九年级数学下册28.2.1解直角三角形教案(新版)新人教版

合集下载

人教版九年级下册28.2解直角三角形及其应用(教案)

人教版九年级下册28.2解直角三角形及其应用(教案)
其次,在新课讲授的案例分析环节,我发现同学们对特殊角的锐角三角函数值记忆不够熟练。这可能影响到他们在解决实际问题时,不能迅速找到答案。针对这个问题,我打算在课后增加一些针对性的练习,帮助同学们巩固记忆特殊角的三角函数值。
实践活动环节,同学们分组讨论和实验操作的表现让我感到欣慰。他们能够将所学知识运用到实际问题中,并通过合作解决问题。但在讨论过程中,我也注意到有些同学在发表观点时不够自信,这可能是因为他们对知识点的掌握还不够熟练。在今后的教学中,我会鼓励这些同学多发言,多参与,提高他们的自信心。
2.教学难点
-难点一:理解并运用锐角三角函数的定义解直角三角形;
-突破方法:通过直观图形和实际例题,帮助学生理解锐角三角函数的概念,并掌握解题步骤;
-难点二:灵活运用特殊角的锐角三角函数值;
-突破方法:通过大量练习,让学生熟练记忆特殊角的三角函数值,并能迅速准确地应用于解题;
-难点三:在实际问题中建立直角三角形的模型;
五、教学反思
在今天的教学过程中,我注意到同学们对解直角三角形这一部分的内容表现出了很大的兴趣。通过导入新课环节的实际问题,大家能够直观地感受到数学知识在生活中的应用,这有助于提高他们的学习积极性。但在教学过程中,我也发现了一些问题。
首先,理论讲解部分,有些同学对锐角三角函数的定义和互余关系理解不够透彻。在讲授过程中,我尝试通过生动的例子和实际操作来解释这些概念,但显然还需要进一步加强对这些知识点的巩固。在接下来的教学中,我会考虑增加一些互动环节,让学生亲自参与到解题过程中,以提高他们对知识点的理解和应用。
4.了解直角三角形的边角关系,并能运用勾股定理进行计算;
5.通过实际案例分析,体会解直角三角形在实际生活中的应用价值。
二、核心素养目标

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计3

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计3

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计3一. 教材分析人教版九年级数学下册第28.2.1节《解直角三角形》是整个初中数学的重要内容之一,主要让学生了解直角三角形的性质,学会使用锐角三角函数来解直角三角形。

本节内容是在学生已经掌握了锐角三角函数的定义和性质的基础上进行学习的,是进一步培养学生解决实际问题能力的关键环节。

教材通过丰富的实例和练习,引导学生探索直角三角形的性质和解题方法,从而提高学生的数学思维能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对锐角三角函数有一定的了解。

但是,对于如何灵活运用锐角三角函数来解直角三角形,以及如何将实际问题与数学知识相结合,仍需要进一步引导和培养。

因此,在教学过程中,教师需要关注学生的个体差异,针对不同程度的学生进行有针对性的教学,引导他们主动探索和思考,提高他们的数学应用能力。

三. 教学目标1.让学生掌握直角三角形的性质,理解并熟练运用锐角三角函数来解直角三角形。

2.培养学生解决实际问题的能力,提高学生的数学思维能力和解决问题的能力。

3.通过对本节内容的学习,培养学生的团队合作意识和交流表达能力。

四. 教学重难点1.重点:让学生掌握直角三角形的性质,学会使用锐角三角函数来解直角三角形。

2.难点:如何引导学生将实际问题与数学知识相结合,提高学生解决实际问题的能力。

五. 教学方法1.情境教学法:通过丰富的实例,引导学生进入学习情境,激发学生的学习兴趣。

2.问题驱动法:教师提出问题,引导学生主动探索和思考,培养学生解决问题的能力。

3.合作学习法:学生进行小组讨论和合作,培养学生的团队合作意识和交流表达能力。

4.实践操作法:让学生通过实际操作,加深对直角三角形性质的理解,提高学生的动手能力。

六. 教学准备1.教学课件:制作精美的教学课件,辅助教学,提高学生的学习兴趣。

2.实例材料:准备相关的实际问题,引导学生将数学知识应用于解决实际问题。

人教版数学九年级(下册)28.2解直角三角形及其应用(教案)

