD、PE.设CD的长为m,△PDE的面积为S.求S与m之间的函数关系式.试说明S是否存在最大值?若存在,请求出最大值;若不存在,请说明理由.2016年某某省某某市富顺县中考数学模拟试卷(三)参考答案与试题解析一.选择题(共10个小题,每小题4分,共40分)1.在﹣3,4,﹣5,﹣6,7中,任取两个数相乘,积最大的是()A.15 B.18 C.28 D.30【考点】有理数大小比较.【分析】根据乘法法则:同号得正,异号得负计算,最大的两个正数相乘与最大的两个负数相乘,作比较,得出结论.【解答】解:﹣5×(﹣6)=30,4×7=28,故选D.【点评】本题考查了有理数的乘法和大小比较,熟练掌握乘法法则是关键;对于有理数的大小比较中,正数大于一切负数;本题属于易错题,容易漏乘.2.下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9 C. =a﹣1 D.(﹣2x)3=﹣8x3【考点】二次根式的性质与化简;合并同类项;幂的乘方与积的乘方;完全平方公式.【分析】根据二次根式的性质、完全平方公式、积的乘方,可得答案.【解答】解:A、不是同底数幂的乘法,指数不能相加,故A错误;B、差的平方等于平方和减积的二倍,故B错误;C、二次根式开方是非负数,故C错误;D、积的乘方每一个因式分别乘方,再把所得的幂相乘,故D正确;故选:D.【点评】本题考查了二次根式的性质与化简,根据法则计算是解题关键.3.已知5个正数a1,a2,a3,a4,a5的平均数是a,且a1>a2>a3>a4>a5,则数据:a1,a2,a3,0,a4,a5的平均数和中位数是()A.a,a3B.a,C. a,D.,【考点】中位数;算术平均数.【分析】对新数据按大小排列,然后根据平均数和中位数的定义计算即可.【解答】解:由平均数定义可知:(a1+a2+a3+0+a4+a5)=×5a=a;将这组数据按从小到大排列为0,a5,a4,a3,a2,a1;由于有偶数个数,取最中间两个数的平均数.∴其中位数为.故选D.【点评】本题考查了平均数和中位数的定义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据的中位数与这组数据的排序及数据个数有关,因此求一组数据的中位数时,先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.4.把分式的x、y均扩大为原来的10倍后,则分式的值()A.不变 B.为原分式值的10倍C.为原分式值的D.为原分式值的【考点】分式的基本性质.【分析】根据分式的分子分母都乘或除以同一个不为零的整式,分式的结果不变,可得答案.【解答】解:分式的x、y均扩大为原来的10倍后,则分式的值变为原分式的,故选:C.【点评】本题考查了分式的基本性质,注意分母扩大了100倍,分子扩大了10倍.5.下列各式中,不能用完全平方公式分解的个数为()①x2﹣4x+8;②﹣x2﹣2x﹣1;③4m2+4m﹣1;④﹣m2+m﹣;⑤4a4﹣a2+.A.1个B.2个C.3个D.4个【考点】因式分解-运用公式法.【分析】利用完全平方公式的结构特征判断即可.【解答】解:①x2﹣4x+8,不能;②﹣x2﹣2x﹣1,能;③4m2+4m﹣1,不能;④﹣m2+m﹣,能;⑤4a4﹣a2+,不能,则不能用完全平方公式分解的个数为3个,故选C【点评】此题考查了因式分解﹣运用公式法,熟练掌握完全平方公式是解本题的关键.6.若关于x的一元二次方程nx2﹣2x﹣1=0无实数根,则一次函数y=(n+1)x﹣n的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限【考点】根的判别式;一次函数的图象.【分析】一次函数y=kx+b的图象,根据k、b的取值确定直角坐标系的位置.在与一元二次方程有关的求值问题中,必须满足下列条件:(1)二次项系数不为零;(2)在无实数根下必须满足△=b2﹣4ac<0.【解答】解:一元二次方程nx2﹣2x﹣1=0无实数根,说明△=b2﹣4ac<0,即(﹣2)2﹣4×n×(﹣1)<0,解得n<﹣1,所以n+1<0,﹣n>0,故一次函数y=(n+1)x﹣n的图象不经过第三象限.故选C【点评】一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.对于一次函数y=kx+b,当k<0,b>0时,它的图象经过一、二、四象限.7.如图是由一些完全相同的小立方块搭成的几何体的三种视图,那么搭成这个几何体所用的小立方块的个数是()A.5个B.6个C.7个D.8个【考点】由三视图判断几何体.【分析】结合三视图的知识,主视图以及左视图底面有6个小正方体,共有两层三行,第二层有2个小正方体.【解答】解:综合主视图,俯视图,左视图底面有6个正方体,第二层有2个正方体,所以搭成这个几何体所用的小立方块的个数是8.故选D.【点评】本题考查对三视图的理解应用及空间想象能力.可从主视图上分清物体的上下和左右的层数,从俯视图上分清物体的左右和前后位置,综合上述分析数出小立方块的个数.8.如若正方形OABC的顶点B和正方形ADEF的顶点E都在反比例函数y=(x>0)的图象上,则E点的坐标是()A.B.C.D.(1,1)【考点】反比例函数图象上点的坐标特征;解一元二次方程-公式法;反比例函数系数k的几何意义;正方形的性质.【分析】在正方形ABCO中四边都相等,由反比例函数比例系数k的几何意义可得,正方形OABC的面积为1,求得OA=1.若设AD=DE=m,则OD=1+m,再根据反比例函数图象上点的坐标特征,可列方程求得m的值,即可得出E点的坐标.【解答】解:依据反比例函数比例系数k的几何意义可得,正方形OABC的面积为1,∴OA的长为1,设AD=DE=m,则OD=1+m,∴E(1+m,m),将E(1+m,m)代入反比例函数y=可得,m(1+m)=1,解得,m1=,m2=(不合题意,舍去),∴1+m=,故点E的坐标是(,).故选(B)【点评】本题主要考查反比例函数图象上点的坐标特征,根据正方形的四条边都相等,并利用两正方形的边长表示出点B、E的坐标是解题的关键.在反比例函数y=图象上任取一点,过这点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|,这是反比例函数比例系数k的几何意义.9.△ABC经过一定的运动得到△A1B1C1,然后以点A1为位似中心按比例尺A1B2:A1B1=2:1,△A1B1C1放大为△A1B2C2,如果△ABC上的点P的坐标为(a,b),那么这个点在△A1B2C2中的对应点P2的坐标为()A.(a+3,b+2) B.(a+2,b+3) C.(2a+6,2b+4)D.(2a+4,2b+6)【考点】位似变换;坐标与图形性质.【分析】观察图形,看△A1B1C1是如何从△ABC得到的,发现其变化规律.再根据位似变换,得到△A1B2C2中各点的坐标特点,从而得到P2的坐标.【解答】解:△A1B1C1是由△ABC通过平移得到的,其平移规律是右移三个单位后,再上移2个单位,所以点P移到P1的坐标为(a+3,b+2).△A1B2C2是由三角线A1B1C1通过位似变换得到的,所以在△A1B2C2上的各点坐标,都做了相应的位似变换,即乘以了2.∴点P1的对应点P2的坐标为(2a+6,2b+4).故选C.【点评】本题考查了平移变化和位似变化及相关知识,点的变化与平移规律和位似变化规律相一致.10.已知AC⊥BC于C,BC=a,CA=b,AB=c,下列选项中⊙O的半径为的是()A.B.C.D.【考点】三角形的内切圆与内心;解一元一次方程;正方形的判定与性质;切线的性质;相似三角形的判定与性质.【分析】连接OE、OD,根据AC、BC分别切圆O于E、D,得到∠OEC=∠ODC=∠C=90°,证出正方形OECD,设圆O的半径是r,证△ODB∽△AEO,得出=,代入即可求出r=;设圆的半径是x,圆切AC于E,切BC于D,且AB于F,同样得到正方形OECD,根据a﹣x+b ﹣x=c,求出x即可;设圆切AB于F,圆的半径是y,连接OF,则△BCA∽△OFA得出=,代入求出y即可.【解答】解:A、设圆的半径是x,圆切AC于E,切BC于D,切AB于F,如图(1)同样得到正方形OECD,AE=AF,BD=BF,则a﹣x+b﹣x=c,求出x=,故本选项错误;B、设圆切AB于F,圆的半径是y,连接OF,如图(2),则△BCA∽△OFA,∴ =,∴=,解得:y=,故本选项错误;C、连接OE、OD,∵AC、BC分别切圆O于E、D,∴∠OEC=∠ODC=∠C=90°,∵OE=OD,∴四边形OECD是正方形,∴OE=EC=CD=OD,设圆O的半径是r,∵OE∥BC,∴∠AOE=∠B,∵∠AEO=∠ODB,∴△ODB∽△AEO,∴=,=,解得:r=,故本选项正确;从上至下三个切点依次为D,E,F;并设圆的半径为x;容易知道BD=BF,所以AD=BD﹣BA=BF﹣BA=a+x﹣c;又∵b﹣x=AE=AD=a+x﹣c;所以x=,故本选项错误.故选:C.【点评】本题主要考查对正方形的性质和判定,切线的性质,全等三角形的性质和判定,三角形的内切圆与内心,解一元一次方程等知识点的理解和掌握,能根据这些性质求出圆的半径是解此题的关键.二.填空题(共5个小题,每小题4分,共20分)11.已知在Rt△ABC中,∠C=90°,若sinA=,则tanA的值为.【考点】同角三角函数的关系.【分析】直接利用已知结合勾股定理表示出AC,BC的长,再利用锐角三角函数关系得出答案.【解答】解:如图所示:∵∠C=90°,sinA=,∴设BC=2x,AB=3x,则AC=x,故tanA的值为: ==.故答案为:.【点评】此题主要考查了同角三角函数关系、勾股定理等知识,正确表示出AC的长是解题关键.12.一般地,如果在一次实验中,结果落在区域D中每一个点都是等可能的,用A表示“实验结果落在D中的某个小区域M中”这个事件,那么事件A发生的概率P(A)=(M和D 分别表示相应区域的面积).如图,现有一边长为a的等边△ABC,分别以此三角形的三个顶点为圆心,以一边的一半长为半径画圆与△ABC的内切圆有重叠(见图中阴影部分);现在在等边△ABC内注射一个点,则该点落在△ABC内切圆中的概率是.【考点】几何概率;等边三角形的性质;三角形的内切圆与内心.【分析】利用等边三角形以及其内切圆的性质以及锐角三角函数关系得出DO,AD的长,从而可以求得△ABC的面积和内切圆的面积,本题得以解决.【解答】解:作AD⊥BC于点D,作BE⊥AC于点E,∵等边△ABC的边长为a,∴∠OBD=30°,BD=,AD=∴OD=BD•tan30°=,∴内切圆⊙O的面积是:,等边△ABC的面积是:,∴该点落在△ABC内切圆中的概率是:,故答案为:.【点评】此题主要考查了几何概率以及三角形内切圆的性质以及等边三角形的性质等知识,得出等边三角形与内切圆的关系是解题关键.13.如图,在一根长90cm的灯管上,缠满了彩色丝带,已知可近似地将灯管看作圆柱体,且底面周长为4cm,彩色丝带均匀地缠绕了30圈,则彩色丝带的总长度为150cm .【考点】勾股定理的应用.【分析】根据题意抽象出直角三角形,利用勾股定理求得彩色丝带的长即可.【解答】解:如下图,彩色丝带的总长度为=150cm,故答案为:150cm.【点评】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形,难度不大.14.