第5章第1讲 平面向量的概念及线性运算、平面向量基本定理(习思用.数学文)
高中理数课件第五章 第一节 平面向量的概念及线性运算

自学区 抓牢双基· 完成情况
1.向量的线性运算
[基本知识]
向量 运算
定义
法则(或几何意义)
运算律
加法
求两个向量 和的运算
交换律:a +b =
b__+__a_;结合律:(a + b )+c= a +(b +c)
求a 与b 的 减法 相反向量-b
的和的运算
a -b =a +(-b )
向量 运算
定义
法则(或几何意义)
+
―→ CD
=
2a
+
6b
=
2(a
+
3b
)
=
2―A→B ,所以―B→D ,―A→B 共线,又有公共点 B,所以 A,B, D 三点共线.故选 B.
[答案] (1)B (2)B
[方法技巧]
平面向量共线定理的三个应用
对于非零向量 a ,b ,若存在实数 λ,使 证明向量共线
a =λb ,则 a 与 b 共线
(1)两个向量不能比较大小,只可以判断它们是否相等, 但它们的模可以比较大小;
(2)大小与方向是向量的两个要素,分别是向量的代数特 征与几何特征;
(3)向量可以自由平移,任意一组平行向量都可以移到同 一直线上.
[全练题点]
1.给出下列命题: ①两个具有公共终点的向量,一定是共线向量;
②λa =0(λ 为实数),则 λ 必为零;
②正确.∵―A→B =―D→C ,∴|―A→B |=|―D→C |且―A→B ∥―D→C , 又 A,B,C,D 是不共线的四点, ∴四边形 ABCD 为平行四边形; 反之,若四边形 ABCD 为平行四边形, 则―A→B ∥―D→C 且|―A→B |=|―D→C |,因此,―A→B =―D→C . ③不正确.当 a ∥b 且方向相反时,即使|a |=|b |,也不能得到 a
课件8:§5.1 平面向量的概念及线性运算

;
λ=0 时,λa= 0
λa+λb
3.平行向量基本定理 如果 a=λb,则 a∥b;反之,如果 a∥b,且 b≠0,则一定存在 唯一一个实数 λ,使 a=λb.
[小题诊断]
→→ 1.在平行四边形 ABCD 中,对角线 AC 与 BD 交于点 O,若AB+AD
→ =λAO,则 λ=( A.1
) B.2
→ -CB=3e1-2ke2-(ke1+e2)=(3-k)e1-(2k+1)e2,所以 3e1+2e2=
λ(3-k)e1-λ(2k+1)e2,所以32==λ-(3λ-(2kk)+,1). 解得 k=-94. 答案:A
方法技巧
共线向量定理的 3 个应用 (1)判断向量共线:对于向量 a,b,若存在实数 λ,使 a=λb,则 a 与 b 共线.
b 共线且反向”,故答案为 C.
答案:C
核心考点 互动探究
考点一 平面向量的有关概念 题组练通
1.下列说法正确的是( ) A.长度相等的向量叫做相等向量 B.共线向量是在同一条直线上的向量 C.零向量的长度等于 0
→→ →
→
D.AB∥CD就是AB所在的直线平行于CD所在的直线
解析:长度相等且方向相同的向量叫做相等向量,故 A 不正确;方 向相同或相反的非零向量叫做共线向量,但共线向量不一定在同一 条直线上,故 B 不正确;显然 C 正确;当A→B∥C→D时,A→B所在的直 线与C→D所在的直线可能重合,故 D 不正确.
即B→C=32B→D-12B→A=32b-12a.
答案:D
3.若向量 a 与 b 不相等,则 a 与 b 一定( )
A.有不相等的模
B.不共线
C.不可能都是零向量
D.不可能都是单位向量
2020年高考课标版高考文科数学 §5.1 平面向量的概念及线性运算、平面向量的基本定理

第五章平面向量【真题典例】§5.1平面向量的概念及线性运算、平面向量的基本定理挖命题【考情探究】分析解读从近几年的高考试题来看,高考对本节内容的考查以选择题和填空题为主,重点考查向量的概念、几何表示、向量的加减法、实数与向量的积、两个向量共线的充要条件和向量的坐标运算,此类问题一般难度不大.向量的有关概念、向量的线性运算、平面向量基本定理、向量的坐标运算等知识是平面向量的基础,高考主要考查基础运用,其中线性运算、坐标运算、平面向量基本定理是高考的重点与热点,要熟练掌握.破考点【考点集训】考点一平面向量的线性运算及其几何意义1.(2018河北唐山二模,4)已知O是正方形ABCD的中心.若=λ+μ,其中λ,μ∈R,则=( )A.-2B.-C.-D.答案A2.(2018吉林调研,8)已知a,b是不共线的非零向量,=λa+b,=a+μb(λ,μ∈R),若A,B,C三点共线,则λ,μ的关系一定成立的是( )A.λμ=1B.λμ=-1C.λ-μ=1D.λ+μ=2答案A3.(2019届广东普宁一中10月月考,9)在△OAB中,若点C满足=2,=λ+μ,则+=( )A. B. C. D.答案D考点二平面向量基本定理及向量的坐标运算1.(2018河北衡水中学五调,8)已知平面直角坐标系内的两个向量a=(1,2),b=(m,3m-2),且平面内的任一向量c都可以唯一地表示成c=λa+μb(λ,μ为实数),则m的取值范围是( )A.(-∞,2)B.(2,+∞)C.(-∞,+∞)D.(-∞,2)∪(2,+∞)答案D2.(2019届湖北重点中学第一次联考,5)已知向量a=(-2,1),b=(-1,3),则( )A.a∥bB.a⊥bC.a∥(a-b)D.a⊥(a-b)答案D3.(2018河北武邑中学期中,8)已知在Rt△ABC中,∠BAC=90°,AB=1,AC=2,D是△ABC内一点,且∠DAB=60°,设=λ+μ(λ,μ∈R),则=( )A. B.C.3D.2答案A炼技法【方法集训】方法1 向量共线问题的求解方法1.(2018福建漳州二模,5)已知点C(1,-1),D(2,x),若向量a=(x,2)与的方向相反,则|a|=( )A.1B.2C.2D.答案C2.(2017河北石家庄二中月考,7)M是△ABC所在平面内一点,++=0,D为AC的中点,则的值为( )A. B. C.1 D.2答案B3.(2017福建福州3月质检,6)设向量=(1,-2),=(a,-1),=(-b,0),其中O为坐标原点,a>0,b>0,若A,B,C三点共线,则+的最小值为( )A.4B.6C.8D.9答案C方法2 利用平面向量基本定理解决问题的方法1.(2018陕西部分名校摸底考试,7)如图,在△ABC中,=,P是BN上一点,若=m+,则实数m的值为( )A. B. C. D.答案D2.(2018天津和平一模,5)如图,在直角梯形ABCD中,AB∥DC,AD⊥DC,AD=DC=2AB,E为AD的中点,若=λ+μ(λ,μ∈R),则λ+μ的值为( )A. B. C.2 D.答案B3.(2017河南中原名校4月联考,7)如图所示,矩形ABCD的对角线相交于点O,E为AO的中点,若=λ+μ(λ,μ为实数),则λ2+μ2=( )A. B. C.1 D.答案A过专题【五年高考】A组统一命题·课标卷题组考点一平面向量的线性运算及其几何意义1.(2018课标全国Ⅰ,7,5分)在△ABC中,AD为BC边上的中线,E为AD的中点,则=( )A.-B.-C.+D.+答案A2.(2017课标全国Ⅱ,4,5分)设非零向量a,b满足|a+b|=|a-b|,则( )A.a⊥bB.|a|=|b|C.a∥bD.|a|>|b|答案A3.