人教版数学九年级(下册)28.2解直角三角形及其应用(教案)
在小组讨论环节,我对学生的引导和启发还有待加强。有时候,学生可能会陷入思维定势,无法跳出固定模式。作为教师,我应该提供更多的思路和角度,帮助学生开阔思维,提高解决问题的灵活性。
最后,课堂总结环节,我发现部分学生对今天所学知识的掌握程度并不理想。这可能是因为在课堂讲解过程中,我没有充分关注学生的反馈,导致他们对知识点的理解不够深刻。为了改善这一状况,我会在今后的教学中,更加关注学生的反应,及时调整教学方法和节奏,确保每位学生都能跟上课程进度。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“解直角三角形在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形的基本概念、勾股定理以及正弦、余弦、正切函数的应用。同时,我们也通过实践活动和小组讨论加深了对解直角三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
4.增强学生的数学应用意识,使其认识到数学在生活中的广泛应用,激发学习兴趣,提高数学素养。
三、教学难点与重点1.来自学重点-核心内容:勾股定理的应用、正弦、余弦、正切函数的定义及其在解直角三角形中的应用。
-实际例子:通过实际情境引入勾股定理的应用,如测量旗杆高度、计算建筑物之间的距离等。

人教版九年级下册28.2.1解直角三角形教学设计

人教版九年级下册28.2.1解直角三角形教学设计
4.通过小组合作学习,培养学生的团队协作能力和沟通能力,让学生学会尊重他人、分享经验。
5.培养学生勇于面对困难,敢于挑战自我,养成良好的学习习惯,为未来的学习打下坚实基础。
二、学情分析
九年级下册的学生在经过前两年的数学学习后,已经具备了一定的数学基础和逻辑思维能力。在学习解直角三角形这一章节时,他们已经掌握了勾股定理的基本应用,能够解决一些简单的直角三角形问题。然而,对于锐角三角函数的理解和运用,以及在实际问题中求解直角三角形的综合能力仍有待提高。
2.教师引导学生总结解直角三角形的技巧和方法,以及在实际问题中的应用。
3.教师强调本节课的重点和难点,提醒学生加强课后练习,巩固所学知识。
4.学生分享学习收获,提出在学习过程中遇到的问题和困惑,教师给予解答和指导。
五、作业布置
为了巩固本节课所学知识,培养学生的解题能力和数学素养,特布置以下作业:
1.请同学们完成课本第28.2.1节后的练习题,重点关注锐角三角函数的定义和应用,以及解直角三角形的步骤和方法。
(5)总结:对本节课的知识点进行梳理,强调解题方法和技巧,帮助学生巩固所学内容。
3.教学评价:
(1)关注学生在课堂上的参与度,观察他们是否能够主动探究、积极思考。
(2)通过课后作业和阶段测试,了解学生对知识点的掌握程度,及时发现问题并给予指导。
(3)鼓励学生在解题过程中,提出不同的解题方法和思路,培养学生的创新精神。
2.教学过程:
(1)导入:通过一个与学生生活密切相关的实际问题,引出解直角三角形的学习内容,激发学生的兴趣。
(2)新课:讲解锐角三角函数的定义,通过直观的图形演示和实际案例,让学生理解其在直角三角形中的应用。
(3)巩固:设计不同类型的练习题,让学生在解答过程中,逐步掌握解直角三角形的步骤和方法。