观察下列的有序数对:(3,﹣1),,根据你发现的规律,第2016个有序数对是(﹣4033,).【考点】规律型:数字的变化类.【分析】先不看符号找规律:第一个数:连续奇数;第二个数是序号的倒数;再看符号的规律,最后得出答案.【解答】解:根据题意得:第一个数:3=2×1+1,﹣5=﹣(2×2+1),7=2×3+1,﹣9=﹣(2×4+1),…,所以第2016个有序数对的第一个数为:﹣(2×2016+1)=﹣4033,第二个数:﹣1,,﹣,,…,所以第2016个有序数对的第二个数为:,故答案为:(﹣4033,).【点评】本题是数字类的变化题,此类题应该从第一个数起,分析其形成过程及与其它数的关系,找出满足条件的通项公式,并一一检验,最后确定其变化规律.15.二次函数y=ax2+bx+c(a、b、c是常数,a≠0)图象的对称轴是直线x=1,其图象的一部分如图所示,对于下列说法:①abc<0;②a﹣b+c<0;③3a+c<0;④2a+b=0;⑤b2﹣4ac<0;⑥当﹣1<x<3时,y>0.其中正确的是①②③④(把正确的序号都填上).【考点】二次函数图象与系数的关系.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴判定b与0的关系以及2a+b=0;当x=﹣1时,y=a﹣b+c;由抛物线和x轴的交点个数判断b2﹣4ac的符号;然后由图象确定当x取何值时,y>0.【解答】解:①∵开口向下,∴a<0,∵对称轴在y轴右侧,∴﹣>0,∴b>0,∵抛物线与y轴交于正半轴,∴c>0,∴abc<0,故正确;②∵对称轴为直线x=1,抛物线与x轴的一个交点横坐标在2与3之间,∴另一个交点的横坐标在0与﹣1之间;∴当x=﹣1时,y=a﹣b+c<0,故正确;③∵2a+b=0,∴b=﹣2a,∵当x=﹣1时,y=a﹣b+c<0,∴a﹣(﹣2a)+c=3a+c<0,故正确;④∵对称轴x=﹣=1,∴2a+b=0;故正确;⑤∵抛物线和x轴有2个交点,∴b2﹣4ac>0,故错误;⑥如图,当﹣1<x<3时,y不只是大于0.故错误;∴正确的有4个.故答案为①②③④.【点评】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a决定抛物线的开口方向,当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y 轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c 决定抛物线与y轴交点,抛物线与y轴交于(0,c).三.解答题(共2个题,每题8分,共16分)16.计算:﹣2|1﹣|.【考点】实数的运算;负整数指数幂;特殊角的三角函数值.【分析】原式利用负整数指数幂法则,特殊角的三角函数值,算术平方根定义,以及绝对值的代数意义化简,计算即可得到结果.【解答】解:原式=﹣8﹣6×+9×﹣2(﹣1)=﹣8﹣2+﹣2+2=﹣6﹣3.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.17.解不等式组:,并在数轴上表示出解集.【考点】解一元一次不等式组;在数轴上表示不等式的解集.【分析】根据解不等式组的方法可以求得不等式组的解集,从而可以将不等式组的解集在数轴上表示出来.【解答】解:,解不等式①,得x≥﹣12,解不等式②,得x<,不等式①、②的解集在数轴上表示如下图所示,故原不等式组的解集是﹣12≤x<.【点评】本题考查解一元一次不等式组、在数轴上表示不等式的解集,解题的关键是明确解一元一次不等式组的方法,会在数轴上表示不等式组的解集.四、解答题(共2个题,每小题8分,共16分)18.在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(2016•富顺县校级模拟)近几年我国高速公路的建设有了飞速的发展,现正在修建中的某段高速公路要招标.现有甲乙两个工程队,若甲、乙两队合作,24天可完成任务,需要费用120万元;若甲队单独做20天,剩下的工程由乙做,还需要40天才能完成此项工程,这样需要110万元,问:(1)甲乙两队单独完成此项工程,各需多少天?(2)甲乙两队单独完成此项工程,各需费用多少万元.【考点】二元一次方程组的应用;分式方程的应用.【分析】(1)两个等量关系为:甲工效+乙工效=;甲工效×20+乙工效×40=1.(2)两个等量关系为:(甲每天需要的工程费+乙每天需要的工程费)×24=120;甲每天需要的工程费×20+乙每天需要的工程费×40=110.【解答】解:(1)设甲队独做需a天,乙队独做需b天.建立方程组,解得a=30(天),b=120(天)经检验a=30,b=120是原方程组的解.答:甲队独做需30天,乙队独做需120天.(2)设甲队独做需x万元,乙队独做需y万元,建立方程组,解得x=135,y=60答:甲队独做需135万元,乙队独做需60万元.【点评】本题主要考查了分式方程以及二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:甲工效+乙工效=;甲工效×20+乙工效×40=1.(甲每天需要的工程费+乙每天需要的工程费)×24=120;甲每天需要的工程费×20+乙每天需要的工程费×40=110.列出方程组,再求解.五、解答题(共2个题,每题10分,共20分)20.(10分)(2016•富顺县校级模拟)在菱形ABCD中,AB=2,∠DAB=60°,点E是AD边上的中点,点M是AB上的一动点(不与点A重合),延长ME交射线CD于点N,连结MD、AN.(1)求证:四边形AMDN是平行四边形;(2)填空:①当AM= 1 时,四边形AMDN是矩形;②当AM= 2 时,四边形AMDN是菱形.【考点】矩形的判定;平行四边形的判定与性质;菱形的判定与性质.【分析】(1)利用菱形的性质和已知条件可证明四边形AMDN的对边平行且相等即可;(2)①有(1)可知四边形AMDN是平行四边形,利用有一个角为直角的平行四边形为矩形即∠DMA=90°,所以AM=AD=1时即可;②当平行四边形AMND的邻边AM=DM时,四边形为菱形,利用已知条件再证明三角形AMD是等边三角形即可.【解答】(1)证明:∵四边形ABCD是菱形,∴ND∥AM,∴∠NDE=∠MAE,∠DNE=∠AME,又∵点E是AD边的中点∴DE=AE,∴△NDE≌△MAE,∴ND=MA,∴四边形AMDN是平行四边形;(2)解:①当AM的值为1时,四边形AMDN是矩形.理由如下:∵AM=1=AD,∴∠ADM=30°∵∠DAM=60°,∴∠AMD=90°,∴平行四边形AMDN是矩形;故答案为:1;②当AM的值为2时,四边形AMDN是菱形.理由如下:∵AM=2,∴AM=AD=2,∴△AMD是等边三角形,∴AM=DM,∴平行四边形AMDN是菱形,故答案为:2.【点评】本题考查了菱形的性质、平行四边形的判定和性质、矩形的判定、以及等边三角形的判定和性质,解题的关键是掌握特殊图形的判定以及重要的性质.21.(10分)(2016•富顺县校级模拟)如图,在半径为5的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=6时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度;如果不存在,请说明理由.【考点】垂径定理;三角形中位线定理.【分析】(1)如图(1),根据垂径定理可得BD=BC,然后只需运用勾股定理即可求出线段OD的长;(2)连接AB,如图(2),用勾股定理可求出AB的长,根据垂径定理可得D和E分别是线段BC和AC的中点,根据三角形中位线定理就可得到DE=AB,DE保持不变;【解答】解:(1)如图(1),∵OD⊥BC,∴BD=BC=×6=3,∵∠BDO=90°,OB=5,BD=3,∴OD==4,即线段OD的长为4.(2)存在,DE保持不变.理由:连接AB,如图(2),∵∠AOB=90°,OA=OB=5,∴AB==5,∵OD⊥BC,OE⊥AC,∴D和E分别是线段BC和AC的中点,∴DE=AB=,∴DE保持不变.【点评】本题考查了垂径定理、三角形中位线定理、等腰三角形的性质、三角函数、勾股定理等知识,运用垂径定理及三角形中位线定理是解决第(2)小题的关键.六、解答题(本题满分12分)22.(12分)(2016•富顺县校级模拟)用换元法解分式方程: =2解:设=m,则原方程可化为m﹣=2;去分母整理得:m2﹣2m﹣3=0解得:m1=﹣1,m2=3即: =﹣1或=3;解得:x=或x=﹣经检验:x=或 x=﹣是原方程的解.故原方程的解为:x1=,x2=﹣.请同学们借鉴上面换元法解分式方程的方法,先解下列方程,然后再化简求值:已知a是方程的根,并求代数式的值?【考点】换元法解分式方程;分式方程的解.【分析】先仿照题例,设=m,将原方程化为m2﹣m﹣2=0,然后解这个整式方程,再还元求得原方程的解,另外要注意求代数式的值时,注意a的取值之合理性.【解答】解:()2﹣()﹣2=0设=m,则原方程可化为m2﹣m﹣2=0,解这个整式方程得:m1=2,m2=﹣1即: =2或=﹣1;解得:x=4或x=﹣经检验:x=4或 x=﹣是原方程的解.故原方程的解为:x1=4,x2=﹣.因为a是方程的根,所以,a=4或a=﹣=÷=÷=•=则①当a=4时,原式===2;②当a=﹣时,原式===﹣1即:所求代数式的值为2或﹣1【点评】此题是换元法解分式方程,换元法解分式方程是难点,关键是换元之后把方程化成整式方程,要将所解整式方程的解还原回来,求出原分式方程的解,并要进行验根;七、解答题(本题满分12分)23.(12分)(2001•某某)如图,以等腰△ABC的一腰AB为直径的⊙O交BC于D,过D作DE⊥AC于E,可得结论:DE是⊙O的切线.问:(1)若点O在AB上向点B移动,以O为圆心,OB长为半径的圆仍交BC于D,DE⊥AC的条件不变,那么上述结论是否成立?请说明理由;(2)如果AB=AC=5cm,sinA=,那么圆心O在AB的什么位置时,⊙O与AC相切?【考点】切线的判定.【分析】(1)结论仍然成立.在连接OD后,因为OD=OB,AB=AC,则有∠ABC=∠ACB=∠ODB,所以OD和AC永远平行;又DE和AC垂直,所以DE和OD也垂直,即DE是⊙O的切线.(2)当⊙O与AC相切时,若假设切点为F,⊙O与AB相交于G,则OF和AC垂直,即△AOF 是一个以AO为斜边的直角三角形;从而根据三角函数求得OF,OB的长,即可确定圆心O在AB的什么位置时,⊙O与AC相切.【解答】解:(1)结论成立.理由如下:如图,连接OD;∵OD=OB,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ACB=∠ODB,∴OD∥AC;又∵DE⊥AC,∴DE⊥OD,即DE是⊙O的切线.(2)当圆心O在AB上距B点为3x=时,⊙O与AC相切.如图所示,⊙O与AC相切于F,⊙O与AB相交于G.则OF⊥AC;在RT△AOF中,sinA=OF:AO=3:5;设OF=3x,AO=5x,则OB=OG=OF=3x,AG=2x,∴8x=AB=5,∴x=,此时OB=3x=时,即当圆心O在AB上距B点为3x=时,⊙O与AC相切.【点评】此题主要考查了切线的判定,以及圆中一些基本性质.八、解答题(本题满分14分)。