(2014课标Ⅰ,6,5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=( )A. B. C. D.答案A考点二平面向量基本定理及向量的坐标运算1.(2015课标Ⅰ,2,5分)已知点A(0,1),B(3,2),向量=(-4,-3),则向量=( )A.(-7,-4)B.(7,4)C.(-1,4)D.(1,4)答案A2.(2016课标全国Ⅱ,13,5分)已知向量a=(m,4),b=(3,-2),且a∥b,则m= .答案-6B组自主命题·省(区、市)卷题组考点一平面向量的线性运算及其几何意义(2014福建,10,5分)设M为平行四边形ABCD对角线的交点,O为平行四边形ABCD所在平面内任意一点,则+++等于( )A. B.2 C.3 D.4答案D考点二平面向量基本定理及向量的坐标运算1.(2015四川,2,5分)设向量a=(2,4)与向量b=(x,6)共线,则实数x=( )A.2B.3C.4D.6答案B2.(2015福建,7,5分)设a=(1,2),b=(1,1),c=a+k b.若b⊥c,则实数k的值等于( )A.-B.-C.D.答案A3.(2015广东,9,5分)在平面直角坐标系xOy中,已知四边形ABCD是平行四边形,=(1,-2),=(2,1),则·=( )A.5B.4C.3D.2答案A4.(2015湖南,9,5分)已知点A,B,C在圆x2+y2=1上运动,且AB⊥BC.若点P的坐标为(2,0),则|++|的最大值为( )A.6B.7C.8D.9答案B5.(2017山东,11,5分)已知向量a=(2,6),b=(-1,λ).若a∥b,则λ=.答案-3C组教师专用题组考点一平面向量的线性运算及其几何意义(2013四川,12,5分)如图,在平行四边形ABCD中,对角线AC与BD交于点O,+=λ,则λ=.答案 2考点二平面向量基本定理及向量的坐标运算1.(2014广东,3,5分)已知向量a=(1,2),b=(3,1),则b-a=( )A.(-2,1)B.(2,-1)C.(2,0)D.(4,3)答案B2.(2014北京,3,5分)已知向量a=(2,4),b=(-1,1),则2a-b=( )A.(5,7)B.(5,9)C.(3,7)D.(3,9)答案A3.(2013广东,10,5分)设a是已知的平面向量且a≠0.关于向量a的分解,有如下四个命题:①给定向量b,总存在向量c,使a=b+c;②给定向量b和c,总存在实数λ和μ,使a=λb+μc;③给定单位向量b和正数μ,总存在单位向量c和实数λ,使a=λb+μc;④给定正数λ和μ,总存在单位向量b和单位向量c,使a=λb+μc.上述命题中的向量b,c和a在同一平面内且两两不共线,则真命题的个数是( )A.1B.2C.3D.4答案B4.(2014陕西,18,12分)在直角坐标系xOy中,已知点A(1,1),B(2,3),C(3,2),点P(x,y)在△ABC三边围成的区域(含边界)上,且=m+n(m,n∈R).(1)若m=n=,求||;(2)用x,y表示m-n,并求m-n的最大值.解析(1)∵m=n=,=(1,2),=(2,1),∴=(1,2)+(2,1)=(2,2),∴||==2.(2)∵=m(1,2)+n(2,1)=(m+2n,2m+n),∴两式相减,得m-n=y-x.令y-x=t,由图知,当直线y=x+t过点B(2,3)时,t取得最大值1,故m-n的最大值为1.【三年模拟】时间:45分钟分值:65分一、选择题(每小题5分,共30分)1.(2019届湖南顶级名校摸底考试,4)如图,已知=,=,=4,=3,则=( )A.-B.-C.a-D.-答案D2.(2018辽宁六校协作体期中联考,4)设非零向量a,b,下列四个条件中,使=成立的充分条件是( )A.a∥bB.a=2bC.a∥b且|a|=|b|D.a=-b答案B3.(2019届宁夏顶级名校10月联考,10)已知向量=(3,1),=(-1,3),=m-n(m>0,n>0),若m+n=1,则||的最小值为( )A. B. C. D.答案C4.(2019届安徽皖中名校10月联考,9)在△ABC中,点D是AC上一点,且=4,P为BD上一点,向量=λ+μ(λ>0,μ>0),则+的最小值为( )A.16B.8C.4D.2答案A5.(2018江西宜春联考,11)设O是平面上一定点,A,B,C是平面上不共线的三点,动点P满足=+λ+,λ∈[0,+∞),则点P的轨迹经过△ABC的( )A.外心B.内心C.重心D.垂心答案D6.(2019届河北邯郸重点中学9月联考,11)给定两个长度为1的平面向量和,它们的夹角为120°,点C在以O为圆心的圆弧AB上运动,若=x+y,则x+y的最大值是( )A. B.1 C. D.2答案D二、填空题(每小题5分,共15分)7.(2018中原名校9月联考,15)如图,在△ABC中,点M是BC的中点,N在边AC上,且=2,AM与BN相交于点P,则= .答案 48.(2019届广东惠州第一次调研,13)已知向量a=(2,1),b=(x,-1),且a-b与b共线,则x的值为.答案-29.(2019届广东深圳外国语学校10月模拟,15)已知a,b是两个不共线的非零向量,且a与b起点相同.若a,t b,(a+b)三向量的终点在同一直线上,则t= .答案三、解答题(共20分)10.(2018湖北重点高中协作体联考,18)在边长为1的正三角形ABC中,设e1=,e2=,点D满足=.(1)试用e1,e2表示;(2)若a=x e1+y e2(x,y∈R,且x≠0),求的最大值.解析(1)由题知=,∴=+=+=+(-)=+=e1+e2.(2)∵x,y∈R,且x≠0,∴====,故当=-时,取最大值.11.(2018河南许昌、平顶山两市联考,21)在平面直角坐标系中,O为坐标原点,M为平面上任意一点,A,B,C三点满足=+.(1)求证:A,B,C三点共线,并求的值;(2)已知A(1,sin x),B(1+sin x,sin x),M,x∈(0,π),且函数f(x)=·+-·||的最小值为,求实数m的值. 解析(1)∵=+,∴-=(-),∴=.又∵,有公共点B,∴A,B,C三点共线.∵=,∴=3.(2)∵A(1,sin x),B(1+sin x,sin x),M,O(0,0),∴=(1,sin x),=,∴·=1+sin x+sin2x,又=(sin x,0),x∈(0,π),∴||=sin x,∴f(x)=·+-·||=sin2x+2msin x+1.设t=sin x.∵x∈(0,π),∴t∈(0,1],∴y=t2+2mt+1=(t+m)2+1-m2.①当-m≤0,即m≥0时,y=t2+2mt+1无最小值,不合题意;②当0<-m≤1,即-1≤m<0时,当t=-m时,y min=1-m2=,∴m=-舍去;③当-m>1,即m<-1时,当t=1时,y min=2+2m=, ∴m=-,此时m>-1,不合题意.综上可知,m=-.。
高考数学一轮复习第五章平面向量第一节平面向量的概念及其线性运算课件文

两向量不能比较大小
2.向量的线性运算
栏目索引
向量运算的常用结论
(1)在△ABC中,D是BC的中点,则 AD= 1( AC+ AB);
2
(2)O为△ABC的重心的充要条件是 OA+ OB+ OC=0;
(3)四边形ABCD中,E为AD的中点,F为BC的中点,则 AB+ DC =2 EF .