人教版数学九年级下册28.2.1解直角三角形优秀教学案例

人教版数学九年级下册28.2.1解直角三角形优秀教学案例
人教版数学九年级下册28.2.1解直角三角形优秀教学案例
一、案例背景
本节内容是“人教版数学九年级下册28.2.1解直角三角形”,这是学生在学习了平面几何、三角函数等知识后,进一步深化对直角三角形性质的理解,以及运用勾股定理解决实际问题的能力。在解直角三角形的学习中,学生需要掌握锐角三角函数的概念,并能运用锐角三角函数解决实际问题。
二、教学目标
(一)知识与技能
1.理解直角三角形的性质,掌握锐角三角函数的概念及运用。
2.学会运用勾股定理解决直角三角形的相关问题,提高空间想象能力和逻辑思维能力。
3.能够运用所学知识解决实际生活中的直角三角形问题,提高运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过观察、操作、思考、交流等环节,培养学生主动探索、发现和总结直角三角形性质的能力。
(四)总结归纳
1.学生总结:让学生回顾自己的学习过程,总结直角三角形的性质及其应用。
2.教师归纳:教师对学生的学习成果进行总结,强调直角三角形性质的重要性。
3.课堂小结:对本节课的主要内容进行总结,激发学生课后学习的兴趣。
(五)作业小结
1.作业布置:设计具有针对性的作业,让学生在实践中运用所学知识,提高解题能力。
3.勾股定理的应用:讲解勾股定理的推导过程,让学生学会运用勾股定理解决直角三角形问题。
(三)学生小组讨论
1.问题设置:设计具有启发性的问题,引导学生思考直角三角形的性质及其应用。
2.分组讨论:将学生分为若干小组,让学生在小组内交流讨论,共同解决问题。
3.讨论交流:组织小组间的互动交流,分享学习心得,培养学生团队协作能力和表达能力。
然而,在实际教学中也存在一些不足之处,如部分学生对直角三角形的性质理解不够深入,运用勾股定理解决实际问题的能力有待提高。在今后的教学中,我将针对这些问题,调整教学策略,加强对学生的引导和辅导,提高学生的数学素养。

人教版九年级数学下册28.2.1 解直角三角形教案

人教版九年级数学下册28.2.1 解直角三角形教案
师生活动:直角三角形的斜边和一条直角边,求它的锐角的度数,利用锐角的正弦(或余弦)的概念直接求解.
问题:在活动一所述的Rt△ABC中,你还能求出其他未知的边和角吗?
师生活动:学生考虑并说明求解思路,老师把问题一般化,给出解直角三角形的内涵:
一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的元素,求出其余未知元素的过程,叫做解直角三角形.
何求出所有未知元素.先让学生找出所有未知元素:∠A,∠B和AB,然后让学生逐一说明求每一个未知元素的方法和根据,老师引导学生选择简便的解题途径.
通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,进步学生分析和解决问题的才能.
【拓展提升】
1.涉“斜〞选“弦〞的策略
当和所求涉及直角三角形的斜边时,应选择与斜边相关的角的正弦、余弦.我们把它叫做涉“斜〞(涉及斜边)选“弦〞(选正弦、余弦)的策略.
2.解直角三角形的方法
问题:回想一下,刚刚解直角三角形的过程中,用到了哪些知识?你能梳理一下直角三角形各个元素之间的关系吗?
师生活动:如图28-2-6,引导学生结合图形,梳理五个元素(直角除外)之间的关系,学生展示:
(1)三边之间的关系:a2+b2=c2(勾股定理).
(2)两锐角之间的关系:∠A+∠B=90°.
2.布置作业:
教材第77页习题28.2第1题.
引导学生从知识和方法两个方面总结自己的收获,理清解直角三角形的目的、条件、根据、方法,提升综合运用知识的才能.
【知识网络】
提纲挈领,重点突出.
【教学反思】
①[授课流程反思]
在创设情境中,由一个实际问题引入,自然过渡到直角三角形.在探究新知中,采用启发法、讨论法等教学方法,学生通过讨论、理论形成理论体系,对知识掌握较为结实.