新疆乌鲁木齐市2016年中考数学试题含答案解析

新疆乌鲁木齐市2016年中考数学试题含答案解析
8
【分析】分别利用有 35 名学生以及购票恰好用去 750 元,得出等式求出答案. 【解答】解:设买了 x 张甲种票,y 张乙种票,根据题意可得:
. 故选:B. 【点评】此题主要考查了由实际问题抽象出二元一次方程组,正确得出等式是解题关键.
6.下列说法正确的是( ) A.鞋店老板比较关心的是一段时间内卖出的鞋的尺码组成的一组数据的众数 B.某种彩票的中奖率是 2%,则买 50 张这种彩票一定会中奖 C.为了了解某品牌灯管的使用寿命,应采用全面调查的方式 D.若甲组数据的方差 S =0.06,乙组数据的方差 S =0.1,则乙组数据比甲组数据稳定 E.某种彩票的中奖率是 2%,则买 50 张这种彩票一定会中奖 F.为了了解某品牌灯管的使用寿命,应采用全面调查的方式 G.若甲组数据的方差 S =0.06,乙组数据的方差 S =0.1,则乙组数据比甲组数据稳定 【考点】概率的意义;全面调查与抽样调查;众数;方差. 【分析】根据众数、方差、抽样调查、概率的意义分别对每一项进行分析,即可得出答案. 【解答】解:A、鞋店老板比较关心的是一段时间内卖出的鞋的尺码组成的一组数据的众数,故本选项错误; B、某种彩票的中奖率是 2%,则买 50 张这种彩票一定会中奖,故本选项错误; C、为了了解某品牌灯管的使用寿命,应采用抽样调查的方式,故本选项错误; D、若甲组数据的方差 S =0.06,乙组数据的方差 S =0.1,则乙组数据比甲组数据稳定,故本选项正确; E、某种彩票的中奖率是 2%,则买 50 张这种彩票一定会中奖,故本选项错误; F、为了了解某品牌灯管的使用寿命,应采用抽样调查的方式,故本选项错误; G、若甲组数据的方差 S =0.06,乙组数据的方差 S =0.1,则乙组数据比甲组数据稳定,故本选项正确; 故选 D. 【点评】此题考查了众数、方差、抽样调查、概率的意义,关键是熟练掌握众数、方差、抽样调查、概率的意 义,是一道基础题.