典例1 给出下列命题:
(1)若|a|=|b|,则a=b;
(2)若A、B、C、D是不共线的四点,则 AB= DC 是四边形ABCD为平行四
边形的充要条件;
(3)若a=b,b=c,则a=c;
(4)两向量a、b相等的充要条件是|a|=|b|且a∥b;
(5)如果a∥b,b∥c,那么a∥c.
其中假命题的个数为 ( B )
向量由方向和长度确定,不受位 置影响
零向量 长度为⑤ 0 的向量;其方向是任意的 单位向量 长度等于⑦ 1个单位 的向量
记作⑥ 0
a
|a|
非零向量a的单位向量为±
平行向量 方向⑧ 相同或相反 的非零向量
0与任一向量⑩ 平行 或共
共线向量 ⑨ 方向相同或相反 的非零向量又叫做共线向 线
量
相等向量 长度 相等 且方向 相同 的向量
C
AB
∥ CD
包含 AB
所在的直线与 CD
所在的直线平行和重合两
种情况,故A错;相等向量不仅要求长度相等,还要求方向相同,故B错;零
向量长度为0,故C正确;共线向量可以是在同一条直线上的向量,也可以
是所在直线互相平行的向量,故D错.
2.(2016北京西城期末)设M是△ABC所在平面内一点,且 BM= MC,则 AM
第1讲 平面向量的概念及线性运算

第1讲平面向量的概念及线性运算1.了解向量的实际背景.2.理解平面向量的概念,理解两个向量相等的含义.3.理解向量的几何表示.4.掌握向量加法、减法的运算,并理解其几何意义.5.掌握向量数乘的运算及其几何意义,理解两个向量共线的含义.6.了解向量线性运算的性质及其几何意义.1.向量的有关概念(1)向量:既有大小又有□1方向的量叫做向量,向量的大小叫做向量的□2模.(2)零向量:长度为□30的向量,其方向是任意的.(3)单位向量:长度等于□41个单位长度的向量.(4)平行向量:方向相同或□5相反的非零向量,又叫共线向量,规定:0与任意向量共线.(5)相等向量:长度相等且方向□6相同的向量.(6)相反向量:长度相等且方向□7相反的向量.2.平面向量的线性运算向量运算定义法则(或几何意义)运算律加法求两个向量和的运算□8三角形法则□9平行四边形法则(1)交换律:a +b =□10b +a ;(2)结合律:(a +b )+c=□11a +(b +c )减法求a 与b 的相反向量-b 的和的运算叫做a 与b 的差□12三角形法则a -b =□13a +(-b )数乘求实数λ与向量a的积的运算(1)|λa|=|λ||a|;(2)当λ>0时,λa与a的方向□14相同;当λ<0时,λa与a的方向□15相反;当λ=0时,λa=□160(1)结合律:λ(μa)=□17λμa=□18μ(λa);(2)第一分配律:(λ+μ)a=□19λa+μa;(3)第二分配律:λ(a+b)=□20λa+λb3.共线向量定理向量a(a≠0)与b共线的充要条件是:存在唯一一个实数λ,使□21b=λa.共线向量定理中易忽视“a≠0”,若忽视“a≠0”,则λ可能不存在;也可能有无数个.常用结论1.若P为线段AB的中点,O为平面内任一点,则OP→=12(OA→+OB→).2.若G为△ABC的重心,则有(1)GA→+GB→+GC→=0;(2)AG→=13(AB→+AC→).1.思考辨析(在括号内打“√”或“×”)(1)向量与有向线段是一样的,因此可以用有向线段来表示向量.()(2)若两个向量共线,则其方向必定相同或相反.()(3)若向量AB→与向量CD→是共线向量,则A,B,C,D四点在一条直线上.()(4)当两个非零向量a,b共线时,一定有b=λa,反之亦成立.()答案:(1)×(2)×(3)×(4)√2.回源教材(1)已知a,b是两个不共线向量,向量b-t a与12a-32b共线,则实数t =.解析:因为b-t a与12a-32b共线,所以存在λ∈R,使得b-t a=λ(12a-32b),t ,=1,=-23,=13.答案:13(2)若AB →=3a ,CD →=-5a ,且|AD →|=|BC →|,则四边形ABCD 的形状是.解析:因为AB→=3a ,CD →=-5a ,故AB →∥CD →,且|AB →|≠|CD →|.又|AD →|=|BC →|,所以四边形ABCD 是等腰梯形.答案:等腰梯形(3)在平行四边形ABCD 中,BC 的中点为M ,且AB →=a ,AD →=b ,用a ,b 表示AM→=.解析:AM →=AB →+BM →=AB →+12AD →=a +12b .答案:a +12b平面向量的概念例1(1)如图所示,O 是正六边形ABCDEF 的中心,则与BC→相等的向量为()A.BA →B.CD →C.AD→ D.OD→解析:D A ,B 选项均与BC →方向不同,C 选项与BC →长度不相等,D 选项与BC →方向相同,长度相等.(2)(多选)下列命题中正确的是()A.向量AB→的长度与向量BA →的长度相等B.向量a 与b 平行,则a 与b 的方向相同或相反C.两个有共同起点且相等的向量,其终点必相同D.两个终点相同的向量,一定是共线向量解析:AC对于A ,向量AB →与向量BA →的长度相等,方向相反,故A 正确;对于B ,向量a 与b 平行,且a 或b 为零向量时,不满足条件,故B 错误;对于C ,两个有共同起点且相等的向量,其终点也相同,故C 正确;对于D ,两个终点相同的向量,不一定是共线向量,故D 错误.反思感悟平行向量有关概念的四个关注点(1)非零向量的平行具有传递性.(2)共线向量即为平行向量,它们均与起点无关.(3)向量可以平移,平移后的向量与原向量是相等向量.(4)a|a |是与a 同方向的单位向量.训练1(1)(2024·福州模拟)如图,在正△ABC 中,D ,E ,F 均为所在边的中点,则以下向量和FC→相等的是()A.EF →B.FB →C.DF→ D.ED→解析:D ∵EF→,FB →,DF →与FC →方向不同,∴EF →,FB →,DF →与FC →均不相等;∵ED→与FC →方向相同,长度相等,∴ED →=FC →.(2)(多选)下列说法中正确的是()A.单位向量都相等B.任一向量与它的相反向量不相等C.若|a |=|b |,则a 与b 的长度相等,与方向无关D.若a 与b 是相反向量,则|a |=|b |解析:CD 对于A ,单位向量方向不同时并不相等,A 错误;对于B ,0的相反向量为0,B 错误;对于C ,|a |=|b |,则a 与b 的长度相等,与方向无关,C 正确;对于D ,相反向量是长度相等,方向相反的向量,D 正确.平面向量的线性运算向量的线性运算例2(2024·德宏州质量监测)在△ABC 中,若AD 为BC 边上的中线,点E在AD 上,且AE =2ED ,则EB →=()A.23AB →-13AC →B.23AC →-13AB →C.76AB →-56AC →D.76AC →-56AB →解析:A 如图所示.在△ABC 中,因为AD 为BC 边上的中线,所以D 为BC 的中点.由平行四边形法则,得AD→=12(AB →+AC →).又点E 在AD 上,且AE =2ED ,所以EA→=-23AD →,所以EB→=EA →+AB →=-23AD →+AB →=-23×12(AB →+AC →)+AB→=-13AB →-13AC →+AB→=23AB →-13AC →.故选A.根据向量线性运算求参数例3(2024·江西重点中学协作体第一次联考)如图,在平行四边形ABCD 中,M 为BC 的中点,AC 与MD 相交于点P .若AP→=xAB →+yAD →,则x +y =()A.1B.43C.53D.2解析:B 因为在平行四边形ABCD 中,M 为BC 的中点,AC 与MD 相交于点P ,所以AD CM =AP PC =2,所以AP →=23AC →=23(AB →+AD →).