28.2.1 解直角三角形教案

28.2.1 解直角三角形本节是在学习锐角三角函数之后,结合已学过的三角形内角和定理和勾股定理,研究解直角三角形的问题,既能加深对锐角三角函数概念的理解,又为后续解决与其相关的实际问题打下基础.解直角三角形是结合三角形内角和定理、勾股定理等知识,利用锐角三角函数对直角三角形的三条边以及两锐角这五个要素进行求解,在解直角三角形时注意借助相应的直角三角形来寻找已知元素与未知元素的关系式.【情景导入】要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°(见教材第85页第10题图),现有一架长6 m 的梯子.(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1 m)?(2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角α等于多少(精确到1°)?这时人是否能够安全使用这架梯子?【说明与建议】 说明:用来源于学生身边的问题吸引他们的注意力,激发他们的好奇心,体会解直角三角形来源于生活,并服务于生活,诱发学生对新知识的渴求.建议:教师引导学生思考,为本节课学习解直角三角形做好铺垫. 【归纳导入】在Rt △ABC 中,∠C =90°,∠A =20°,c =10 cm. (1)根据“直角三角形两锐角互余”得∠B =70°. (2)由sinA =ac ,得a =c ·sinA =10sin20°cm.(3)由cosA =bc,得b =c ·cosA =10cos20°cm.通过以上填空,Rt △ABC 的三条边长及三个角全部知道了,这种由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.【说明与建议】 说明:通过解答此题说明已知直角三角形的一个锐角,可以求出另一个锐角,选择恰当的边角关系,还可以求出其他的边长.建议:让学生先自主探究,然后交流解题的方法并比较从中选择最合适的方法.命题角度1 在直角三角形中解直角三角形这类题目一般已知一边一角或两边求其他元素.注意以下知识和技巧的总结及运用: 理论依据:在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c. (1)三边之间的关系:a 2+b 2=c 2. (2)锐角之间的关系:∠A +∠B =90°.(3)边角之间的关系:sinA =a c =cosB ,cosA =b c =sinB ,tanA =a b =1tanB .(4)面积公式:S △ABC =12ab =12ch(h 为斜边上的高).提示:当所求的元素既可用乘法又可用除法求解时,一般用乘法,不用除法;既可用已知数据又可用中间数据求解时,最好用已知数据.技巧方法:1.(宜昌中考)如图,△ABC 的顶点是正方形网格的格点,则cos ∠ABC 的值为(B) A.23B.22C.43D.2232.(巴中中考)如图,点A ,B ,C 在边长为1的正方形网格格点上,下列结论错误的是(A)A .sinB =13B .sinC =255C .tanB =12D .sin 2B +sin 2C =1命题角度2 构造直角三角形再解直角三角形这类问题一般和三角形或圆的相关知识结合命题,题目没有直接告诉是直角三角形,通过条件或添加辅助线,可以证明或构造直角三角形,再根据解直角三角形的方法解答问题.3.(黑龙江中考)如图,在△ABC 中,sinB =13,tanC =2,AB =3,则AC 的长为(B)A. 2B.52C. 5D .24.如图,点A ,B 是以CD 为直径的⊙O 上的两点,分别在直径的两侧,其中点A 是CDB ︵的中点.若tan ∠ACB =2,AC =5,则BC 的长为(D)A. 5B .2 5C .1D .2命题角度3 分类讨论解不定三角形在解直角三角形问题时,如遇到直角或者某个锐角不确定时,特别是在没有给出图形的情况下,要注意分类讨论,防止漏解.5.(内江中考)已知,在△ABC 中,∠A =45°,AB =42,BC =5,则△ABC 的面积为2或14.双直角三角形所谓“双直角三角形”是指一条直角边重合,另一条直角边共线的两个直角三角形.其位置关系有两种:如图1,公共直角边为AD ,则AD =BC ·tan α·tan βtan β-tan α,我们把它叫做公式1.图1 图2 如图2,公共直角边为AD ,则AD =BC ·tan α·tan βtan β+tan α,我们把它叫做公式2.课题28.2.1 解直角三角形授课人素养目标1.了解解直角三角形的意义和条件.2.帮助学生理解直角三角形中五个元素(直角除外)的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.3.发展学生的数学应用意识,提高归纳能力,感受解直角三角形的策略.教学重点解直角三角形的意义以及一般方法.教学难点选择恰当的边角关系解直角三角形.授课类型新授课课时教学步骤师生活动设计意图回顾如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b,c,那么除直角∠C外的两个锐角和三条边之间有如下关系:两锐角之间的关系:∠A+∠B=90°.三边之间的关系:a2+b2=c2.边角之间的关系:sinA=ac,cosA=bc,tanA=ab.回顾以前所学内容,为本节课的教学内容做好准备.活动一:创设情境、导入新课【课堂引入】意大利比萨斜塔在落成时就已倾斜,其塔顶中心点为B,塔身中心线与垂直中心线的夹角为∠A,过点B向垂直中心线引垂线,垂足为C,如图.在Rt△ABC中,∠C=90°,BC=5.2 m,AB=54.5 m,求∠A的度数.师生活动:教师呈现问题并引导学生结合图形,观察已知条件和所求角之间的关系,分析得到通过求∠A的正弦来求∠A的度数.通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,并一般化:已知直角三角形斜边和直角边,求它的锐角的度数,通过求解的过程,初步体会解直角三角形的内涵,引入课题.