2016届中考复习数学真题汇编16:概率(含答案) - 学生版

2016届中考复习数学真题汇编16:概率(含答案)  - 学生版

一、选择题1.(2015四川省自贡市,5,4分)如图,随机闭合开关S 1,S 2,S 3中的两个,则灯泡发光的概率是 ( )A .34B .23C .13D .122.(2015四川省遂宁市,4,4分)一个不透明的布袋中,放有3个白球,5个红球,它们除颜色外完全相同,从中随机摸取1个,摸到红球的概率是( ). A .58 B .15 C .38 D .133. (2015四川省巴中市,8,3分)下列说法正确的是( )A .“打开电视,正在播放新闻节目”是必然事件B .“抛一枚硬币,正面朝上的概率为12”表示每抛两次就有一次正面朝上 C .“抛一枚均匀的正方体骰子,朝上的点数是6的概率为16”表示随着抛掷次数的增加 “抛出朝上的点数是6”这一事件发生的频率稳定在16附近 D .为了解某种节能灯的使用寿命,选择全面调查4. (2015浙江省湖州市,3,分)一个布袋内只装有1个黑球和2个白球,这些球除颜色外其余都相同,随机摸出一个球后放回并搅匀,再随机摸出一个球,则两次摸出的球都是黑球的概率是( ).A .49B .13C .16D .195. (2015浙江省金华市,7,3分)如图的四个转盘中,C ,D 转盘分成8等份,若让转盘自由转动一次,停止后,指针落在阴影区域内的概率最大的转盘是()A. B. C. D.6.(2015山东省德州市,10,3分)经过某十字路口的汽车,可能直行,也可能左转或者右转。

如果这三种可能性大小相同,则经过这个十字路口的两辆汽车一辆左转,一辆右转的概率是A. 47B. 49C.29D. 197. (2015湖南省长沙市,8,3分)下列说法中正确的是A.“打开电视机,正在播放《动物世界》”是必然事件B.某种彩票的中奖率为11000,说明每买1000张彩票,一定有一张中奖 C.抛掷一枚质地均匀的硬币一次,出现正面朝上的概率为13 D.想了解长沙市所有城镇居民的人均年收入水平,宜采用抽样调查8. (2015山东临沂,7,3分)一天晚上,小丽在清洗两只颜色分别为粉色和白色的有盖茶杯时,突然停电了,小丽只好把杯盖和茶杯随机地搭配在一起,则其颜色搭配一起的概率是( )A. 41B. 21C. 43 D. 1 1S 2S 3S9.(2015山东省威海市,10,3分)甲乙两布袋都装有红、白两种小球,两袋装球总数相同,两种小球仅颜色不同.甲袋中,红球个数是白球个数的2倍;乙袋中,红球个数是白球个数的3倍,将乙袋中的求全部倒入甲袋,随机从甲袋中摸一个球,摸出红球的概率是( ) A.125 B. 127 C. 2417 D. 52 10. (2015四川南充,7,3分)如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影.转动指针,指针落在有阴影的区域内的概率为a ;如果投掷一枚硬币,正面向上的概率为b .关于a ,b 大小的正确判断是( )(A )a >b (B )a =b (C )a <b (D )不能判断11. (2015浙江省杭州市,9,3分)如图,已知点A ,B ,C ,D ,E ,F 是边长为1的正六边形的顶点,连接任意两点均可得到一条线段.在连接两点所得的所有线段中任取一条线段,取到长度为3的线段的概率为( )A.41B.52C.32D.9512. (2015内蒙古呼和浩特,4,3分)在一个不透明的袋中装着3个红球和1个黄球,它们只有颜色上的区别,随机从袋中摸出2个小球,两球恰好是一个黄球和一个红球的概率为( )A. 12B. 13C. 14D. 1613. (2015山东烟台,15,3分)如图,有四张不透明的卡片除正面的函数关系式不同外,其余相同.将它们背面朝上洗匀后,从中随机抽取一张卡片,则抽到函数图象不经过第四象限的卡片的概率为 .14. (2015湖南株洲,5,3分) 从2,3,4,5中任意选两个数,记作a 和b ,那么点(a ,b )在函数12y x 图象上的概率是…….( )A 、12B 、13C 、14D 、1615. (2015义乌5,3分)在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是( )A . 13B . 25C . 12D . 3516.(2015浙江省绍兴市,5,4分)在一个不透明的袋子中装有除颜色外其它均相同的3个红球和2个白球,从中任意摸出一个球,则摸出白球的概率是 A. 31 B. 52 C. 21 D. 53 17. (2015四川省南充市,7,3分)如图是一个可以自由转动的正六边形转盘,其中三个正三角形图有阴影.转动指针落在阴影的区域内的概率为a ;如果投掷一枚硬币,正面向上的概率为b. 关于a ,b 大小的正确判断是( )A . a >bB .a=bC .a <bD .不能判断二、填空题1. (2015浙江省丽水市,12,4分)有6张卡片,每张卡片上分别写有不同的从1到6的一个自然数,从中任意抽出一张卡片,卡片上的数是3的倍数的概率是________.2. (2015浙江台州,12,5分)有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4.现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率是 .3. (2015浙江嘉兴,13,5分)把一枚均匀的硬币连续抛掷两次,两次正面朝上的概率是___________.4. (2015湖南省长沙市,13,3分)一个不透明的袋子中只装有3个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别,在看不到球的条件下,随机从袋中摸出1个球,则摸出白球的概率是________。

【2年中考1年模拟】2016年中考数学 专题32 概率及其求法试题(含解析)

专题32 概率及其求法☞解读考点☞2年中考【2015年题组】1.(2015梧州)在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为( ) A .12 B . 13 C . 14D . 1 【答案】C .考点:概率公式.2.(2015河池)下列事件是必然事件的为( ) A .明天太阳从西方升起 B .掷一枚硬币,正面朝上C .打开电视机,正在播放“河池新闻”D .任意一个三角形,它的内角和等于180° 【答案】D .考点:随机事件.3.(2015贵港)若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15B.25C.35D.45【答案】C.【解析】试题分析:这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=35.故选C.考点:1.概率公式;2.中心对称图形.4.(2015钦州)在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n的值为()A.3 B.5 C.8 D.10 【答案】C.【解析】试题分析:∵摸到红球的概率为15,∴2125n=+,解得n=8.故选C.考点:概率公式.5.(2015南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21【答案】B.【解析】试题分析:由题意可得,3a×100%=20%,解得,a=15.故选B.考点:利用频率估计概率.6.(2015德阳)下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有0xC.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6【答案】C.考点:概率的意义.7.(2015南充)如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a,如果投掷一枚硬币,正面向上的概率为b,关于a、b大小的正确判断是()A.a>b B.a=b C.a<b D.不能判断【答案】B.【解析】试题分析:∵正六边形被分成相等的6部分,阴影部分占3部分,∴a=36=12,∵投掷一枚硬币,正面向上的概率b=12,∴a=b,故选B.考点:几何概率.8.(2015内江)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A.112B.512C.16D.12【答案】A.考点:概率公式.9.(2015北海)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为( ) A .16 B .13 C .12 D .23【答案】B . 【解析】试题分析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:39=13.故选B . 考点:列表法与树状图法.10.(2015自贡)如图,随机闭合开关1S 、2S 、3S 中的两个,则灯泡发光的概率是( ) A .43 B .32 C .31 D .21【答案】B .【解析】试题分析:列表如下:共有6种情况,必须闭合开关S3灯泡才亮,即能让灯泡发光的概率是46=23.故选B.考点:1.列表法与树状图法;2.图表型.11.(2015荆门)在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A.12B.14C.38D.58【答案】B.考点:列表法与树状图法.12.(2015甘南州)在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.13B.23C.16D.34【答案】B.【解析】试题分析:分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.故选B.考点:1.概率公式;2.分式的定义;3.综合题.13.(2015株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数12yx图象上的概率是()A.12B.13C.14D.16【答案】D . 【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(a ,b )在函数12y x =图象上的有(3,4),(4,3),∴点(a ,b )在函数12y x=图象上的概率是:212=16.故选D . 考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.14.(2015绥化)从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为( ) A .21 B .31 C .41 D .51【答案】C .考点:1.列表法与树状图法;2.三角形三边关系.15.(2015鄂尔多斯)如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A .256B .51C .254D .257【答案】A .考点:1.概率公式;2.三角形的面积.16.(2015泰安)若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是( ) A .12 B .23 C .25 D .35【答案】C . 【解析】试题分析:列表得:∵共有30种等可能的结果,与7组成“中高数”的有12种情况,∴与7组成“中高数”的概率是:1230=25.故选C .考点:1.列表法与树状图法;2.新定义.17.(2015扬州)色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:根据表中数据,估计在男性中,男性患色盲的概率为 (结果精确到0.01) 【答案】0.07. 【解析】试题分析:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07,故答案为:0.07. 考点:利用频率估计概率.18.(2015贵阳)“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是 .【答案】15.考点:1.几何概率;2.勾股定理.19.(2015镇江)写一个你喜欢的实数m 的值 ,使得事件“对于二次函数21(1)32y x m x =--+,当3x <-时,y 随x 的增大而减小”成为随机事件. 【答案】答案不唯一,2m <-的任意实数皆可,如:﹣3. 【解析】 试题分析:21(1)32y x m x =--+,12b x m a=-=-,∵当3x <-时,y 随x 的增大而减小,∴13m -<-,解得:2m <-,∴2m <-的任意实数皆可.故答案为:答案不唯一,2m <-的任意实数皆可,如:﹣3.考点:1.随机事件;2.二次函数的性质;3.开放型.20.(2015成都)有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则使关于x 的不等式组43(1)122x x x x a ≥-⎧⎪⎨--<⎪⎩有解的概率为____. 【答案】49.考点:1.解一元一次不等式组;2.含字母系数的不等式;3.概率公式;4.压轴题. 21.(2015重庆市)从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a ,a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x=+的自变量取值范围内的概率是 .【答案】25. 【解析】试题分析:∵不等式组2343111x x +<⎧⎨->-⎩的解集是:10132x -<<,∴a 的值是不等式组的解的有:﹣3,﹣2,﹣1,0,∵函数2122y x x=+的自变量取值范围为:2220x x +≠,即0x ≠且1x ≠-,∴a 的值在函数2122y x x=+的自变量取值范围内的有﹣3,﹣2,4; ∴a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的有:﹣3,﹣2;∴a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的概率是:25.故答案为:25. 考点:1.概率公式;2.解一元一次不等式组;3.函数自变量的取值范围;4.综合题.22.(2015重庆市)从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a-⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a -++=的解为负数的概率为 . 【答案】35.考点:1.概率公式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题;5.压轴题. 23.(2015枣庄)如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边三角形OBC ,将点C 向左平移,使其对应点C ′恰好落在直线AB 上,则点C ′的坐标为 .【答案】(﹣1,2).考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移;4.数形结合.24.(2015枣庄)如图,在平面直角坐标系中,点A (0,4),B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A ′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为 .【答案】1322y x =-+. 【解析】试题分析:∵A (0,4),B (3,0),∴OA =4,OB =3,在Rt △OAB 中,AB,∵△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A ′处,∴BA ′=BA =5,CA ′=CA ,∴OA ′=BA ′﹣OB =5﹣3=2,设OC =t ,则CA =CA ′=4﹣t ,在Rt △OA ′C 中,∵222''OC OA CA +=,∴2222(4)t t +=-,解得t =32,∴C 点坐标为(0,32),设直线BC 的解析式为y kx b =+,把B (3,0)、C (0,32)代入得3032k b b +=⎧⎪⎨=⎪⎩,解得:1232k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+.故答案为:1322y x =-+. 考点:1.翻折变换(折叠问题);2.待定系数法求一次函数解析式;3.综合题.25.(2015南宁)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题: (1)求全班学生人数和m 的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.【答案】(1)50,18;(2)落在51﹣56分数段;(3)23.(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1P(一男一女)=46=23.考点:1.列表法与树状图法;2.频数(率)分布表;3.扇形统计图;4.中位数.26.(2015河池)某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1表2(1)在表2中,a= ,b= ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.【答案】(1)8,7.5;(2)一班的平均成绩高,且方差小,较稳定;(3)12.(3)列表得:∵共有6种等可能的结果,一男一女的有3种,∴P(一男一女)=36=12.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差.27.(2015玉林防城港)现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)【答案】(1)59;(2)一样.(2)他们两次抽得的数字和是奇数的可能性大小一样,∵x为奇数,两次抽得的数字和是奇数的可能性有4种,∴P(甲)=49,∵x为偶数,两次抽得的数字和是奇数的可能性有4种,∴P(乙)=49,∴P(甲)=P(乙),∴他们两次抽得的数字和是奇数的可能性大小一样.考点:列表法与树状图法.28.(2015十堰)端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【答案】(1)144,3;(2)600;(3)13.(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)=412=13.考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.29.(2015咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.【答案】(1)m=94,n=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)13.(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P(另外两个决赛名额落在同一个班)=412=13.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差.30.(2015南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.【答案】(1)144;(2)640;(3)23.(2)估计该校获奖的学生数=16100%50×2000=640(人);(3)列表如下:所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)=812=23.故答案为:23.考点:1.列表法与树状图法;2.用样本估计总体;3.频数(率)分布直方图;4.扇形统计图.31.(2015常州)甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.【答案】(1)13;(2)12.考点:列表法与树状图法.32.(2015无锡)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).【答案】(1)13;(2)21nn.【解析】试题分析:(1)先画树状图,由树状图可得总结果与传到甲手里的情况,根据传到甲手里的情况比上总结过,可得答案;(2)根据第一步传的结果是n,第二步传的结果是2n,第三步传的结果是总结过是3n,传给甲的结果是n (n﹣1),根据概率的意义,可得答案.考点:列表法与树状图法.33.(2015镇江)活动1:在一只不透明的口袋中装有标号为1,2,3的3个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙→甲→乙的顺序依次从袋中各摸出一个球(不放回),摸到1号球胜出,计算甲胜出的概率.(注:丙→甲→乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球)活动2:在一只不透明的口袋中装有标号为1,2,3,4的4个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序:→→,他们按这个顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则第一个摸球的同学胜出的概率等于,最后一个摸球的同学胜出的概率等于.猜想:在一只不透明的口袋中装有标号为1,2,3,…,n(n为正整数)的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球(不放回),摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系.你还能得到什么活动经验?(写出一个即可)【答案】(1)13;(2)丙、甲、乙、14,14;(3)P(甲胜出)=P(乙胜出)=P(丙胜出),抽签是公平的,与顺序无关.(答案不唯一).【解析】试题分析:(1)画出树状图法,判断出甲胜出的概率是多少即可.试题解析:(1)如图1,,甲胜出的概率为:P(甲胜出)=13;(2)如图2,,对甲、乙、丙三名同学规定一个摸球顺序:丙→甲→乙,则第一个摸球的丙同学胜出的概率等于14,最后一个摸球的乙同学胜出的概率也等于14,故答案为:丙、甲、乙、14,14;(3)这三名同学每人胜出的概率之间的大小关系为:P(甲胜出)=P(乙胜出)=P(丙胜出).得到的活动经验为:抽签是公平的,与顺序无关.(答案不唯一).考点:列表法与树状图法.34.(2015盐城)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x ;再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ). (1)请用表格或树状图列出点P 所有可能的坐标; (2)求点P 在一次函数1+=x y 图象上的概率.【答案】(1)点P 所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)13.∴点P 所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2); (2)∵只有(1,2),(﹣2,﹣1)这两点在一次函数1+=x y 图象上,∴P (点P 在一次函数y =x +1的图象上)=26=13. 考点:1.列表法与树状图法;2.一次函数图象上点的坐标特征.35.(2015十堰)端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【答案】(1)144,3;(2)600;(3)13.(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)=412=13.考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.【2014年题组】1.(2014年福建南平中考)一个袋中只装有3个红球,从中随机摸出一个是红球()A.可能性为13B.属于不可能事件 C.属于随机事件 D.属于必然事件【答案】D.【解析】试题分析:因为袋中只装有3个红球,所以从中随机摸出一个一定是红球,所以属于必然事件,故选D.考点:1.随机事件;2.可能性的大小.2.(2014年福建三明中考)小亮和其他5个同学参加百米赛跑,赛场共设1,2,3,4,5,6六个跑道,选手以随机抽签的方式确定各自的跑道.若小亮首先抽签,则小亮抽到1号跑道的概率是()A.16B.15C.12D.1【答案】A.考点:概率公式.3.(2014年湖南长沙中考)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.【答案】120.【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:51 10020.考点:概率公式.4.(2014年广东梅州中考)下列事件中是必然事件是()A、明天太阳从西边升起B、篮球队员在罚球线投篮一次,未投中C、实心铁球投入水中会沉入水底D、抛出一枚硬币,落地后正面向上【答案】C.【解析】试题分析:A、明天太阳从西边升起,是不可能事件;B、篮球队员在罚球线投篮一次,未投中,是随机事件;C、实心铁球投入水中会沉入水底,是必然事件;D、抛出一枚硬币,落地后正面向上,是随机事件.故选C.考点:必然事件.5.(2014年江苏南通中考)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).【答案】A.考点:1.几何概率;2.转换思想的应用.6.(2014年新疆乌鲁木齐中考)在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3只,白球n只,若从袋中任取一个球,摸出白球的概率为34,则n= .【答案】9.【解析】试题分析:∵从3只红球,n只白球的袋中任取一个球,摸出白球的概率为34,∴n3n34=+.解得:n=9,经检验:x=9是原分式方程的解.∴n=9.考点:1.概率公式;2.分式方程的应用7.(2014年浙江台州中考)抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同)在看不见的情况下随机摸出两只袜子,他们恰好同色的概率是.【答案】13.【解析】试题分析:画树状图得:∵共有12种等可能的结果,它们恰好同色的有4种情况,∴它们恰好同色的概率是:41 123.考点:1.列表法或树状图法;2.概率.8.(2014年江苏南京中考)从甲、乙、丙三名同学中随机抽取环保志愿者,求下列事件的概率:(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.【答案】(1)13;(2)23.(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:23.考点:概率.9.(2014年内蒙古包头、乌兰察布中考)有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m ,再随机地摸取一张,将卡片上的数字记为n . (1)请画出树状图并写出(m ,n )所有可能的结果;(2)求所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三、四象限的概率. 【答案】(1)答案见试题解析;(2)16.试题解析:解:(1)画树状图得:∴(m ,n )共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3).(2)∵当k 0<,b 0<时,函数y=kx+b 的图象经过第二、三、四象限,∴所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3).∴所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三四象限的概率为:21126. 考点:1.树状图法;2.概率;3.一次函数图象与系数的关系.10.(2014年云南省中考)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;。