又AP →=xAB →+yAD →,所以x =y =23,x +y =43.故选B.反思感悟平面向量线性运算的常见类型及解题策略(1)向量求和用平行四边形法则或三角形法则;求差用向量减法的几何意义.(2)求参数问题可以通过向量的运算将向量表示出来,进行比较,求参数的值.训练2(1)(2024·茂名模拟)在△ABC 中,AB→=c ,AC →=b .若点M 满足MC →=2BM →,则AM →=()A.13b +23c B.23b -13c C.53c -23b D.23b +13c 解析:A由题意可得AM →=AB →+BM →=AB →+13BC →=AB →+13(AC →-AB →)=13AC →+23AB →=13b +23c .故选A.(2)在△ABC 中,AB =2,BC =33,∠ABC =30°,AD 为BC 边上的高.若AD →=λAB →+μAC →,则λ-μ=.解析:如图,∵AD 为BC 边上的高,∴AD ⊥BC .∵AB =2,∠ABC =30°,∴BD =3=13BC ,∴AD →=AB →+BD →=AB →+13BC→=AB →+13(AC →-AB →)=23AB →+13AC →.又AD →=λAB →+μAC →,∴λ=23,μ=13,故λ-μ=13.答案:13共线向量定理及应用例4(1)已知平面向量a ,b 不共线,AB→=4a +6b ,BC →=-a +3b ,CD →=a +3b ,则()A.A ,B ,D 三点共线B.A ,B ,C 三点共线C.B ,C ,D 三点共线D.A ,C ,D 三点共线解析:D 对于A ,BD →=BC →+CD →=-a +3b +(a +3b )=6b ,与AB →不共线,A 不正确;对于B ,AB→=4a +6b ,BC →=-a +3b ,则AB →与BC →不共线,B 不正确;对于C ,BC→=-a +3b ,CD →=a +3b ,则BC →与CD →不共线,C 不正确;对于D ,AC →=AB →+BC →=4a +6b +(-a +3b )=3a +9b =3CD →,即AC →∥CD →,又线段AC 与CD 有公共点C ,所以A ,C ,D 三点共线,D 正确.故选D.(2)(2024·枣庄期末)已知D 为线段AB 上的任意一点,O 为直线AB 外一点,A 关于点O 的对称点为C .若OD→=xOB →+yOC →,则x -y 的值为()A.-1B.0C.1D.2解析:C依题意可得A ,B ,D 三点共线,所以OD →=λOA →+(1-λ)OB →.因为A关于点O 的对称点为C ,所以OC→=-OA →,又OD →=xOB →+yOC →,所以OD →=xOB →-yOA →y =λ,=1-λ,则x -y =1-λ+λ=1.故选C.反思感悟利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据.注意待定系数法和方程思想的运用.(2)当两向量共线且有公共点时,才能得出三点共线,即A ,B ,C 三点共线⇔AB→,AC →共线.(3)若a 与b 不共线且λa =μb ,则λ=μ=0.(4)OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.训练3(1)(多选)已知向量a ,b 是两个不共线的向量,且向量m a -3b 与a+(2-m )b 共线,则实数m 的取值可以为()A.-1B.3C.4D.3解析:AD由a ,b 不共线易知a +(2-m )b 为非零向量,因为向量m a -3b与a +(2-m )b 共线,所以存在实数λ,使得m a -3b =λ[a +(2-m )b ],所以=λ,3=λ(2-m ),得m =-1或m =3.故选AD.(2)如图,在△ABC 中,AD →=2DB →,P 为CD 上一点,且满足AP →=mAC →+12AB →(m ∈R ),则m 的值为()A.-34 B.-14C.14D.34解析:C由AD→=2DB →,可得AB →=32AD →,即AP→=mAC →+12AB →=mAC →+34AD →.因为C ,P ,D 三点共线,所以m +34=1,m =14.故选C.限时规范训练(三十五)A 级基础落实练1.化简2(a -3b )-3(a +b )的结果为()A.a +4b B.-a -9b C.2a +b D.a -3b解析:B2(a -3b )-3(a +b )=2a -6b -3a -3b =-a -9b .2.(多选)下列命题中,正确的是()A.若a ∥b ,b ∥c ,则a ∥cB.在△ABC 中,AB→+BC →+CA →=0C.若两个单位向量互相平行,则这两个单位向量相等或相反D.如果非零向量a ,b 的方向相同或相反,那么a +b 的方向与a ,b 之一的方向一定相同解析:BC对于A 选项,0平行于任何向量,若b =0,满足a ∥b ,b ∥c ,但不一定满足a ∥c ,故A 错误;对于B 选项,首尾顺次相接,正确;对于C 选项,两个单位向量互相平行,这两个单位向量相等或相反(大小相等,方向相反),故C 正确;对于D 选项,当a +b =0时,零向量的方向是任意的,故D 错误.3.(2024·枣庄调研)已知a ,b 是两个不共线的平面向量,向量AB →=λa +b ,AC →=a -μb (λ,μ∈R ),若AB→∥AC →,则有()A.λ+μ=2 B.λ-μ=1C.λμ=-1 D.λμ=1解析:C因为AB →∥AC →,所以存在实数k 使AB →=kAC →.因为AB→=λa +b ,AC →=a -μb (λ,μ∈R ),所以λa+b=k(a-μb),=k,=-kμ,所以λμ=-1.故选C.4.设a=(AB→+CD→)+(BC→+DA→),b是一个非零向量,则下列结论不正确的是()A.a∥bB.a+b=aC.a+b=bD.|a+b|=|a|+|b|解析:B由题意得,a=(AB→+CD→)+(BC→+DA→)=AC→+CA→=0,且b是一个非零向量,所以a∥b成立,所以A正确;由以上可知a+b=b,所以B不正确,C正确;由|a+b|=|b|,|a|+|b|=|b|,所以|a+b|=|a|+|b|,所以D正确.5.如图,BC,DE是半径为1的圆O的两条直径,BF→=2FO→,且FC→=λFD→+μFE→,则λ+μ等于()A.1B.2C.3D.4解析:D∵FC→=FO→+OC→=4FO→=4×12(FD→+FE→)=2FD→+2FE→,∴λ=μ=2,∴λ+μ=4.6.在△ABC中,BD→=13BC→,若AB→=a,AC→=b,则AD→等于()A.23a+13b B.13a+23bC.13a-23b D.23a-13b解析:A 如图,过点D 分别作AC ,AB 的平行线交AB ,AC 于点E ,F ,则四边形AEDF 为平行四边形,所以AD →=AE →+AF →.因为BD →=13BC →,所以AE→=23AB →,AF →=13AC →,所以AD →=23AB →+13AC →=23a +13b .7.已知向量a ,b 不共线,且c =λa +b ,d =a +(2λ-1)b ,若c 与d 共线反向,则实数λ的值为.解析:由于c 与d 共线反向,则存在实数k 使c =k d (k <0),于是λa +b =k [a +(2λ-1)b ],整理得λa +b =k a +(2λk -k )b .由于a ,b =k ,λk -k =1,整理得2λ2-λ-1=0,解得λ=1或λ=-12.因为k <0,所以λ<0,故λ=-12.答案:-128.如图,在平行四边形ABCD 中,E 为DC 边的中点,且AB →=a ,AD →=b ,则BE→=.解析:BE→=BA →+AD →+12DC →=-a +b +12a =b -12a .