活动二:实践探究、交流新知【探究新知】1.解直角三角形的定义问题:将比萨斜塔问题推广为一般的数学问题该如何求解?师生活动:已知直角三角形的斜边和一条直角边,求它的锐角的度数,利用锐角的正弦(或余弦)的概念直接求解.问题:在活动一所述的Rt△ABC中,你还能求出其他未知的边和角吗?师生活动:学生思考并说明求解思路,教师把问题一般化,给出解直角三角形的内涵:一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.2.解直角三角形的方法问题:回想一下,刚才解直角三角形的过程中,用到了哪些知识?你能梳理一下直角三角形各个元素之间的关系吗?师生活动:如图,引导学生结合图形,梳理五个元素(直角除外)之间的关系,学生展示:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)两锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab,sinB=ba,cosB=ac,tanB=ba.问题:从上述问题来看,在直角三角形中,知道斜边和一条直角边这两个元素,可以求出其余的三个元素.一般地,已知五个元素(直角除外)中的任意两个元素,可以求其余元素吗?教师给出结论:在直角三角形中,知道除直角外的五个元素中的两个元素(至1.有条理地梳理直角三角形除直角外的五个元素之间的关系,明确各自的作用,便于应用.2.在讨论解直角三角形的方法过程中,明确解直角三角形的条件,培养学生的逻辑思维能力.少有一个是边),就可以求出其余三个未知元素.活动三:开放训练、体现应用【典型例题】例1(教材第73页例1)如图,在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.解:AB=22,∠B=30°,∠A=60°.师生活动:学生在教师的引导下,思考如何求出所有未知元素.先让学生找出所有未知元素:∠A,∠B和AB,然后让学生逐一说明求每一个未知元素的方法和依据,教师引导学生选择简便的解题途径.最后给出简洁、规范的解题步骤.例2(教材第73页例2)如图,在Rt△ABC中,∠C=90°,∠B=35°,b=20,解这个直角三角形(结果保留小数点后一位).解:∠A=90°-∠B=90°-35°=55°.∵tanB=ba,∴a=btanB=20tan35°≈28.6.∵sinB=bc,∴c=bsinB=20sin35°≈34.9.师生活动:由学生代表参照例1的解题思路,分析本题的解题思路;然后由学生独立完成,再小组交流;最后由学生代表展示解题步骤.对于求c,如果学生采取不同方法,让他们展示不同方法;如果学生没有采取不同方法,教师注意引导他们思考其他解法.【变式训练】1.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=43,则CD的值为(D)1.通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,提高学生分析和解决问题的能力.2.进一步训练解一般直角三角形的思路和方法,并体会从计算简便的角度选用适当的关系式求解.3.变式训练拓展学生思维,同时增强学生对所学知识的灵活应用能力.A .2 B.45 C.43 D.65提示:延长AD ,BC ,两线交于点O ,得到两个直角三角形,解直角三角形即可. 2.在△ABC 中,若AB =10,AC =15,∠BAC =150°,则△ABC 的面积为(A) A .37.5 B .75 C .100 D .150提示:过点C 作CD ⊥AB ,交BA 的延长线于点D.在Rt △ADC 中利用特殊角求出高CD ,再计算三角形的面积.3.在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,解这个直角三角形.解:如图:∵在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,∴12ab =92 3. ∴a =3 3.∴tanA =a b =333= 3.∴∠A =60°.∴∠B =180°-∠A -∠C =180°-60°-90°=30°. ∴c =2b =6. 活动四:课堂检测【课堂检测】1.如图,在Rt △ABC 中,∠C =90°,AB =4,sinA =12,则BC 的长为(A)A .2B .3 C. 3 D .2 3通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.2.在Rt △ABC 中,∠C =90°,∠B =40°,BC =3,则AC =(C) A .3sin40° B .3sin50° C .3tan40° D .3tan50°3.在Rt △ABC 中,∠C =90°,斜边中线是3 cm ,sinA =13,则S △ABC =(D)A. 2 cm 2B .2 2 cm 2C .3 2 cm 2D .4 2 cm 2提示:由中线长可以求出斜边,解直角三角形求出两直角边,再计算三角形面积.4.如图,在△ABC 中,BD ⊥AC 于点D ,AB =6,AC =53,∠A =30°.(1)求BD 和AD 的长. (2)求tanC 的值. 解:(1)∵BD ⊥AC , ∴∠ADB =90°.在Rt △ADB 中,AB =6,∠A =30°, ∴BD =12AB =3.∴AD =BDtanA=3BD =3 3. (2)CD =AC -AD =53-33=23, 在Rt △BCD 中,tanC =BD CD =323=32.学生进行当堂检测,完成后,教师进行批阅、点评、讲解. 课堂小结1.课堂总结:(1)什么叫解直角三角形?(2)两个直角三角形全等要具备什么条件?为什么在直角三角形中,已知一边和一个锐角或两边就能解直角三角形呢?教学说明:教师提问并引导学生总结归纳解直角三角形的定义以及直角三角形五元素之间的关系. 2.布置作业:教材第77页习题28.2第1题.引导学生从知识和方法两个方面总结自己的收获,理清解直角三角形的目的、条件、依据、方法,提升综合运用知识的能力.。