中考数学专题复习《统计与概率》经典例题及测试题(含答案)

中考数学专题复习《统计与概率》经典例题及测试题(含答案)【专题分析】统计与概率在中考中的常考点有数据的收集方法,平均数、众数和中位数的计算与选择,方差和标准差的计算和应用,统计图的应用及信息综合分析;事件的分类,简单事件的概率计算,画树状图或列表求概率,对频率和概率的理解等.统计与概率在中考中一般以客观题的形式进行考查,选择题、填空题较多,同时考查多个考点的综合性题目一般以解答题的形式进行考查;统计与概率在中考中所占的比重约为6%~12%.【解题方法】解决统计与概率问题常用的数学思想是方程思想和分类讨论思想;常用的数学方法有分类讨论法,整体代入法等.【知识结构】【典例精选】为了解某社区居民的用电情况,随机对该社区10户居民进行了调查,下表是这10户居民2014年4月份用电量的调查结果.居民(户)132 4月用电量(千瓦时/户)40505560误的是( )A.中位数是55 B.众数是60C.方差是29 D.平均数是54【思路点拨】根据众数、中位数、方差、平均数的定义及计算公式分别进行计算,即可得出答案.答案:C规律方法:解决此类题目的关键是准确掌握各个统计量的概念及计算方法,分别计算直接选择或排除.若一组数据1,2,x,4的众数是1,那么这组数据的方差是32 .【思路点拨】根据众数的定义求出x的值,再根据平均数的计算公式求出这组数据的平均数,再根据方差公式进行计算即可.【解析】根据众数的意义得到x=1,这组数据的平均数x=1+2+1+44=2,所以这组数据的方差是S2=14[(1-2)2+(2-2)2+(1-2)2+(4-2)2]=14×6=32.规律方法:为了准确而快速地记忆方差的计算公式,可以用下面12个字来理解性的记忆,即“先平均、再作差、平方后、再平均”,也就是说,先求出一组数据的平均数,再将每一个数据都与平均数作差,然后将这些差进行平方,最后求这些差的平方的平均数,其结果就是这组数据的方差.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如下:宁波市4月份某一周公共自行车日租车量统计图(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9 600万元,估计2014年共租车3 200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).【思路点拨】(1)根据众数、中位数和平均数的定义即可求出; (2)4月份天数与平均数的积;(3)租车的次数与每次的租车费的积为租车收入,由租车收入与投入的比即可求出百分率.【自主解答】解:(1)8,8,8.5.(2)30×8.5=255(万车次).(3)3 200×0.1÷9 600=1÷30≈3.3%.答:2014年租车费收入占总投入的3.3%.某中学要在全校学生中举办“中国梦·我的梦”主题演讲比赛,要求每班选一名代表参赛.九年级一班经过投票初选,小亮和小丽票数并列班级第一,现在他们都想代表本班参赛.经班长与他们协商决定,用他们学过的掷骰子游戏来确定谁去参赛(胜者参赛).规则如下:两人同时随机各掷一枚完全相同且质地均匀的骰子一次,向上一面的点数都是奇数,则小亮胜;向上一面的点数都是偶数,则小丽胜;否则,视为平局.若为平局,继续上述游戏,直至分出胜负为止.如果小亮和小丽按上述规则各掷一次骰子,那么请你解答下列问题:(1)小亮掷得向上一面的点数为奇数的概率是多少?(2)该游戏是否公平?请用列表或画树状图的方法说明理由.(骰子:六个面上分别刻有1,2,3,4,5,6个小圆点的小正方体)【思路点拨】(1)由题意得,掷一枚质地均匀的骰子,向上一面的点数的等可能的情况共有6种,其中点数为奇数的情况有3种,所以P=36=12;(2)判断游戏是否公平,利用画树状图或列表法表示出所有等可能的情况,求出两人胜出的概率,若概率相同,则游戏公平,否则游戏不公平.【自主解答】解:(1)所求概率P=36=12.(2)游戏公平.理由如下:由上表可知,共有36种等可能的结果,其中小亮、小丽获胜各有9种结果,∴P(小亮胜)=936=14,P(小丽胜)=936=14.∴该游戏是公平的.规律方法:解决判断游戏是否公平的问题,首先应分别计算出两人获胜的概率,然后比较两个概率的大小,若相同则公平,若不相同则不公平.【能力评估检测】一、选择题1.下列事件是随机事件的是( D )A.明天太阳从东方升起B.任意画一个三角形,其内角和是360°C.通常温度降到0 ℃以下,纯净的水结冰D.射击运动员射击一次,命中靶心2.某校为纪念世界反法西斯战争70周年,举行了主题为“让历史照亮未来”的演讲比赛,其中九年级的5位参赛选手的比赛成绩(单位:分)分别为8.6,9.5,9.7,8.7,9,则这5个数据的中位数和平均分分别是( C )A.9.7,9.1 B.9.5,9.1C.9,9.1 D.8.7,93.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:第一次第二次第三次第四次甲 87 95 85 93乙 80 80 90 90S甲=17,S乙=25,下列说法正确的是( )A .甲同学四次数学测试成绩的平均数是89分B .甲同学四次数学测试成绩的中位数是90分C .乙同学四次数学测试成绩的众数是80分D .乙同学四次数学测试成绩较稳定答案: B4.一个袋子中装有6个黑球和3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机从这个袋子中摸出一个球,摸到白球的概率是( B ) A. 19 B. 13 C. 12 D. 235.如图,在一长方形内有对角线长分别为2和3的菱形、边长为1的正六边形和半径为1的圆,则一点随机落在这三个图形内的概率较大的是( B )A .落在菱形内B .落在圆内C .落在正六边形内D .一样大6.小李是9人队伍中的一员,他们随机排成一列队伍,从1开始按顺序报数,小李报到偶数的概率是( B )A. 23B. 49C. 12D. 197.为积极响应创建“全国卫生城市”的号召,某校 1 500名学生参加了卫生知识竞赛,成绩记为A ,B ,C ,D 四等.从中随机抽取了部分学生的成绩进行统计,绘制成如下两幅不完整的统计图,根据图中信息,以下说法不正确的是( )A.样本容量是200B.D等所在扇形的圆心角为15°C.样本中C等所占百分比是10%D.估计全校学生成绩为A等的有900人答案: B8.某公司欲招聘一名公关人员,对甲、乙、丙、丁四位候选人进行了面试和笔试,他们的成绩如下表所示:候选人甲乙丙丁测试成绩(百分制)面试86929083 笔试90838392别赋予它们6和4的权.根据四人各自的平均成绩,公司将录取( B ) A.甲 B.乙 C.丙 D.丁9.在一个不透明的布袋中,红球、黑球、白球共有若干个,除颜色外,形状、大小、质地等完全相同,小新从布袋中随机摸出一球,记下颜色后放回布袋中,摇匀后再随机摸出一球,记下颜色……如此大量摸球实验后,小新发现其中摸出红球的频率稳定于20%,摸出黑球的频率稳定于50%,对此实验,他总结出下列结论:①若进行大量摸球实验,摸出白球的频率稳定于30%;②若从布袋中任意摸出一个球,该球是黑球的概率最大;③若再摸球100次,必有20次摸出的是红球.其中说法正确的是( B )A.①②③ B.①② C.①③ D.②③10.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数.如796就是一个“中高数”.若十位上的数字为7,则从3,4,5,6,8,9中任选两个数,与7组成“中高数”的概率是( C )A. 12B. 23C. 25D. 35二、填空题11.一组正整数2,3,4,x 从小到大排列,已知这组数据的中位数和平均数相等,那么x 的值是5 .12.如图,一个圆形转盘被等分成五个扇形区域,上面分别标有数字1,2,3,4,5,转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时,记指针指向标有偶数所在区域的概率为P (偶数),指针指向标有奇数所在区域的概率为 P (奇数),指针落在线上时重转,则P (偶数)< P (奇数)(填“>”“<”或“=”).13.“服务社会,提升自我.”凉山州某学校积极开展志愿者服务活动,来自九年级的5名同学(三男两女)成立了“交通秩序维护”小分队,若从该小分队中任选两名同学进行交通秩序维护,则恰是一男一女的概率是 35. 三、解答题14.要从甲、乙两名同学中选出一名,代表班级参加射击比赛,如图是两人最近10次射击训练成绩的折线统计图.(1)已求得甲的平均成绩为8环,求乙的平均成绩;(2)观察图形,直接写出甲、乙这10次射击成绩的方差S 甲,S 乙 哪个大;(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选7环参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选9环参赛更合适.解:(1)乙的平均成绩:(8+9+8+8+7+8+9+8+8+7)÷10=8(环).(2)根据图象可知,甲的波动小于乙的波动,则S甲<S乙.(3)如果其他班级参赛选手的射击成绩都在7环左右,本班应该选乙参赛更合适;如果其他班级参赛选手的射击成绩都在9环左右,本班应该选甲参赛更合适.15.在某电视台的一档选秀节目中,有三位评委,每位评委在选手完成才艺表演后,出示“通过”(用√表示)或“淘汰”(用×表示)的评定结果.节目组规定:每位选手至少获得两位评委的“通过”才能晋级.(1)请用树状图列举出选手A获得三位评委评定的各种可能的结果;(2)求选手A晋级的概率.解:(1)根据题意画树状图如下:由树状图可知,选手A一共获得8种可能的结果,这些结果的可能性相等.(2)P(A晋级)=48=12.16.为推进“传统文化进校园”活动,某校准备成立“经典诵读”、“传统礼仪”、“民族器乐”和“地方戏曲”等四个课外活动小组.学生报名情况如图(每人只能选择一个小组).(1)报名参加课外活动小组的学生共有30人,将条形图补充完整;(2)扇形图中m=25,n=108;(3)根据报名情况,学校决定从报名“经典诵读”小组的甲、乙、丙、丁四人中随机安排两人到“地方戏曲”小组,甲、乙恰好都被安排到“地方戏曲”小组的概率是多少?请用列表或画树状图的方法说明.解:(1)∵由两种统计图可知,报名参加“地方戏曲”小组的有13人,占13%,∴报名参加课外活动小组的学生共有13÷13%=100(人),参加“民族乐器”小组的有100-32-25-13=30(人).(2)∵m%=25100×100%=25%.∴m=25.n=30100×360=108.(3)画树状图如下:∵共有12种等可能的结果,恰好选中甲、乙的有2种,∴P(选中甲、乙)=212=16.。