答案:b -12a9.若点O 是△ABC 所在平面内的一点,且满足|OB →-OC →|=|OB →+OC →-2OA →|,则△ABC 的形状为.解析:OB →+OC →-2OA →=(OB →-OA →)+(OC →-OA →)=AB →+AC →,OB →-OC →=CB →=AB →-AC →,∴|AB→+AC →|=|AB →-AC →|.故A ,B ,C 为矩形的三个顶点,△ABC 为直角三角形.答案:直角三角形10.设e 1,e 2是两个不共线的向量,已知AB →=2e 1-8e 2,CB →=e 1+3e 2,CD →=2e 1-e 2.(1)求证:A ,B ,D 三点共线;(2)若BF →=3e 1-k e 2,且BF →∥BD →,求实数k 的值.解:(1)证明:由已知得BD →=CD →-CB →=(2e 1-e 2)-(e 1+3e 2)=e 1-4e 2,因为AB →=2e 1-8e 2,所以AB →=2BD →,又AB→与BD →有公共点B ,所以A ,B ,D 三点共线.(2)由(1)知BD →=e 1-4e 2,若BF →=3e 1-k e 2,且BF →∥BD →,可设BF →=λBD →(λ∈R ),所以3e 1-k e 2=λe 1-4λe 2,即(3-λ)e 1=(k -4λ)e 2,又e 1,e 2是两个不共线的向量,-λ=0,-4λ=0,解得k=12.11.如图,在△ABC中,D为BC的四等分点,且靠近B点,E,F分别为AC,AD的三等分点,且分别靠近A,D两点,设AB→=a,AC→=b.(1)试用a,b表示BC→,AD→,BE→;(2)证明:B,E,F三点共线.解:(1)在△ABC中,因为AB→=a,AC→=b,所以BC→=AC→-AB→=b-a,AD→=AB→+BD→=AB→+14BC→=a+14(b-a)=34a+14b,BE→=BA→+AE→=-AB→+13AC→=-a+13b.(2)证明:因为BE→=-a+13b,BF→=BA→+AF→=-AB→+23AD→=-a+23(34a+14b)=-12a+16b=12(-a+13b),所以BF→=12BE→,即BF→与BE→共线,且有公共点B,所以B,E,F三点共线.B级能力提升练12.设P,Q为△ABC内的两点,且AP→=25AB→+15→,AQ→=14AB→+23AC→,则△ABP 的面积与△ABQ的面积之比为()A.45B.85C.43D.310解析:D 如图,设AM →=25AB →,AN →=15AC →,∴AP→=25AB →+15AC →=AM →+AN →,由平行四边形法则知NP ∥AB ,∴△ABP 的面积与△ABC 的面积之比为15,同理,由AQ→=14AB →+23AC →,可得△ABQ 的面积与△ABC 的面积之比为23,∴△ABP 的面积与△ABQ 的面积之比为15∶23=310.13.(2024·南昌联考)已知O 是△ABC 的外心,且OA →+OB →+CO →=0,则∠ACB =()A.π2B.2π3C.π3D.π4解析:B 设AB 的中点为D ,如图所示.由OA →+OB →+CO →=0,得OA→+OB →=OC →,则2OD→=OC →,所以D 是OC 的中点.因为OA =OB ,AB 的中点为D ,所以AB ⊥OD ,因此有cos ∠AOD =cos ∠BOD =OD OA =12,则∠AOD =∠BOD =π3.因为OA =OB =OC ,所以△OAC ,△OBC 是等边三角形,所以∠ACB =∠ACO +∠BCO =π3+π3=2π3.故选B.14.经过△OAB 的重心G 的直线与OA ,OB 分别交于点P ,Q ,设OP →=mOA →,OQ →=nOB →,(m >0,n >0).(1)证明:1m +1n 为定值;(2)求m +n 的最小值.解:(1)证明:设OA→=a ,OB →=b .由题意知OG →=23×12(OA →+OB →)=13(a +b ),PQ →=OQ →-OP →=n b -m a ,PG→=OG →-OP →=(13-m )a +13b ,由P ,G ,Q 三点共线得,存在实数λ,使得PQ →=λPG →,则n b -m a =λ(13-m )a +13λb ,m =λ(13-m ),=13λ,消去λ得1n +1m =3.(2)由(1)知,1m +1n =3,于是m +n =13(1m +1n)(m +n )=13(2+nm+mn)≥13(2+2)=43.当且仅当m=n=23时,m+n取得最小值,最小值为43.。
高考数学第一轮复习-第5章 第1讲 平面向量的概念及线性运算 平面向量的基本定理

高考数学第一轮复习 第五章 平面向量第1讲 平面向量的概念及线性运算 平面向量的基本定理考点一 平面向量的线性运算及几何意义入门测1.思维辨析(1)单位向量只与模有关,与方向无关.( ) (2)零向量的模等于0,没有方向.( ) (3)若两个向量共线,则其方向必定相同.( ) (4)若a ∥b ,b ∥c ,则必有a ∥c .( ) (5)AB →+BA →=0.( )2.如图,在正方形ABCD 中,AC 与BD 交于点O ,AB →+BO →+OC →=( )A .0 B.AD →C.AC →D.BD →3.设a 、b 是两个不共线向量,AB →=2a +p b ,BC →=a +b ,CD →=a -2b ,若A 、B 、D 三点共线,则实数p 的值为________.解题法命题法 对概念的理解、运算和共线定理的应用 典例 (1)下列说法中: ①若|a |=|b |,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC →是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a |=|b |且a ∥b ; ⑤若a ∥b ,b ∥c ,则a ∥c . 其中正确命题的序号是( ) A .②③B .①②C .③④D .④⑤(2)已知O ,A ,B 是平面上的三个点,直线AB 上有一点C ,满足2AC →+CB →=0,则OC →=( )A .2OA →-OB → B .-OA →+2OB → C.23OA →-13OB →D .-13OA →+23OB →(3)已知向量a ,b 不共线,c =k a +b (k ∈R ),d =a -b ,如果 c ∥d ,那么( )A .k =1且c 与d 同向B .k =1且c 与d 反向C .k =-1且c 与d 同向D .k =-1且c 与d 反向对点练1.设D 为△ABC 所在平面内一点,BC →=3CD →,则( ) A.AD →=-13AB →+43AC →B.AD →=13AB →-43AC →C.AD →=43AB →+13AC →D.AD →=43AB →-13AC →2.已知点A ,B ,C 在圆x 2+y 2=1上运动,且AB ⊥BC .若点P 的坐标为(2,0),则|P A →+PB →+PC →|的最大值为( )A .6B .7C .8D .93.对任意向量a ,b ,下列关系式中不恒成立的是( )A .|a ·b |≤|a ||b |B .|a -b |≤||a |-|b ||C .(a +b )2=|a +b |2D .(a +b )·(a -b )=a 2-b 24.记max{x ,y }=⎩⎪⎨⎪⎧ x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( )A .min{|a +b |,|a -b |}≤min{|a |,|b |}B .min{|a +b |,|a -b |}≥min{|a |,|b |}C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |25.