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计1

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计1一. 教材分析《解直角三角形》是九年义务教育课程标准人教版九年级数学下册第28章第2节的一部分。

本节内容是在学生已经掌握了锐角三角函数和直角三角形的性质的基础上进行的。

本节主要让学生了解解直角三角形的意义和方法,学会使用锐角三角函数来解直角三角形,为以后学习三角函数和解其他三角形打下基础。

二. 学情分析九年级的学生已经具备了一定的几何知识,对直角三角形有一定的了解。

但是,对于如何运用锐角三角函数来解直角三角形,他们可能还比较陌生。

因此,在教学过程中,我需要引导学生理解和掌握锐角三角函数在解直角三角形中的应用。

三. 教学目标1.了解解直角三角形的意义和方法。

2.学会使用锐角三角函数来解直角三角形。

3.能够运用解直角三角形的方法解决实际问题。

四. 教学重难点1.重点:解直角三角形的方法和锐角三角函数在解直角三角形中的应用。

2.难点:如何引导学生理解和掌握锐角三角函数在解直角三角形中的应用。

五. 教学方法采用讲授法、引导法、实践法、讨论法等教学方法,引导学生通过自主学习、合作学习、探究学习,从而掌握解直角三角形的方法和锐角三角函数在解直角三角形中的应用。