2016年中考数学模拟试题汇编专题16:概率(含答案)

概率一.选择题1.(2016·新疆乌鲁木齐九十八中·一模)某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】列举出所有情况,看恰为一男一女的情况占总情况的多少即可.【解答】解:男1男2男3女1女2男1一一√√男2一一√√男3一一√√女1√√√一女2√√√一∴共有20种等可能的结果,P(一男一女)=.故选B.【点评】如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2、(2016苏州二模)在数轴上表示5的两点以及它们之间的所有整数点中,任意取一点P则点P表示的数大于3的概率是( )A. 14B.29C.15D.211答案:D3、(2016青岛一模)为了估计水塘中的鱼数,养鱼者首先从鱼塘中捕获20条鱼,在每条鱼身上做好记号后,把这些鱼放归鱼塘.再从鱼塘中打捞100条鱼,如果在这100条鱼中有5条鱼是有记号的,则估计该鱼塘中的鱼数约为()A.300条B.380条C.400条D.420条【考点】用样本估计总体.【分析】首先求出有记号的5条鱼在100条鱼中所占的比例,然后根据用样本中有记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数.【解答】解:∵×100%=5%,∴20÷5%=400(条).故选C4、(2016泰安一模)某中学为迎接建党九十周年,举行了“童心向党,从我做起”为主题的演讲比赛.经预赛,七、八年级各有一名同学进入决赛,九年级有两名同学进入决赛.那么九年級同学获得前两名的概率是()A.B.C.D.【考点】列表法与树状图法.【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式即可求出该事件的概率.【解答】解:画树状图得:∴一共有12种等可能的结果,九年級同学获得前两名的有2种情况,∴九年級同学获得前两名的概率是=.故选D.5.(2016·天津北辰区·一摸)甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,,2;乙袋中装有3个完全相同的小球,分别标有数字2-,1-,0;从甲袋中随机抽取一个小球,再从乙袋中随机抽取一个小球,两球数字之和为的概率是().(A)19(B)29(C)16(D)13答案:B6.(2016·天津五区县·一模)一次掷两枚质地均匀的硬币,出现两枚硬币都正面朝上的概率是( )A .B .C .D .(本题原题如此) 【考点】列表法与树状图法.【分析】先列举出同时掷两枚质地均匀的硬币一次所有四种等可能的结果,然后根据概率的概念即可得到两枚硬币都是正面朝上的概率.【解答】解:同时掷两枚质地均匀的硬币一次, 共有正正、反反、正反、反正四种等可能的结果, 两枚硬币都是正面朝上的占一种, 所以两枚硬币都是正面朝上的概率=. 故选D .【点评】本题考查了用列表法与树状图法求概率的方法:先利用列表法与树状图法表示所有等可能的结果n ,然后找出某事件出现的结果数m ,最后计算P=.7.(2016·浙江镇江·模拟)已知实数0<a ,则下列事件中是必然事件的是( ▲ ) A .03<+a B .03<-a C .03>a D .03>a 答案:B8.(2016·四川峨眉 ·二模) 下列事件中不是..必然事件的是 )(A 对顶角相等 )(B 同位角相等)(C 三角形的内角和等于180° )(D 等边三角形是轴对称图形 答案:C9. (2016·广东东莞·联考)给甲乙丙三人打电话,若打电话的顺序是任意的,则第一个打电话给甲的概率为( ) A . B . C . D . 【考点】概率公式.【分析】根据题意,打电话的顺序是任意的,打电话给甲乙丙三人的概率都相等均为. 【解答】解:∵打电话的顺序是任意的,打电话给甲乙丙三人的概率都相等, ∴第一个打电话给甲的概率为. 故选:B .【点评】此题主要考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.10. (2016·广东深圳·一模)下列说法正确的是( ) A .“明天降雨的概率是80%”表示明天有80%的时间都在降雨 B .“抛一枚硬币正面朝上的概率为”表示每抛2次就有一次正面朝上 C .“彩票中奖的概率为1%”表示买100张彩票肯定会中奖D .“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的频率稳定在附近 【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生.【解答】解:A 、“明天下雨的概率为80%”指的是明天下雨的可能性是80%,错误; B 、这是一个随机事件,抛一枚硬币,出现正面朝上或者反面朝上都有可能,但事先无法预料,错误;C 、这是一个随机事件,买这种彩票,中奖或者不中奖都有可能,但事先无法预料,错误.D 、正确 故选D .【点评】正确理解概率的含义是解决本题的关键.11. (2016·广东河源·一模)不透明的袋子里装有2个红球和1个白球,这些球除了颜色外其他都相同.从中任意摸出一个,放回摇匀,再从中摸出一个,则两次摸到球的颜色相同的概率是( )A .94 B.95 C.21 D.32答案:B12. (2016·广东深圳·联考)如图,现分别旋转两个标准的转盘,则转盘所转到的两个数字之积为奇数的概率是A. B.C. D.答案:A13. (2016·江苏常熟·一模)下列说法中错误的是()A.某种彩票的中奖率为1%,买100张彩票一定有1张中奖B.从装有10个红球的袋子中,摸出1个白球是不可能事件C.为了解一批日光灯的使用寿命,可采用抽样调查的方式D.掷一枚普通的正六面体骰子,出现向上一面点数是2的概率是【考点】概率的意义;全面调查与抽样调查;随机事件;概率公式.【分析】根据概率的意义对A进行判断;根据随即事件和必然事件对B进行判断;根据全面调查和抽样调查对C进行判断;根据概率公式对D进行判断.【解答】解:A:某种彩票的中奖率为1%,是中奖的频率接近1%,所以买100张彩票可能中奖,也可能没中奖,所以A选项的说法错误;B、从装有10个红球的袋子中,摸出的应该都是红球,则摸出1个白球是不可能事件,所以B选项的说法正确;C、为了解一批日光灯的使用寿命,可采用抽样调查的方式,而不应采用普查的方式,所以C选项的说法正确;D、掷一枚普通的正六面体骰子,共有6种等可能的结果,则出现向上一面点数是2的概率是,所以D选项的说法正确.故选A.【点评】本题考查了概率的意义:概率是对随机事件发生的可能性的度量.表示一个事件发生的可能性大小的数,叫做该事件的概率.也考查了全面调查和抽样调查、随即事件以及概率公式.14. (2016·江苏省南京市钟爱中学·九年级下学期期初考试)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A. B. C. D.答案:A15. 、(2016·山东枣庄·模拟)从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为()A. B. C. D.【考点】列表法与树状图法;三角形三边关系.【分析】从四条线段中任意选取三条,找出所有的可能,以及能构成三角形的情况数,即可求出所求的概率.【解答】解:从四条线段中任意选取三条,所有的可能有:1,3,5;1,3,7;1,5,7;3,5,7共4种,其中构成三角形的有3,5,7共1种,则P(构成三角形)=.故选C.【点评】此题考查了列表法与树状图法,以及三角形的三边关系,用到的知识点为:概率=所求情况数与总情况数之比.16.(2016·上海浦东·模拟)如果从1、2、3这三个数字中任意选取两个数字组成一个两位数,那么这个两位数是素数的概率等于( A )(A)12;(B)13;(C)14;(D)16.二.填空题1.(2016·郑州·二模)一个不透明的盒子里有4个除颜色外其他完全相同的小球,其中每个小球上分别标有1,-1,-2,-3四个不同的数字,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下数字后再放回盒子,那么两次摸出的小球上两个数字乘积是负数的概率为____.答案:3 82.(2016·天津市和平区·一模)在一个不透明的布袋中有2个白球和n个黄球,它们除颜色不同外,其余均相同,若从中随机摸出一个球,摸到黄球的概率是,则n= 8 .【考点】概率公式.【分析】根据黄球的概率公式可得方程=,解方程即可求解.【解答】解:不透明的布袋中的球除颜色不同外,其余均相同,共有n+4个球,其中黄球n个,根据古典型概率公式知:P(黄球)==,解得n=8.故答案为:8.【点评】此题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3.(2016·天津市南开区·一模)一个口袋中有四个完全相同的小球,把它们分别标号为1、2、3、4,随机地摸出一个小球,然后放回,再随机地摸出一个小球,则两次摸出的小球标号的和等于4的概率是.【考点】列表法与树状图法.【专题】计算题.【分析】先画树状图展示所有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,然后根据概率的概念计算即可.【解答】解:如图,随机地摸出一个小球,然后放回,再随机地摸出一个小球,共有16种等可能的结果数,其中两次摸出的小球标号的和等于4的占3种,所有两次摸出的小球标号的和等于4的概率=.故答案为:.【点评】本题考查了列表法或树状图法:利用列表法或树状图法展示所有等可能的结果数n,再找出某事件所占有的结果数m,然后利用概率的概念求得这个事件的概率=.4.(2016·浙江镇江·模拟)如果从九年级(1)、(2)、(3)班中随机抽取一个班与九年级(4)班进行一场拔河比赛,那么恰好抽到九年级(1)班的概率是▲ .1答案:35、(2016·浙江丽水·模拟) “nice to meet you(很高兴见到你)”,在这段句子的所有英文字母中,字母e出现的概率是 .3答案:136.(2016·重庆巴蜀·一模)从﹣,﹣1,0,1这四个数中,任取一个数作为m的值,恰好使得关于x,y的二元一次方程组有整数解,且使以x为自变量的一次函数y=(m+1)x+3m﹣3的图象不经过第二象限,则取到满足条件的m值的概率为.【分析】首先由题意可求得满足条件的m值,然后直接利用概率公式求解即可求得答案.【解答】解:∵关于x,y的二元一次方程组有整数解,∴,∴m的值为:﹣1,0,1;∵一次函数y=(m+1)x+3m﹣3的图象不经过第二象限,∴,解得:﹣1<m≤1,∴m的值为:0,1;综上满足条件的m值为:0,1;∴取到满足条件的m值的概率为: =.故答案为:.7.(2016·重庆铜梁巴川·一模)从﹣3,﹣2,﹣1,0,1,2,3这七个数中随机抽取一个数记为a,则a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为.【分析】首先解不等式组,即可求得a的取值范围,解一元二次方程x2﹣3x+2=0,可求得a的值,然后直接利用概率公式求解即可求得答案.【解答】解:,由①得:x>﹣2,由②得:x>﹣,∵a的值是不等式组的解,∴a=0,1,2,3,∵x2﹣3x+2=0,∴(x﹣1)(x﹣2)=0,解得:x1=1,x2=2,∵a不是方程x2﹣3x+2=0的实数解,∴a=0或3;∴a的值是不等式组的解,但不是方程x2﹣3x+2=0的实数解的概率为:.故答案为:.8. (2016·河南洛阳·一模)袋中装有大小相同的2个红球和2个绿球,先从袋中摸出1个球后放回,混合均匀后再摸出1个球,则两次摸到的球中有1个绿球和1个红球的概率是 .1答案:29. (2016·江苏常熟·一模)一个口袋中装有2个红球、3个绿球、5个黄球,每个球除颜色外其它都相同,搅均匀后随机从中摸出一个球是绿球的概率是.【考点】概率公式.【专题】压轴题.【分析】首先算出求的总个数,再让绿球的个数除以球的总数即为所求的概率.【解答】解:球的总数为:2+3+5=10,∵绿球的球的个数为3,∴随机地从中摸出一个球是绿球的概率是.故答案为:.【点评】本题主要考查了概率公式:P(A)=,n表示该试验中所有可能出现的基本结果的总数目.m表示事件A可能出现结果数.10. (2016·江苏丹阳市丹北片·一模)在一个不透明的盒子中装有12个白球,若干个黄球,这些球除颜色外都相同.若从中随机摸出一个球是白球的概率是13,则黄球的个数为个.答案:24;11. (2016·江苏省南京市钟爱中学·九年级下学期期初考试)有5张卡片,上面分别画有:圆、正方形、等边三角形、正五边形、线段,将卡片画面朝下随意放在桌上,任取一张,那么取到卡片对应图形是中心对称图形的概率是.答案:12. (2016·上海市闸北区·中考数学质量检测4月卷)袋子里有4个黑球,m个白球,它们除颜色外都相同.经过大量实验,从中任取一个球恰好是黑球的概率是12,则m的值是▲ .答案:4;13. (2016·河南三门峡·一模)如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是答案:51314. .(2016·上海闵行区·二模)布袋中有大小、质地完全相同的4个小球,每个小球上分别标有数字1、2、3、4,如果从布袋中随机抽取两个小球,那么这两个小球上的数字之和为偶数的概率是.【考点】列表法与树状图法.【分析】根据题意画出树状图,进而利用概率公式求出答案.【解答】解:由题意可得:,故一共有12种可能,这两个小球上的数字之和为偶数的有4种,故这两个小球上的数字之和为偶数的概率是: =.故答案为:.【点评】此题主要考查了树状图法求概率,正确列举出所有可能是解题关键.三.解答题1.(2016·云南省曲靖市罗平县·二模)有甲、一两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽从甲袋中随机取出一个小球,记下标有的数字为x,再从乙袋中随机取出一个小球,记录下小球上的数字为y,且设点P的坐标(x,y).(1)请用列表或树状图表示出点P可能出现的所有坐标;(2)求点P(x,y)在反比例函数y=图象上概率.【考点】列表法与树状图法;反比例函数图象上点的坐标特征.【分析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)由(1)可求得点P(x,y)在反比例函数y=图象上的情况,然后直接利用概率公式求解即可求得答案.【解答】解:(1)画树状图得:则点P 可能出现的所有坐标:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)∵点P (x ,y )在反比例函数y=图象上的有(1,2),(﹣2,﹣1), ∴点P (x ,y )在反比例函数y=图象上的概率为:62 =31. 【点评】此题考查了列表法或树状图法求概率以及反比例函数图象上点的坐标特征.用到的知识点为:概率=所求情况数与总情况数之比.2.(2016·云南省·一模)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;(2)你认为这个规则公平吗?请说明理由. 【考点】游戏公平性;列表法与树状图法. 【专题】应用题;创新题型.【分析】(1)用列表法将所有等可能的结果一一列举出来即可; (2)求得两人获胜的概率,若相等则公平,否则不公平. 【解答】解:(1)根据题意列表得:1 2 3 4 1 2 3 4 5 2 3 4 5 6 3456745678(2)由列表得:共16种情况,其中奇数有8种,偶数有8种,∴和为偶数和和为奇数的概率均为,∴这个游戏公平.【点评】本题考查了游戏公平性及列表与列树形图的知识,难度不大,是经常出现的一个知识点.3.(2016·云南省·二模)课间小明和小亮玩“剪刀、石头、布”游戏.游戏规则是:双方每次任意出“剪刀”、“石头”、“布”这三种手势中的一种,石头胜剪刀,剪刀胜布,布胜石头,若双方出现相同手势,则算打平.若小亮和小明两人只比赛一局.(4)请用树状图或列表法列出游戏的所有可能结果.(5)求出双方打平的概率.(6)游戏公平吗?如果不公平,你认为对谁有利?【考点】游戏公平性;列表法与树状图法.【分析】(4)采用树状图法或者列表法解答即可;(5)列举出所有情况,看所求的情况占总情况的多少即可.(6)求出概率比较公平性即可.【解答】解:(4)所有可能结果列表如下:石头剪刀布小明小亮石头(石头,石头)(石头,剪刀)(石头,布)剪刀(剪刀,石头)(剪刀,剪刀)(剪刀,布)布(布,石头)(布,剪刀)(布,布)总共有9中等可能结果.(5)双方打平的情况有3种,P(双方打平)=(6)游戏对双方公平小明胜的情况有3种,小亮胜的情况有3种P(小明胜)=P(小亮胜)=∵P(小明胜)=P(小亮胜)∴游戏对双方公平.【点评】此题考查游戏的公平性,列表法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4、(2016青岛一模)有五张卡片,卡片上分别写有A、B、B、C、C,这些卡片除字母外完全相同,从中随机摸出一张,记下字母后放回,充分洗匀后,再从中摸出一张,请你利用树状图会列表的方法,求两次摸到卡片字母相同的概率;若从中随机摸出一张,记下字母后不放回,洗匀后再从中摸出一张,则两次摸到卡片字母相同的概率又是多少?【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案;注意此实验室是放回实验;首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸到卡片字母相同的情况,再利用概率公式即可求得答案;注意此实验室是不放回实验.【解答】解:画树状图得:∵共有25种等可能的结果,两次摸到卡片字母相同的有9种等可能的结果,∴两次摸到卡片字母相同的概率为:;画树状图得:∵共有25种等可能的结果,两次摸到卡片字母相同的有4种等可能的结果,∴两次摸到卡片字母相同的概率为:.5、(2016枣庄41中一模)把2张形状、大小相同但画面不同的风景图片全部从中间剪断,然后将四张形状相同的小图片混合在一起.现从这四张图片中随机的一次抽出2张.(1)请用列表或画树状图的方法表示出上述实验所有可能结果.(2)求这2张图片恰好组成一张完整风景图概率.【考点】列表法与树状图法.【专题】计算题.【分析】(1)用A、a表示一张风景图片被剪成的两半,用B、b表示另一张风景图片被剪成的两半,然后利用树状图展示所有可能的结果数;(2)找出2张图片恰好组成一张完整风景图的结果数,然后根据概率公式求解.【解答】解:(1)用A、a表示一张风景图片被剪成的两半,用B、b表示另一张风景图片被剪成的两半,画树状图为:(2)共有12种等可能的结果数,其中2张图片恰好组成一张完整风景图的结果数为4,所以2张图片恰好组成一张完整风景图的概率==.6.(2016·天津南开区·二模)在一副扑克牌中,拿出红桃2,红桃3,红桃4,红桃5四张牌,洗匀后,小明从中随机摸出一张,记下牌面上的数字为x,然后放回并洗匀,再由小华随机摸出一张,记下牌面上的数字为y,组成一对数(x,y).(1)用列表法或树形图表示出(x,y)的所用可能出现的结果;(2)求小明、小华各摸一次扑克牌所确定的一对数是方程x+y=5的解的概率.考点:概率及计算答案:见解析试题解析:(1)出现的情况如下:一共有16种.(2)数对(2,3),(3,2)是方程x+y=5的解,所以P(和等于5)==.7.(2016·浙江金华东区·4月诊断检测)小明有一个呈等腰直角三角形的积木盒,现在积木盒中只剩下如图1所示的九个空格,图2是可供选择的A、B、C、D四块积木.(1)小明选择把积木A 和B 放入图-3,要求积木A 和B 的九个小圆恰好能分别与图18-3中的九个小圆重合,请在图18-3中画出他放入方式的示意图(温馨提醒:积木A 和B 的连接小圆的小线段还是要画上哦!);(2)现从A 、B 、C 、D 四块积木中任选两块,求恰好能全部不重叠放入的概率. 答案:(1)略(3分);(2)31(3分); 8.(2016·绍兴市浣纱初中等六校·5月联考模拟) 为进一步推广“阳光体育”大课间活动,某中学对已开设的A 实心球,B 立定跳远,C 跑步,D 跳绳四种活动项目的学生喜欢情况进行调查,随机抽取了部分学生,并将调查结果绘制成图1,图2的统计图,请结合图中的信息解答下列问题:(1)请计算本次调查中喜欢“跑步”的学生人数和所占百分比,并将两个统计图补充完整;(2)随机抽取了5名喜欢“跑步”的学生,其中有3名女生,2名男生,现从这5名学生中任意抽取2名学生,请用画树状图或列表的方法,求出刚好抽到同性别学生的概率.解:(1)根据题意得: 15÷10%=150(名),1-10%-20%-30%=40%,150×40%=60.……4分图-1C图-2图-3(3)用A 表示女生,B 表示男生,画图如下:共有20种情况,同性别学生的情况是8种,则刚好抽到同性别学生的概率是= 25…………4分9. (2016·浙江镇江·模拟) (本小题满分6分)甲、乙两人做游戏,规则如下:每人手中各持分别标有“1”、“2”、“3”的三张纸牌,甲、乙背靠背同时从各自的纸牌中随机抽取一张,规定纸牌数字大的获胜,数字相同时不分胜负.请你用树状图或列表法求甲获胜的概率。