设向量a ,b 不平行,向量λa +b 与a +2b 平行,则实数λ=________.6.已知向量OA →⊥AB →,|OA →|=3,则OA →·OB →=________.7.设0<θ<π2,向量a =(sin2θ,cos θ),b =(cos θ,1),若a ∥b ,则tan θ=________.考点二 平面向量的基本定理及坐标表示入门测1.思维辨析(1)平面向量不论经过怎样的平移变换之后其坐标不变.( ) (2)平面内任何两个不共线的向量均可作为一组基底.( )(3)向量AB →与BC →的夹角为∠ABC .( )(4)在同一组基底下同一向量的表现形式是唯一的.( )2.已知点A (-1,1),点B (2,y ),向量a =(1,2),若AB →∥a ,则实数y 的值为( ) A .5 B .6 C .7D .8 3.在平行四边形ABCD 中,AC 为一条对角线,若AB →=(2,4),AC →=(1,3),则BD →=( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)解题法命题法 向量共线,垂直的条件和共线向量基本定理的应用典例 (1)在下列向量组中,可以把向量a =(3,2)表示出来的是( ) A .e 1=(0,0),e 2=(1,2) B .e 1=(-1,2),e 2=(5,-2) C .e 1=(3,5),e 2=(6,10) D .e 1=(2,-3),e 2=(-2,3)(2)已知向量a =(1,-2),b =(m,4),且a ∥b ,则2a -b =( ) A .(4,0) B .(0,4) C .(4,-8)D .(-4,8)(3)在梯形ABCD 中,已知AB ∥CD ,AB =2CD ,M ,N 分别为CD ,BC 的中点.若AB →=λAM→+μAN →,则λ+μ=________.【解题法】 平面向量基本定理的应用及其坐标运算技巧 (1)共线问题的解题策略①向量共线的充要条件中,当两向量共线时,通常只有非零向量才能表示与之共线的其他向量,注意待定系数法和方程思想的运用.②证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得到三点共线.③若a 与b 不共线且λa =μb ,则λ=μ=0.④直线的向量式参数方程,A ,P ,B 三点共线⇔OP →=(1-t )·OA →+tOB →(O 为平面内任一点,t∈R ).⑤OA →=λOB →+μOC →(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1. (2)用平面向量基本定理解决问题的一般思路①先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.②在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.(3)坐标运算的技巧向量的坐标运算主要是利用加、减、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,解题过程中要注意方程思想的运用及正确使用运算法则,以向量为载体,可以解决三角函数、解析几何中的有关问题.对点练1.已知向量a =(1,2),b =(3,1),则b -a =( ) A .(-2,1) B .(2,-1) C .(2,0) D .(4,3) 2.已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c =( )A.⎝⎛⎭⎫79,73B.⎝⎛⎭⎫-73,-79C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 3.在△ABC 中,点M ,N 满足AM →=2MC →,BN →=NC →.若MN →=xAB →+yAC →,则x =_______;y =_______.4.已知向量a =(2,1),b =(1,-2).若m a +n b =(9,-8)(m ,n ∈R ),则m -n 的值为________. 5.设向量a =(3,3),b =(1,-1).若(a +λb )⊥(a -λb ),则实数λ=________.6.在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD →|=1,则|OA →+OB →+OD →|的最大值是________.7. 如图所示,在△ABC 中,点M 是AB 的中点,且AN →=12NC →,BN 与CM 相交于点E ,设AB→=a ,AC →=b ,用基底a ,b 表示向量AE →=________.微型专题 以向量坐标运算为载体的创新问题创新考向以向量的坐标运算为载体的创新问题是近几年高考命题的一个热点,综合考查向量与函数等知识,考查学生的应变能力与创新能力.创新例题在平面直角坐标系中,若O 为坐标原点,则A ,B ,C 三点在同一直线上的充要条件为存在唯一的实数λ,使得OC →=λOA →+(1-λ)OB →成立,此时称实数λ为“向量OC →关于OA →和OB →的终点共线分解系数”.若已知P 1(3,1),P 2(-1,3),P 1,P 2,P 3三点共线且向量OP 3→与向量a =(1,-1)共线,则“向量OP 3→关于OP 1→和OP 2→的终点共线分解系数”为( )A .-3B .3C .1D .-1已知平行四边形三个顶点的坐标分别为(-1,0),(3,0),(1,-5),求第四个顶点的坐标.课时练 基础组1已知非零向量a ,b ,则“a +b =0”是“a ∥b ”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分又不必要条件2.已知△ABC 的三个顶点A ,B ,C 及其所在平面内一点P 满足P A →+PB →+PC →=AB →,则( )A .P 在△ABC 内B .P 在△ABC 外 C .P 在直线AB 上D .P 是AC 边的一个三等分点3.如图所示,在平行四边形ABCD 中,E 是BC 的中点,F 是AE 的中点,若AB →=a ,AD →=b ,则AF →=( )A.12a +14b B.14a +12b C.12a -14b D.14a -12b 4.设a =(1,2),b =(1,1),c =a +k b .若b ⊥c ,则实数k 的值等于( )A .-32B .-53C.53D.32 5.设向量a =(x,1),b =(4,x ),且a ,b 方向相反,则x 的值是( )A .2B .-2C .±2D .0 6.[2016·武邑中学模拟]已知向量OA →=(k,12),OB →=(4,5),OC →=(-k,10),且A ,B ,C 三点共线,则k 的值是( )A .-23B.43C.12D.137.如图,已知|OA →|=1,|OB →|=3,OA →·OB →=0,点C 在线段AB 上,且∠AOC =30°,设OC →=mOA →+nOB →(m ,n ∈R ),则mn=( )A.13 B .3 C.33D. 38.O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP→=OA→+λ⎝ ⎛⎭⎪⎫AB →|AB →|+AC →|AC →|,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( ) A .外心 B .内心 C .重心D .垂心9.