六. 教学准备1.准备直角三角形的相关图片和实例。

2.准备多媒体教学设备,如投影仪、电脑等。

3.准备相关的练习题和测试题。

七. 教学过程1.导入(5分钟)通过展示一些与直角三角形相关的图片和实例,引导学生回顾直角三角形的性质,为新课的学习做好铺垫。

2.呈现(10分钟)讲解解直角三角形的意义和方法,引导学生理解解直角三角形的重要性。

通过示例,讲解如何使用锐角三角函数来解直角三角形。

3.操练(10分钟)让学生分组进行实践,运用锐角三角函数来解直角三角形。

教师巡回指导,解答学生的疑问。

4.巩固(10分钟)出示一些练习题,让学生独立完成,检验他们是否掌握了解直角三角形的方法和锐角三角函数在解直角三角形中的应用。

人教版九年级数学下册28.2解直角三角形优秀教学案例

2.通过归纳总结,让学生掌握解直角三角形的方法,并能够灵活运用到实际问题中。
3.强调解直角三角形在现实生活中的应用,激发学生对数学学科的兴趣和认同感。
(五)作业小结
1.布置相关的作业,让学生巩固所学知识,提高他们的解题技能。
2.要求学生在作业中运用所学的解直角三角形的方法,解决实际问题。
3.对学生的作业进行及时批改和反馈,指导他们改进学习方法,提高学习效果。
在教学过程中,我将注重关注每一个学生的学习情况,关注他们的情感需求,尊重他们的个性差异。通过耐心引导、激励评价,让学生感受到数学学习的乐趣,增强他们的学习动力。同时,我还将在教学中融入社会主义核心价值观的教育,培养学生的道德品质和社会责任感。
五、案例亮点
1.生活情境的引入:通过展示房屋平面图并询问学生如何计算墙角的斜边长度,将生活实际问题引入课堂,激发学生的学习兴趣,增强学生对知识的渴望,让学生认识到数学在生活中的重要性。
在教学过程中,我将注重关注每一个学生的学习情况,关注他们的情感需求,尊重他们的个性差异。通过耐心引导、激励评价,让学生感受到数学学习的乐趣,增强他们的学习动力。同时,我还将在教学中融入社会主义核心价值观的教育,培养学生的道德品质和社会责任感。
三、教学策略Байду номын сангаас
(一)情景创设
1.利用生活情境引入新课,激发学生的学习兴趣,引导学生主动探索直角三角形的性质和解法。
1.组织学生进行小组合作、讨论交流,分配任务,让每个学生在小组合作中发挥自己的特长,提高他们的参与度和积极性。
2.引导学生通过观察、思考、讨论等方式,自主发现解直角三角形的方法,提高他们的动手操作能力和思维能力。
3.鼓励学生相互倾听、尊重他人的意见,培养他们的沟通能力和团队协作能力。

人教版数学九年级下册-28.2.1 解直角三角形-教案

28.2.1解直角三角形(第1课时)教学设计一、教材分析本节课内容是新人教版教材九年级下册,第二十八章《锐角三角函数》的第二节《解直角三角形》第一课时,是在学习了勾股定理、锐角三角函数的基础上进行的。

本节课既是前面所学知识的运用,也是高中继续学习三角函数和解斜三角形的重要预备知识。

教材首先从实际生活比萨斜塔入手,创设问题情境,抽象出数学问题,从而引出解直角三角形的概念,归纳解直角三角形的一般方法。

本节课的学习还蕴涵着深刻的数学思想方法:数学建模和转化化归,在本节教学中有针对性的对学生进行这方面的能力培养。

通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解直角三角形的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系。

二、教学目标(一)知识与技能1.理解直角三角形中五个元素的关系,什么是解直角三角形;2.运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法目标通过探索讨论发现解直角三角形所需的最简条件,了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”和“转化”思想。

(三)情感、态度和价值观通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识能应用于社会实践。

并让学生体验到学习是需要付出努力和劳动的。

三、学情分析九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都有待提高,因此要在本节课进行有意识的培养。

四、教学重难点教学重点:正确运用直角三角形中的边角关系解直角三角形教学难点:选择适当的关系式解直角三角形五、教法与学法1、教学方法:利用多媒体辅助教学,通过观察,引导学生思考、讨论,通过归纳、概括等方法启发、诱导,帮助学生理解内容的本质,从而突破教学难点。