陕西省中考数学历年(2016-2022年)真题分类汇编专题12统计与概率及答案

陕西省中考数学历年(2016-2022年)真题分类汇编专题12 统计与概率一、填空题1.已知一组数据:3,5,x,7,9的平均数为6,则x=.二、综合题2.某超市为了答谢顾客,凡在本超市购物的顾客,均可凭购物小票参与抽奖活动,奖品是三种瓶装饮料,它们分别是:绿茶(500ml)、红茶(500ml)和可乐(600ml),抽奖规则如下:①如图,是一个材质均匀可自由转动的转盘,转盘被等分成五个扇形区域,每个区域上分别写有“可”、“绿”、“乐”、“茶”、“红”字样;②参与一次抽奖活动的顾客可进行两次“有效随机转动”(当转动转盘,转盘停止后,可获得指针所指区域的字样,我们称这次转动为一次“有效随机转动”);③假设顾客转动转盘,转盘停止后,指针指向两区域的边界,顾客可以再转动转盘,直到转动为一次“有效随机转动”;④当顾客完成一次抽奖活动后,记下两次指针所指区域的两个字,只要这两个字和奖品名称的两个字相同(与字的顺序无关),便可获得相应奖品一瓶;不相同时,不能获得任何奖品.根据以上规则,回答下列问题:(1)求一次“有效随机转动”可获得“乐”字的概率;(2)有一名顾客凭本超市的购物小票,参与了一次抽奖活动,请你用列表或树状图等方法,求该顾客经过两次“有效随机转动”后,获得一瓶可乐的概率.3.某校为了了解本校学生“上周内做家务劳动所用的时间”(简称“劳动时间”)情况,在本校随机调查了100名学生的“劳动时间”,并进行统计,绘制了如下统计表:根据上述信息,解答下列问题:(1)这100名学生的“劳动时间”的中位数落在组;(2)求这100名学生的平均“劳动时间”;(3)若该校有1200名学生,请估计在该校学生中,“劳动时间”不少于90分钟的人数.4.有五个封装后外观完全相同的纸箱,且每个纸箱内各装有一个西瓜,其中,所装西瓜的重量分别为6kg,6kg,7kg,7kg,8kg.现将这五个纸箱随机摆放.(1)若从这五个纸箱中随机选1个,则所选纸箱里西瓜的重量为6kg的概率是;(2)若从这五个纸箱中随机选2个,请利用列表或画树状图的方法,求所选两个纸箱里西瓜的重量之和为15kg的概率.5.从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为2,3,3,6.(1)将这四张扑克牌背面朝上,洗匀,从中随机抽取一张,则抽取的这张牌的牌面数字是3的概率为;(2)将这四张扑克牌背面朝上,洗匀.从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.请利用画树状图或列表的方法,求抽取的这两张牌的面数字恰好相同的概率.6.今年9月,第十四届全国运动会将在陕西省举行本届全运会主场馆在西安,开幕式、闭幕式均在西安举行.某校气象兴趣小组的同学们想预估一下西安市今年9月份日平均气温状况.他们收集了西安市近五年9月份每天的日平均气温,从中随机抽取了60天的日平均气温,并绘制成如下统计图:根据以上信息,回答下列问题:(1)这60天的日平均气温的中位数为,众数为;(2)求这60天的日平均气温的平均数;(3)若日平均气温在18℃~21℃的范围内(包含18℃和21℃)为“舒适温度”.请预估西安市今年9月份日平均气温为“舒适温度”的天数.7.王大伯承包了一个鱼塘,投放了2000条某种鱼苗,经过一段时间的精心喂养,存活率大致达到了90%.他近期想出售鱼塘里的这种鱼.为了估计鱼塘里这种鱼的总质量,王大伯随机捕捞了20条鱼,分别称得其质量后放回鱼塘.现将这20条鱼的质量作为样本,统计结果如图所示:(1)这20条鱼质量的中位数是,众数是.(2)求这20条鱼质量的平均数;(3)经了解,近期市场上这种鱼的售价为每千克18元,请利用这个样本的平均数.估计王大伯近期售完鱼塘里的这种鱼可收入多少元?8.小亮和小丽进行摸球试验.他们在一个不透明的空布袋内,放入两个红球,一个白球和一个黄球,共四个小球.这些小球除颜色外其它都相同.试验规则:先将布袋内的小球摇匀,再从中随机摸出一个小球,记下颜色后放回,称为摸球一次.(1)小亮随机摸球10次,其中6次摸出的是红球,求这10次中摸出红球的频率;(2)若小丽随机摸球两次,请利用画树状图或列表的方法,求这两次摸出的球中一个是白球、一个是黄球的概率.9.现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题32 概率及其求法☞解读考点☞2年中考【2015年题组】1.(2015梧州)在一个不透明的袋子中,装有红球、黄球、篮球、白球各1个,这些球除颜色外无其他差别,从袋中随机取出一个球,取出红球的概率为( ) A .12 B . 13 C . 14D . 1 【答案】C .考点:概率公式.2.(2015河池)下列事件是必然事件的为( ) A .明天太阳从西方升起 B .掷一枚硬币,正面朝上C .打开电视机,正在播放“河池新闻”D .任意一个三角形,它的内角和等于180° 【答案】D .考点:随机事件.3.(2015贵港)若在“正三角形、平行四边形、菱形、正五边形、正六边形”这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率是()A.15B.25C.35D.45【答案】C.【解析】试题分析:这五种图形中随机抽取一种图形,则抽到的图形属于中心对称图形的概率=35.故选C.考点:1.概率公式;2.中心对称图形.4.(2015钦州)在一个不透明的盒子里有2个红球和n个白球,这些球除颜色外其余完全相同,摇匀后随机摸出一个,摸到红球的概率是15,则n的值为()A.3 B.5 C.8 D.10 【答案】C.【解析】试题分析:∵摸到红球的概率为15,∴2125n=+,解得n=8.故选C.考点:概率公式.5.(2015南通)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有3个红球,若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值约为()A.12 B.15 C.18 D.21【答案】B.【解析】试题分析:由题意可得,3a×100%=20%,解得,a=15.故选B.考点:利用频率估计概率.6.(2015德阳)下列事件发生的概率为0的是()A.射击运动员只射击1次,就命中靶心B.任取一个实数x,都有0xC.画一个三角形,使其三边的长分别为8cm,6cm,2cmD.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为6【答案】C.考点:概率的意义.7.(2015南充)如图是一个可以自由转动的正六边形转盘,其中三个正三角形涂有阴影,转动指针,指针落在有阴影的区域内的概率为a,如果投掷一枚硬币,正面向上的概率为b,关于a、b大小的正确判断是()A.a>b B.a=b C.a<b D.不能判断【答案】B.【解析】试题分析:∵正六边形被分成相等的6部分,阴影部分占3部分,∴a=36=12,∵投掷一枚硬币,正面向上的概率b=12,∴a=b,故选B.考点:几何概率.8.(2015内江)某十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为()A.112B.512C.16D.12【答案】A.考点:概率公式.9.(2015北海)小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为( ) A .16 B .13 C .12 D .23【答案】B . 【解析】试题分析:小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:39=13.故选B . 考点:列表法与树状图法.10.(2015自贡)如图,随机闭合开关1S 、2S 、3S 中的两个,则灯泡发光的概率是( ) A .43 B .32 C .31 D .21【答案】B .【解析】试题分析:列表如下:共有6种情况,必须闭合开关S3灯泡才亮,即能让灯泡发光的概率是46=23.故选B.考点:1.列表法与树状图法;2.图表型.11.(2015荆门)在排球训练中,甲、乙、丙三人相互传球,由甲开始发球(记作为第一次传球),则经过三次传球后,球仍回到甲手中的概率是()A.12B.14C.38D.58【答案】B.考点:列表法与树状图法.12.(2015甘南州)在盒子里放有三张分别写有整式a+1,a+2,2的卡片,从中随机抽取两张卡片,把两张卡片上的整式分别作为分子和分母,则能组成分式的概率是()A.13B.23C.16D.34【答案】B.【解析】试题分析:分母含有字母的式子是分式,整式a+1,a+2,2中,抽到a+1,a+2做分母时组成的都是分式,共有3×2=6种情况,其中a+1,a+2为分母的情况有4种,所以能组成分式的概率=46=23.故选B.考点:1.概率公式;2.分式的定义;3.综合题.13.(2015株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数12yx图象上的概率是()A.12B.13C.14D.16【答案】D . 【解析】试题分析:画树状图得:∵共有12种等可能的结果,点(a ,b )在函数12y x =图象上的有(3,4),(4,3),∴点(a ,b )在函数12y x=图象上的概率是:212=16.故选D . 考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.14.(2015绥化)从长度分别为1、3、5、7的四条线段中任选三条作边,能构成三角形的概率为( ) A .21 B .31 C .41 D .51【答案】C .考点:1.列表法与树状图法;2.三角形三边关系.15.(2015鄂尔多斯)如图,A .B 是边长为1的小正方形组成的网格上的两个格点,在格点中任意放置点C ,恰好能使△ABC 的面积为1的概率是( )A .256B .51C .254D .257【答案】A .考点:1.概率公式;2.三角形的面积.16.(2015泰安)若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是( ) A .12 B .23 C .25 D .35【答案】C . 【解析】试题分析:列表得:∵共有30种等可能的结果,与7组成“中高数”的有12种情况,∴与7组成“中高数”的概率是:1230=25.故选C .考点:1.列表法与树状图法;2.新定义.17.(2015扬州)色盲是伴X 染色体隐性先天遗传病,患者中男性远多于女性,从男性体检信息库中随机抽取体检表,统计结果如表:根据表中数据,估计在男性中,男性患色盲的概率为 (结果精确到0.01) 【答案】0.07. 【解析】试题分析:观察表格发现,随着实验人数的增多,男性患色盲的频率逐渐稳定在常数0.07左右,故男性中,男性患色盲的概率为0.07,故答案为:0.07. 考点:利用频率估计概率.18.(2015贵阳)“赵爽弦图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示).小亮随机地向大正方形内部区域投飞镖.若直角三角形两条直角边的长分别是2和1,则飞镖投到小正方形(阴影)区域的概率是 .【答案】15.考点:1.几何概率;2.勾股定理.19.(2015镇江)写一个你喜欢的实数m 的值 ,使得事件“对于二次函数21(1)32y x m x =--+,当3x <-时,y 随x 的增大而减小”成为随机事件. 【答案】答案不唯一,2m <-的任意实数皆可,如:﹣3. 【解析】 试题分析:21(1)32y x m x =--+,12b x m a=-=-,∵当3x <-时,y 随x 的增大而减小,∴13m -<-,解得:2m <-,∴2m <-的任意实数皆可.故答案为:答案不唯一,2m <-的任意实数皆可,如:﹣3.考点:1.随机事件;2.二次函数的性质;3.开放型.20.(2015成都)有9张卡片,分别写有1~9这九个数字,将它们背面朝上洗匀后,任意抽出一张,记卡片上的数字为a ,则使关于x 的不等式组43(1)122x x x x a ≥-⎧⎪⎨--<⎪⎩有解的概率为____. 【答案】49.考点:1.解一元一次不等式组;2.含字母系数的不等式;3.概率公式;4.压轴题. 21.(2015重庆市)从﹣3,﹣2,﹣1,0,4这五个数中随机抽取一个数记为a ,a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x=+的自变量取值范围内的概率是 .【答案】25. 【解析】试题分析:∵不等式组2343111x x +<⎧⎨->-⎩的解集是:10132x -<<,∴a 的值是不等式组的解的有:﹣3,﹣2,﹣1,0,∵函数2122y x x=+的自变量取值范围为:2220x x +≠,即0x ≠且1x ≠-,∴a 的值在函数2122y x x=+的自变量取值范围内的有﹣3,﹣2,4; ∴a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的有:﹣3,﹣2;∴a 的值既是不等式组2343111x x +<⎧⎨->-⎩的解,又在函数2122y x x =+的自变量取值范围内的概率是:25.故答案为:25. 考点:1.概率公式;2.解一元一次不等式组;3.函数自变量的取值范围;4.综合题.22.(2015重庆市)从﹣2,﹣1,0,1,2这5个数中,随机抽取一个数记为a ,则使关于x 的不等式组21162212x x a-⎧≥-⎪⎨⎪-<⎩有解,且使关于x 的一元一次方程32123x a x a -++=的解为负数的概率为 . 【答案】35.考点:1.概率公式;2.一元一次方程的解;3.解一元一次不等式组;4.综合题;5.压轴题. 23.(2015枣庄)如图,直线24y x =+与x ,y 轴分别交于A ,B 两点,以OB 为边在y 轴右侧作等边三角形OBC ,将点C 向左平移,使其对应点C ′恰好落在直线AB 上,则点C ′的坐标为 .【答案】(﹣1,2).考点:1.一次函数图象上点的坐标特征;2.等边三角形的性质;3.坐标与图形变化-平移;4.数形结合.24.(2015枣庄)如图,在平面直角坐标系中,点A (0,4),B (3,0),连接AB ,将△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A ′处,折痕所在的直线交y 轴正半轴于点C ,则直线BC 的解析式为 .【答案】1322y x =-+. 【解析】试题分析:∵A (0,4),B (3,0),∴OA =4,OB =3,在Rt △OAB 中,AB,∵△AOB 沿过点B 的直线折叠,使点A 落在x 轴上的点A ′处,∴BA ′=BA =5,CA ′=CA ,∴OA ′=BA ′﹣OB =5﹣3=2,设OC =t ,则CA =CA ′=4﹣t ,在Rt △OA ′C 中,∵222''OC OA CA +=,∴2222(4)t t +=-,解得t =32,∴C 点坐标为(0,32),设直线BC 的解析式为y kx b =+,把B (3,0)、C (0,32)代入得3032k b b +=⎧⎪⎨=⎪⎩,解得:1232k b ⎧=-⎪⎪⎨⎪=⎪⎩,∴直线BC 的解析式为1322y x =-+.故答案为:1322y x =-+. 考点:1.翻折变换(折叠问题);2.待定系数法求一次函数解析式;3.综合题.25.