已知D 为三角形ABC 边BC 的中点,点P 满足P A →+BP →+CP →=0,AP →=λPD →,则实数λ的值为________.10. △ABC 的三内角A 、B 、C 所对的边分别为a 、b 、c ,设向量m =(3c -b ,a -b ),n =(3a +3b ,c ),m ∥n ,则cos A =________.11.已知点O (0,0)、A (1,2)、B (4,5)及OP →=OA →+tAB →,试问: (1)t 为何值时,P 在x 轴上?在y 轴上?P 在第三象限?(2)四边形OABP 能否成为平行四边形?若能,求出相应的t 值;若不能,请说明理由. 12.在直角坐标系xOy 中,已知点A (1,1),B (2,3),C (3,2),点P (x ,y )在△ABC 三边围成的区域(含边界)上.(1)若P A →+PB →+PC →=0,求|OP →|;(2)设OP →=mAB →+nAC →(m ,n ∈R ),用x ,y 表示m -n ,并求m -n 的最大值.能力组13设a 是已知的平面向量且a ≠0,关于向量a 的分解,有如下四个命题: ①给定向量b ,总存在向量c ,使a =b +c ;②给定向量b 和c ,总存在实数λ和μ,使a =λb +μc ;③给定单位向量b 和正数μ,总存在单位向量c 和实数λ,使a =λb +μc ; ④给定正数λ和μ,总存在单位向量b 和单位向量c ,使a =λb +μc .上述命题中的向量b ,c 和a 在同一平面内且两两不共线,则真命题的个数是( ) A .1 B .2 C .3D .4 14.已知向量OA →=(1,3),OB →=(3,-1),且AP →=2PB →,则点P 的坐标为( ) A .(2,-4) B.⎝⎛⎭⎫23,-43 C.⎝⎛⎭⎫73,13D .(-2,4)15.在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA→-mCB →|的最小值为32,则|CO →|的最小值为________.16.如图,已知△OCB 中,A 是CB 的中点,D 是将OB →分成2∶1的一个内分点,DC 和OA交于点E ,设OA →=a ,OB →=b .(1)用a 和b 表示向量OC →,DC →; (2)若OE →=λOA →,求实数λ的值.。
平面向量的线性运算
平面向量的线性运算在数学中,平面向量是向量的一种,它在平面内具有长度和方向,可以用有向线段表示。
平面向量之间可以进行线性运算,包括加法和数乘。
本文将详细介绍平面向量的线性运算及其性质。
一、平面向量的定义平面向量是指具有大小和方向的向量,它们通常用加粗的小写字母表示,如a、a等。
平面向量可以用有向线段表示,线段的起点表示向量的起点,线段的方向表示向量的方向,线段的长度表示向量的大小。
二、平面向量的加法平面向量的加法是指将两个向量相加得到一个新的向量。
设有两个平面向量a和a,它们的加法定义为:a + a = a + a这意味着向量的加法满足交换律,顺序不影响结果。
加法的几何解释为将两个向量的起点相连,然后将它们的箭头相连,新向量的起点与第一个向量的起点相同,终点与第二个向量的终点相同。
三、平面向量的数乘平面向量的数乘是指将一个向量与一个实数相乘得到一个新的向量。
设有一个平面向量a和一个实数a,它们的数乘定义为:aa = aa数乘有以下性质:1. 数乘满足结合律:(aa)a = a(aa),其中a和a为实数。
2. 数乘满足分配律:(a + a)a = aa + aa,其中a和a为实数。
3. 数乘满足分配律:a(a + a) = aa + aa,其中a为实数,a和a为平面向量。
四、线性组合线性组合是指将一组向量与一组实数相乘并求和得到一个新的向量。
设有a个平面向量a₁、a₂、...、aa和a个实数a₁、a₂、...、aa,它们的线性组合定义为:a₁a₁ + a₂a₂ + ... + aaaa线性组合是向量加法和数乘的联合运算,这个概念在线性代数中具有重要的应用。
五、线性运算的性质1. 交换律:向量加法满足交换律,即a + a = a + a。
2. 结合律:向量加法满足结合律,即(a + a) + a = a + (a + a),其中a、a和a为平面向量。
3. 分配律:向量加法和数乘满足分配律,即a(a + a) = aa + aa,(a + a)a = aa + aa,其中a、a为实数,a和a为平面向量。
课件6:§5.1平面向量的概念及线性运算
数形结合思想、转化化归思想.
主干知识回顾
名师考点精讲
综合能力提升
1.在△ABC 中,若点 D 满足=2,则= (
A. + B. −
C. − D. +
)
主干知识回顾
名师考点精讲
综合能力提升
【答案】D
名师考点精讲
综合能力提升
【解析】利用充分、必要条件的定义分别进行判断.由“a与b
共线”易得“a+b与a-b共线”.当a+b与a-b共线且a≠b时,有
a+b=λ(a-b),则(λ+1)b=(λ-1)a,由a,b为非零向量,则λ≠±1,
b=
-
a,
所以a与b共线;当a+b与a-b共线且a=b时,则有a,b共
备考指导
而向量的运算与共线的基
本定理通常交汇命题,但难
度不大,因此在复习中应把
握三点:一是分清基本概念
为主;二是以线性运算与共
线定理的小题训练为主;三
是该题在高考中的命题思
想是送分,不要有太重的思
想包袱.
主干知识回顾
名师考点精讲
综合能力提升
1.向量的有关概念
(1)向量的定义及表示:既有 大小 又有 方向 的量叫做向量.
以 A 为起点、B 为终点的向量记作,也可用 a,b,c,…表示.
(2)向量的长度:有向线段的长度,即的长度(或称模),记作||.
长度为 0 的向量叫做零向量,记作 0. 长度等于 1 个单位 的向
量,叫做单位向量.
(3)平行(共线)向量:方向 相同 或 相反 的 非零 向量叫做
高三数学一轮复习第五章平面向量第一节平面向量的概念及其线性运算课件文
3.在▱ABCD中, A B=a, A =Db, =A 3N ,MN 为C BC的中点,则 = M N
(用a,b表示).
答案 - 14 a+14 b
解析 由 A N=3 N,得C =A N 34 =A C (a34 +b),又 =AaM+ b,所12 以 = M N-
AN
2.证明三点共线的方法 若 A B=λ A ,C则A、B、C三点共线.
变式3-1 若将本例(1)中“B C =2a+8b”改为“ B C=a+mb”,则m为何值
时,A、B、D三点共线?
解析
B C+ C =D (a+mb)+3(a-b)=4a+(m-3)b,
即 B D=4a+(m-3)b.
(6)当两个非零向量a,b共线时,一定有b=λa(λ∈R). (√)
1.下列说法正确的是 ( ) A. A B∥ C 就D 是 所A B 在的直线平行于 所C 在D 的直线 B.长度相等的向量叫相等向量 C.零向量长度等于0 D.共线向量是在同一条直线上的向量 答案 C A B∥ C 包D 含 所A B 在的直线与 所C 在D 的直线平行和重合两 种情况,故A错;相等向量不仅要求长度相等,还要求方向相同,故B错;零 向量长度为0,故C正确;共线向量可以是在同一条直线上的向量,也可以 是所在直线互相平行的向量,故D错.
所以 A D= A+C =CbD+ a1.
2
方法指导 1.平面向量的线性运算技巧 (1)不含图形的情况:可直接运用相应运算法则求解. (2)含图形的情况:将它们转化到三角形或平行四边形中,充分利用相等 向量、相反向量、三角形的中位线等性质,把未知向量用已知向量表示 出来求解. 2.利用平面向量的线性运算求参数的一般思路 (1)没有图形的准确作出图形,确定每一个点的位置. (2)利用平行四边形法则或三角形法则进行转化,转化为要求的向量形 式. (3)比较、观察可知所求.