2、学习方法:观察、归纳、概括和讨论的学习方法,使他们不仅理解和掌握本节课的内容,而且进一步培养和提高他们各方面的能力,从而逐步由“学会”向“会学”迈进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28.2.1 解直角三角形
1.理解解直角三角形的意义和条件;(重点)
2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点
)
一、情境导入
世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A ,过点B 向垂直中心线引垂线,垂足为点C .在Rt △ABC 中,∠C =90°,BC =5.2m ,AB =54.5m ,求∠A 的度数.
在上述的Rt △ABC 中,你还能求其他未知的边和角吗?
二、合作探究
探究点一:解直角三角形
【类型一】
利用解直角三角形求边或角
已知在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,按下列条件解直角三角形.
(1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长;
(2)若a =62,b =66,求∠A 、∠B 的度数和边c 的长.
解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.
解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,∵cos B =a c ,即c =a
cos B =363
2=243,∴b =sin B ·c =12×243=123; (2)在Rt △ABC 中,∵a =62,b =66,∴tan A =a b =
33
,∴∠A =30°,∴∠B =60°,∴c =2a =12 2. 方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素
与两个已知元素的关系式求解.
变式训练:见《学练优》本课时练习“课堂达标训练” 第4题
【类型二】 构造直角三角形解决长度问题
一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,
∠E =30°,∠A =45°,AC =122,试求CD 的长.
解析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可.
解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =122,∴BC =AC =12 2.∵AB ∥CF ,∴BM =sin45°BC =122×
22=12,CM =BM =12.在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM
tan60°=43,∴CD =CM -MD =12-4 3. 方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.
变式训练:见《学练优》本课时练习“课后巩固提升” 第4题 【类型三】运用解直角三角形解决面积问题
如图,在△ABC 中,已知∠C =90°,sin A =3
7
,D 为边AC 上一点,∠BDC =45°,DC =6.求△ABC 的面积.
解析:首先利用正弦的定义设BC =3k ,AB =7k ,利用BC =CD =3k =6,求得k 值,从而求得AB 的长,然后利用勾股定理求得AC 的长,再进一步求解.
解:∵∠C =90°,∴在Rt △ABC 中,sin A =BC AB =37
,设BC =3k ,则AB =7k (k >0),在Rt △BCD 中,∵∠BCD =90°,∴∠BDC =45°,∴∠CBD =∠BDC =45°,∴BC =CD =3k =6,
∴k =2,∴AB =14.在Rt △ABC 中,AC =AB 2-BC 2=142-62=410,∴S △ABC =12AC ·BC =12×410×6=1210.所以△ABC 的面积是1210.
方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,
列方程解答.
变式训练:见《学练优》本课时练习“课堂达标训练”第7题
探究点二:解直角三角形的综合
【类型一】 解直角三角形与等腰三角形的综合 已知等腰三角形的底边长为2,周长为2+2,求底角的度数.
解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.
解:如图,在△ABC 中,AB =AC ,BC =2,∵周长为2+2,∴AB =AC =1.过A 作AD ⊥BC 于点D ,则BD =
22,在Rt △ABD 中,cos ∠ABD =BD AB =22
,∴∠ABD =45°,即等腰三角形的底角为45°.
方法总结:求角的度数时,可考虑利用特殊角的三角函数值.
变式训练:见《学练优》本课时练习“课后巩固提升”第2题
【类型二】 解直角三角形与圆的综合
已知:如图,Rt △AOB 中,∠O =90°,以OA 为半径作⊙O ,BC 切⊙O 于点C ,连
接AC 交OB 于点P .
(1)求证:BP =BC ;
(2)若sin ∠PAO =13
,且PC =7,求⊙O 的半径. 解析:(1)连接OC ,由切线的性质,可得∠OCB =90°,由OA =OC ,得∠OCA =∠OAC ,再由∠AOB =90°,可得出所要求证的结论;(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 和Rt △ACE 中,根据三角函数和勾股定理,列方程解答.
解:(1)连接OC ,∵BC 是⊙O 的切线,∴∠OCB =90°,∴∠OCA +∠BCA =90°.∵OA =OC ,∴∠OCA =∠OAC ,∴∠OAC +∠BCA =90°,∵∠BOA =90°,∴∠OAC +∠APO =90°,∵∠APO =∠BPC ,∴∠BPC =∠BCA ,∴BC =BP ;
(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 中,∵sin ∠PAO =13
,设OP =x ,AP =3x ,∴AO =22x .∵AO =OE ,∴OE =22x ,∴AE =42x .∵sin ∠PAO =13
,∴在Rt △ACE 中CE AE =13,∴AC AE =223,∴3x +742x
=223,解得x =3,∴AO =22x =62,即⊙O 的半径为6 2. 方法总结:本题考查了切线的性质、三角函数、勾股定理等知识,解决问题的关键是根据三角函数的定义结合勾股定理列出方程.
变式训练:见《学练优》本课时练习“课后巩固提升”第9题
三、板书设计
1.解直角三角形的基本类型及其解法;
2.解直角三角形的综合.
本节课的设计,力求体现新课程理念.给学生自主探索的时间和宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神和合作精神,激发学生学习数学的积极性和主动性.。

相关文档
最新文档