(2015南宁)今年5月份,某校九年级学生参加了南宁市中考体育考试,为了了解该校九年级(1)班同学的中考体育情况,对全班学生的中考体育成绩进行了统计,并绘制以下不完整的频数分布表(如表)和扇形统计图(如图),根据图表中的信息解答下列问题: (1)求全班学生人数和m 的值.(2)直接学出该班学生的中考体育成绩的中位数落在哪个分数段.(3)该班中考体育成绩满分共有3人,其中男生2人,女生1人,现需从这3人中随机选取2人到八年级进行经验交流,请用“列表法”或“画树状图法”求出恰好选到一男一女的概率.【答案】(1)50,18;(2)落在51﹣56分数段;(3)23.(2)∵全班学生人数:50人,∴第25和第26个数据的平均数是中位数,∴中位数落在51﹣56分数段;(3)如图所示:将男生分别标记为A1,A2,女生标记为B1P(一男一女)=46=23.考点:1.列表法与树状图法;2.频数(率)分布表;3.扇形统计图;4.中位数.26.(2015河池)某校为了选拔学生参加“汉字听写大赛”,对九年级一班、二班各10名学生进行汉字听写测试.计分采用10分制(得分均取整数),成绩达到6分或6分以上为及格,得到9分为优秀,成绩如表1所示,并制作了成绩分析表(表2).表1表2(1)在表2中,a= ,b= ;(2)有人说二班的及格率、优秀率均高于一班,所以二班比一班好;但也有人认为一班成绩比二班好,请你给出坚持一班成绩好的两条理由;(3)一班、二班获满分的中同学性别分别是1男1女、2男1女,现从这两班获满分的同学中各抽1名同学参加“汉字听写大赛”,用树状图或列表法求出恰好抽到1男1女两位同学的概率.【答案】(1)8,7.5;(2)一班的平均成绩高,且方差小,较稳定;(3)12.(3)列表得:∵共有6种等可能的结果,一男一女的有3种,∴P(一男一女)=36=12.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差.27.(2015玉林防城港)现有三张反面朝上的扑克牌:红桃2、红桃3、黑桃x(1≤x≤13且x为奇数或偶数).把牌洗匀后第一次抽取一张,记好花色和数字后将牌放回,重新洗匀第二次再抽取一张.(1)求两次抽得相同花色的概率;(2)当甲选择x为奇数,乙选择x为偶数时,他们两次抽得的数字和是奇数的可能性大小一样吗?请说明理由.(提示:三张扑克牌可以分别简记为红2、红3、黑x)【答案】(1)59;(2)一样.(2)他们两次抽得的数字和是奇数的可能性大小一样,∵x为奇数,两次抽得的数字和是奇数的可能性有4种,∴P(甲)=49,∵x为偶数,两次抽得的数字和是奇数的可能性有4种,∴P(乙)=49,∴P(甲)=P(乙),∴他们两次抽得的数字和是奇数的可能性大小一样.考点:列表法与树状图法.28.(2015十堰)端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【答案】(1)144,3;(2)600;(3)13.(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)=412=13.考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.29.(2015咸宁)某校九年级两个班,各选派10名学生参加学校举行的“汉字听写”大赛预赛.各参赛选手的成绩如图:九(1)班:88,91,92,93,93,93,94,98,98,100九(2)班:89,93,93,93,95,96,96,98,98,99通过整理,得到数据分析表如下:(1)直接写出表中m、n的值;(2)依据数据分析表,有人说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有人说(2)班的成绩要好,请给出两条支持九(2)班成绩好的理由;(3)若从两班的参赛选手中选四名同学参加决赛,其中两个班的第一名直接进入决赛,另外两个名额在四个“98分”的学生中任选二个,试求另外两个决赛名额落在同一个班的概率.【答案】(1)m=94,n=95.5;(2)①九(2)班平均分高于九(1)班;②九(2)班的成绩比九(1)班稳定;③九(2)班的成绩集中在中上游,故支持九(2)班成绩好(任意选两个即可);(3)13.(3)用A1,B1表示九(1)班两名98分的同学,C2,D2表示九(2)班两名98分的同学,画树状图,如图所示:所有等可能的情况有12种,其中另外两个决赛名额落在同一个班的情况有4种,则P(另外两个决赛名额落在同一个班)=412=13.考点:1.列表法与树状图法;2.加权平均数;3.中位数;4.众数;5.方差.30.(2015南通)为增强学生环保意识,某中学组织全校2000名学生参加环保知识大赛,比赛成绩均为整数,从中抽取部分同学的成绩进行统计,并绘制成如图统计图.请根据图中提供的信息,解答下列问题:(1)若抽取的成绩用扇形图来描述,则表示“第三组(79.5~89.5)”的扇形的圆心角为度;(2)若成绩在90分以上(含90分)的同学可以获奖,请估计该校约有多少名同学获奖?(3)某班准备从成绩最好的4名同学(男、女各2名)中随机选取2名同学去社区进行环保宣传,则选出的同学恰好是1男1女的概率为.【答案】(1)144;(2)640;(3)23.(2)估计该校获奖的学生数=16100%50×2000=640(人);(3)列表如下:所有等可能的情况有12种,其中选出的两名主持人“恰好为一男一女”的情况有8种,则P(选出的两名主持人“恰好为一男一女”)=812=23.故答案为:23.考点:1.列表法与树状图法;2.用样本估计总体;3.频数(率)分布直方图;4.扇形统计图.31.(2015常州)甲,乙,丙三位学生进入了“校园朗诵比赛”冠军、亚军和季军的决赛,他们将通过抽签来决定比赛的出场顺序.(1)求甲第一个出场的概率;(2)求甲比乙先出场的概率.【答案】(1)13;(2)12.考点:列表法与树状图法.32.(2015无锡)(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”或“列表”等方式给出分析过程)(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是(请直接写出结果).【答案】(1)13;(2)21nn.【解析】试题分析:(1)先画树状图,由树状图可得总结果与传到甲手里的情况,根据传到甲手里的情况比上总结过,可得答案;(2)根据第一步传的结果是n,第二步传的结果是2n,第三步传的结果是总结过是3n,传给甲的结果是n (n﹣1),根据概率的意义,可得答案.考点:列表法与树状图法.33.(2015镇江)活动1:在一只不透明的口袋中装有标号为1,2,3的3个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三位同学丙→甲→乙的顺序依次从袋中各摸出一个球(不放回),摸到1号球胜出,计算甲胜出的概率.(注:丙→甲→乙表示丙第一个摸球,甲第二个摸球,乙最后一个摸球)活动2:在一只不透明的口袋中装有标号为1,2,3,4的4个小球,这些球除标号外都相同,充分搅匀,请你对甲、乙、丙三名同学规定一个摸球顺序:→→,他们按这个顺序从袋中各摸出一个球(不放回),摸到1号球胜出,则第一个摸球的同学胜出的概率等于,最后一个摸球的同学胜出的概率等于.猜想:在一只不透明的口袋中装有标号为1,2,3,…,n(n为正整数)的n个小球,这些球除标号外都相同,充分搅匀,甲、乙、丙三名同学从袋中各摸出一个球(不放回),摸到1号球胜出,猜想:这三名同学每人胜出的概率之间的大小关系.你还能得到什么活动经验?(写出一个即可)【答案】(1)13;(2)丙、甲、乙、14,14;(3)P(甲胜出)=P(乙胜出)=P(丙胜出),抽签是公平的,与顺序无关.(答案不唯一).【解析】试题分析:(1)画出树状图法,判断出甲胜出的概率是多少即可.试题解析:(1)如图1,,甲胜出的概率为:P(甲胜出)=13;(2)如图2,,对甲、乙、丙三名同学规定一个摸球顺序:丙→甲→乙,则第一个摸球的丙同学胜出的概率等于14,最后一个摸球的乙同学胜出的概率也等于14,故答案为:丙、甲、乙、14,14;(3)这三名同学每人胜出的概率之间的大小关系为:P(甲胜出)=P(乙胜出)=P(丙胜出).得到的活动经验为:抽签是公平的,与顺序无关.(答案不唯一).考点:列表法与树状图法.34.(2015盐城)有甲、乙两个不透明的布袋,甲袋中有两个完全相同的小球,分别标有数字1和﹣2;乙袋中有三个完全相同的小球,分别标有数字﹣1、0和2.小丽先从甲袋中随机取出一个小球,记录下小球上的数字为x ;再从乙袋中随机取出一个小球,记录下小球上的数字为y ,设点P 的坐标为(x ,y ). (1)请用表格或树状图列出点P 所有可能的坐标; (2)求点P 在一次函数1+=x y 图象上的概率.【答案】(1)点P 所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2);(2)13.∴点P 所有可能的坐标为:(1,﹣1),(1,0),(1,2),(﹣2,﹣1),(﹣2,0),(﹣2,2); (2)∵只有(1,2),(﹣2,﹣1)这两点在一次函数1+=x y 图象上,∴P (点P 在一次函数y =x +1的图象上)=26=13. 考点:1.列表法与树状图法;2.一次函数图象上点的坐标特征.35.(2015十堰)端午节是我国的传统节日,人们有吃粽子的习惯.某校数学兴趣小组为了了解本校学生喜爱粽子的情况,随机抽取了50名同学进行问卷调查,经过统计后绘制了两幅尚不完整的统计图(注:每一位同学在任何一种分类统计中只有一种选择)请根据统计图完成下列问题:(1)扇形统计图中,“很喜欢”所对应的圆心角为度;条形统计图中,喜欢“糖馅”粽子的人数为人;(2)若该校学生人数为800人,请根据上述调查结果,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和;(3)小军最爱吃肉馅粽子,小丽最爱吃糖馅粽子.某天小霞带了重量、外包装完全一样的肉馅、糖馅、枣馅、海鲜馅四种粽子各一只,让小军、小丽每人各选一只.请用树状图或列表法求小军、小丽两人中有且只有一人选中自己最爱吃的粽子的概率.【答案】(1)144,3;(2)600;(3)13.(2)学生有800人,估计该校学生中“很喜欢”和“比较喜欢”粽子的人数之和为800×(1﹣25%)=600(人);(3)肉馅、糖馅、枣馅、海鲜馅四种粽子分别用A、B、C、D表示,画图如下:∵共12种等可能的结果,其中小军、小丽两人中有且只有一人选中自己最爱吃的粽子有4种,∴P(小军、小丽两人中有且只有一人选中自己最爱吃的粽子)=412=13.考点:1.列表法与树状图法;2.用样本估计总体;3.扇形统计图;4.条形统计图.【2014年题组】1.(2014年福建南平中考)一个袋中只装有3个红球,从中随机摸出一个是红球()A.可能性为13B.属于不可能事件 C.属于随机事件 D.属于必然事件【答案】D.【解析】试题分析:因为袋中只装有3个红球,所以从中随机摸出一个一定是红球,所以属于必然事件,故选D.考点:1.随机事件;2.可能性的大小.2.(2014年福建三明中考)小亮和其他5个同学参加百米赛跑,赛场共设1,2,3,4,5,6六个跑道,选手以随机抽签的方式确定各自的跑道.若小亮首先抽签,则小亮抽到1号跑道的概率是()A.16B.15C.12D.1【答案】A.考点:概率公式.3.(2014年湖南长沙中考)100件外观相同的产品中有5件不合格,现从中任意抽取1件进行检测,抽到不合格产品的概率是.【答案】120.【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.因此,∵100件外观相同的产品中有5件不合格,∴从中任意抽取1件进行检测,抽到不合格产品的概率是:51 10020.考点:概率公式.4.(2014年广东梅州中考)下列事件中是必然事件是()A、明天太阳从西边升起B、篮球队员在罚球线投篮一次,未投中C、实心铁球投入水中会沉入水底D、抛出一枚硬币,落地后正面向上【答案】C.【解析】试题分析:A、明天太阳从西边升起,是不可能事件;B、篮球队员在罚球线投篮一次,未投中,是随机事件;C、实心铁球投入水中会沉入水底,是必然事件;D、抛出一枚硬币,落地后正面向上,是随机事件.故选C.考点:必然事件.5.(2014年江苏南通中考)在如图所示(A,B,C三个区域)的图形中随机地撒一把豆子,豆子落在区域的可能性最大(填A或B或C).【答案】A.考点:1.几何概率;2.转换思想的应用.6.(2014年新疆乌鲁木齐中考)在一个不透明的口袋中有颜色不同的红、白两种小球,其中红球3只,白球n只,若从袋中任取一个球,摸出白球的概率为34,则n= .【答案】9.【解析】试题分析:∵从3只红球,n只白球的袋中任取一个球,摸出白球的概率为34,∴n3n34=+.解得:n=9,经检验:x=9是原分式方程的解.∴n=9.考点:1.概率公式;2.分式方程的应用7.(2014年浙江台州中考)抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同)在看不见的情况下随机摸出两只袜子,他们恰好同色的概率是.【答案】13.【解析】试题分析:画树状图得:∵共有12种等可能的结果,它们恰好同色的有4种情况,∴它们恰好同色的概率是:41 123.考点:1.列表法或树状图法;2.概率.8.(2014年江苏南京中考)从甲、乙、丙三名同学中随机抽取环保志愿者,求下列事件的概率:(1)抽取1名,恰好是甲;(2)抽取2名,甲在其中.【答案】(1)13;(2)23.(2)∵抽取2名,可得:甲乙,甲丙,乙丙,共3种等可能的结果,甲在其中的有2种情况,∴抽取2名,甲在其中的概率为:23.考点:概率.9.(2014年内蒙古包头、乌兰察布中考)有四张正面分别标有数字2,1,﹣3,﹣4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数字记为m ,再随机地摸取一张,将卡片上的数字记为n . (1)请画出树状图并写出(m ,n )所有可能的结果;(2)求所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三、四象限的概率. 【答案】(1)答案见试题解析;(2)16.试题解析:解:(1)画树状图得:∴(m ,n )共有12种等可能的结果:(2,1),(2,﹣3),(2,﹣4),(1,2),(1,﹣3),(1,﹣4),(﹣3,2),(﹣3,1),(﹣3,﹣4),(﹣4,2),(﹣4,1),(﹣4,﹣3).(2)∵当k 0<,b 0<时,函数y=kx+b 的图象经过第二、三、四象限,∴所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三四象限的有:(﹣3﹣4),(﹣4,﹣3).∴所选出的m ,n 能使一次函数y =mx +n 的图象经过第二、三四象限的概率为:21126. 考点:1.树状图法;2.概率;3.一次函数图象与系数的关系.10.(2014年云南省中考)某市“艺术节”期间,小明、小亮都想去观看茶艺表演,但是只有一张茶艺表演门票,他们决定采用抽卡片的办法确定谁去.规则如下:将正面分别标有数字1、2、3、4的四张卡片(除数字外其余都相同)洗匀后,背面朝上放置在桌面上,随机抽出一张记下数字后放回;重新洗匀后背面朝上放置在桌面上,再随机抽出一张记下数字.如果两个数字之和为奇数,则小明去;如果两个数字之和为偶数,则小亮去.(1)请用列表或画树状图的方法表示抽出的两张卡片上的数字之和的所有可能出现的结果;。

相关文档
最新文档