§5.1 平面向量的概念及线性运算、平面向量基本定理及坐标表示
对应学生用书起始页码 P94
考点二
平面向量的基本定理及向量的坐
标运算
高频考点
1.平面向量基本定理
如果 e1 ꎬe2 是同一平面内的两个不共线向量ꎬ那么对于这一 平面内的任意向量 aꎬ有且只有一对实数 λ1 ꎬλ2 ꎬ使a = λ1 e1 +λ2 e2 . 我们把不共线的向量 e1、e2 叫做表示这个平面内所有向量的一 组基底.
=
7 2
.
2-2 已知直角梯形 ABCD 中ꎬAD∥BCꎬ∠ADC = 90°ꎬAD =
2ꎬBC = 1ꎬ P 是 腰 DC 上 的 动 点ꎬ 则 | →PA + 3 P→B | 的 最 小 值
为 .
2-2 答案 5
解析 建立如图所示的平面直角坐标系ꎬ则 A( 2ꎬ0)ꎬ设
A→M = λ →AB+μ →ACꎬ则 λ 的值为 .
1-2
3 答案
4
������������������������������������������������������������������������
第五章 平面向量 5 7
解析 ∵ C→M = 3 M→Bꎬ
∴
B→M =
答案 A
2-1 已知 O 为坐标原点ꎬ向量 O→A = ( 2ꎬ3) ꎬO→B = ( 4ꎬ- 1) ꎬ
������������������������������������������������������������������������������������������������������������������������������������������
( )
A.3
B.2 2
C. 5
D.2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一讲 平面向量的概念及线性运算、平面向量基本
定理及坐标运算
考点1平面向量的有关概念
1.给出下列命题
①向量 的长度与向量 的长度相等;
②向量a与b平行,则a与b的方向相同或相反;
③|a|+|b|=|a+b|⇔a与b方向相同;
④若非零向量a与非零向量b的方向相同或相反,则a+b与a,b之一的方向相同.
其中叙述错误的命题的个数为 ( )
A.1 B.2 C.3 D.4
2.在矩形ABCD中,AB=2AD,M,N分别为AB与CD的中点,则在以A,B,C,D,M,N为起点与终点
的所有向量中,相等向量的对数为 ( )
A.9 B.11 C.18 D.24
考点2向量的线性运算
3.四边形ABCD中,设 =a, =b,那么 + = ( )
A.a-b B.a+b C.b-a D.不能确定
4.在等腰梯形ABCD中, =-2 ,M为BC的中点,则 = ( )
A. + B. + C. + D. +
5.若四边形ABCD满足 + =0,( - )· =0,则该四边形一定是
6.如图,在△ABC中,已知 - = ,点P在线段BN上,
若
=λ +
,则实数λ的值为
考点3共线向量定理
7.[2018石家庄市高三摸底考试]平行四边形ABCD中,M为BC的中点,若 =λ +μ ,则
λμ=
8.在△ABC中,D为AC的中点, =3 ,BD与AE交于点F,若 =λ ,则实数λ的值为
9.已知非零向量e1,e2不共线,如果 =7e1+e2, =2e1+8e2, =3(e1-e2),求证: 与 共线.
考点4平面向量基本定理
10.下面说法中,正确的是 ( )
①一个平面内只有一对不共线向量可作为表示该平面内所有向量的基底;
②一个平面内有无数多对不共线向量可作为表示该平面内所有向量的基底;
③零向量不可作为基底中的向量;
④对于平面内的任一向量a和一组基底e1,e2,使a=λe1+μe2成立的实数对一定是唯一的.
A.②④ B.②③④ C.①③ D.①③④
考点5平面向量的坐标运算
11.已知向量a=(1,2),b=(-1,1),则2a+b的坐标为 ( )
A.(1,5) B.(-1,4) C.(0,3) D.(2,1)
12.已知向量a=(2,m),b=(1,-2),若a·(a-2b)=b2+m2,则实数m等于 ( )
A. B. C. D.
13.若向量a=(2,1),b=(-2,3),则以下向量中与向量2a+b共线的是 ( )
A.(-5,2) B.(4,10) C.(10,4) D.(1,2)
14.已知A(-1,2),B(a-1,3),C(-2,a+1),D(2,2a+1),若向量 与 平行且同向,则实数a的值为
15.[2018开封市高三定位考试]已知平面向量a,b,c,a=(-1,1),b=(2,3),c=(-2,k),若(a+b)∥c,则实数
k=
答案
1.C 对于②:当a=0时,不成立;
对于③:当a,b之一为零向量时,不成立;
对于④:当a+b=0时,a+b的方向是任意的,它可以与a,b的方向都不相同.故选C.
2.D 由题意可得, = = ,有3对相等向量; = = = ,有6对相等向量, = ,
有1对相等向量; = ,有1对相等向量, = ,有1对相等向量,总共12对.同理,与它们的
方向相反的相等向量也有12对,总共24对,故选D.
3.B ∵ = + = +b, = + =- +a,∴ + = +b+(- +a)=a+b.故选B.
4.B 因为 =-2 ,所以 =2 .又M是BC的中点,所以
= ( + )= ( + + )= ( + + )= +
,故选B.
5.菱形 由 + =0,知 = ,所以四边形ABCD为平行四边形,由( - )· =0,得 ⊥
,所以该四边形一定是菱形.
6. - = 可化为 = ,即 = ,因为 =λ + ,所以 =λ + .由
B,P,N三点共线可得λ= .
7. ∵ = - = - = -2 =3 -2 ,∴ =λ +3μ -2μ ,∴
(1-3μ) =(λ-2μ) ,∵ 和 是不共线向量,∴ - - 解得 ∴λμ= .
8. 如图所示,作EG∥AC交BD于点G,∵ = ,∴ = ,∵D为AC的中点,∴ = ,∴ = ,∴
=
.∴实数λ的值为 .
9.由题意得 = + =(7e1+e2)+(2e1+8e2)=9(e1+e2),
= + =(2e1+8e2)+3(e1-e2)=5(e1+e2),
所以 = .由向量共线判定定理,得 与 共线.
10.B 根据平面向量基本定理可知,②③④正确,对于①,一个平面内任何一对不平行的向量
均可作为表示该平面所有向量的基底,故①错误,选B.
11.A ∵a=(1,2),b=(-1,1),∴2a+b=(2,4)+(-1,1)=(1,5).故选A.
12.D ∵a=(2,m),b=(1,-2),∴a-2b=(0,m+4),∴a·(a-2b)=m2+4m,又a·(a-2b)=b2+m2,∴
m2+4m=5+m2,解得m= .故选D.
13.B 因为向量a=(2,1),b=(-2,3),所以2a+b=(2,5).因为4×5-10×2=0,故向量(4,10)与向量2a+b
共线,故选B.
14.2 解法一 由已知得 =(a,1), =(4,a),因为 与 平行且同向,故可设
=λ
(λ>0)
则(a 1)=λ(4 a),所以 解得 故所求实数a=2.
解法二 由已知得 =(a,1), =(4,a),由 ∥ ,得a2-4=0,解得a=±2.又向量 与 同向,
易知a=-2不符合题意.故所求实数a=2.
15.-8 由题意,得a+b=(1,4),由(a+b)∥c,得1×k=4×(-2),解得k= -8.