全国初一初中数学竞赛测试带答案解析

合集下载

全国初中数学竞赛试题及解答

全国初中数学竞赛试题及解答

ABCD全国初中数学竞赛试卷及解析一、选择题(本题共6小题,每小题5分,满分30分.每小题均给出了代号为A ,B ,C ,D 的四个结论,其中只有一个是正确的。

请将正确答案的代号填在题后的括号里)1、设a ,b ,c 的平均数为M ,a ,b 的平均数为N ,N ,c 的平均数为P ,若c b a ,则M 与P 的大小关系是( )A 、P MB 、P MC 、P MD 、不确定 答案:B 解析:∵3c b a M ,2b a N ,222c b a c N P ,122cb a P M ∵c b a ∴0122122c c c c b a P M ,即0 P M ,即P M 2、某人骑车沿直线旅行,先前进了a 千米,休息了一段时间,又原路返回b 千米(a b ),再前进c 千米,则此人离起点的距离S 与时间t 的关系示意图是( )答案:C解析:因为图(A )中没有反映休息所消耗的时间;图(B )虽表明折返后S 的变化,但没有表示消耗的时间;图(D )中没有反映沿原始返回的一段路程,唯图(C )正确地表述了题意。

3、甲是乙现在的年龄时,乙10岁;乙是甲现在的年龄时,甲25岁,那么( ) A 、甲比乙大5岁 B 、甲比乙大10岁 C 、乙比甲大10岁 D 、乙比甲大5岁 答案:A解析:由题意知3×(甲-乙)151025 ∴甲-乙=5。

4、一个一次函数图象与直线49545x y 平行,与x 轴、y 轴的交点分别为A 、B ,并且过点(-1,-25),则在线段AB 上(包括端点A 、B ),横、纵坐标都是整数的点有( )A 、4个B 、5个C 、6个D 、7个 答案:B解析:在直线AB 上,横、纵坐标都是整数的点的坐标是N x 41 ,N y 525 ,(N 是整数).在线段AB 上这样的点应满足041 N ,且0525 N ,∴541N ,即1 N ,2,3,4,55、设a ,b ,c 分别是ABC 的三边的长,且cb a ba b a,则它的内角A 、B 的关系是( )A 、AB 2 B 、A B 2C 、A B 2D 、不确定 答案:B解析:由c b a b a b a得c a bb a ,延长CB 至D ,使AB BD ,于是c a CD 在ABC 与DAC 中,C C ,且DC ACAC BC∴ABC ∽DAC ,D BAC ∵D BAD∴BAC D BAD D ABC 226、已知ABC 的三边长分别为a ,b ,c ,面积为S ,111C B A 的三边长分别为1a ,1b ,1c ,面积为1S ,且1a a ,1b b ,1c c ,则S 与1S 的大小关系一定是( )A 、1S SB 、1S SC 、1S SD 、不确定 答案:D解析:分别构造ABC 与111C B A 如下:①作ABC ∽111C B A ,显然1211a a S S ,即1S S ;②设101b a ,20c ,则1 c h ,10 S ,10111 c b a ,则10100431S ,即1S S ;③设101 b a ,20 c ,则1 c h ,10 S ,2911 b a ,101 c ,则2 c h ,101 S ,即1S S ;因此,S 与1S 的大小关系不确定。

七年级数学竞赛试题(含答案)

七年级数学竞赛试题(含答案)

七年级数学竞赛试题(含答案)一、耐心填一填(每题5分,共50分)1、某天,5名同学去打羽毛球,从上午8:45一直到上午11:05,若这段时间内,他们一直玩双打(即须4人同时上场),则平均一个人的上场时间为________分2、已知:一条射线OA,若从点O再引两条射线OB、OC,使∠AOB=600,∠BOC=200,则∠AOC=___________度3、()()_______________1541957.0154329417.0=-⨯+⨯+-⨯+⨯。

4、定义a*b=ab+a+b,若3*x=27,则x的值是________。

5、有一个正方体,在它的各个面上分别标上字母A、B、C、D、E、F,甲、乙、丙三位同学从不同方向去观察其正方体,观察结果如图所示。

问:F的对面是_______。

FA DBCAED C6 A、B、C、D、E、F六足球队进行单循环比赛,当比赛到某一天时,统计出A、B、C、D、E、五队已分别比赛了5、4、3、2、1场球,则还没与B队比赛的球队是________。

7、正方体每一面不同的颜色对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为________。

8、小李同学参加了学校组织的名为“互帮互助向未来”活动,为此小李自己在家制作了四份小礼物,准备送给他的新同学,四份小礼物分别装在形状完全一样的小长方体的盒子里,每个小长方体的长、宽、高分别是3、1、1,然后把这四个小长方体盒子用漂亮的丝带捆绑成一个大长方体,那么这个大长方体的表面积可能有________ 中不同的值,其中最小值为________。

9、当a ______时,方程组223196922x y a ax y a a⎧+=+-⎪⎨-=-+⎪⎩的解是正数。

10、如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是________平方厘米。

二、细心选一选(每题5分,共30分)1、如果有2015名学生排成一列,按1、2、3、4、3、2、1、2、3、4、3、2、1……的规律报数,那么第2015名学生所报的数是()A、1B、2C、3D、42、俗话说“商场如战场”,“买的永远没有卖的精”。

全国初中数学竞赛试题和答案解析

全国初中数学竞赛试题和答案解析

中国教育学会中学数学教学专业委员会全国初中数学竞赛试题一、选择题(共5小题,每小题6分,共30分.)1(甲).如果实数a ,b ,c 22||()||a a b c a b c -++-++可以化简为( ).(A )2c a - (B )22a b - (C )a - (D )a 1(乙).如果22a =-11123a+++的值为( ).(A )2- (B 2 (C )2 (D )222(甲).如果正比例函数y = ax (a ≠ 0)与反比例函数y =xb(b ≠0 )的图象有两个交点,其中一个交点的坐标为(-3,-2),那么另一个交点的坐标为( ). (A )(2,3) (B )(3,-2) (C )(-2,3) (D )(3,2)2(乙). 在平面直角坐标系xOy 中,满足不等式x 2+y 2≤2x +2y 的整数点坐标(x ,y )的个数为( ). (A )10 (B )9 (C )7 (D )53(甲).如果a b ,为给定的实数,且1a b <<,那么1121a a b a b ++++,, ,这四个数据的平均数与中位数之差的绝对值是( ). (A )1 (B )214a - (C )12 (D )143(乙).如图,四边形ABCD 中,AC ,BD 是对角线, △ABC 是等边三角形.30ADC ∠=︒,AD = 3,BD = 5, 则CD 的长为( ).(A )23 (B )4 (C )52 (D )4.54(甲).小倩和小玲每人都有若干面值为整数元的人民币.小倩对小玲说:“你若给我2元,我的钱数将是你的n 倍”;小玲对小倩说:“你若给我n 元,我的钱数将是你的2倍”,其中n 为正OAB CED整数,则n 的可能值的个数是( ).(A )1 (B )2 (C )3 (D )44(乙).如果关于x 的方程 20x px q p q --=(,是正整数)的正根小于3, 那么这样的方程的个数是( ).(A ) 5 (B ) 6 (C ) 7 (D ) 85(甲).一枚质地均匀的正方体骰子的六个面上的数字分别是1,2,3,4,5,6.掷两次骰子,设其朝上的面上的两个数字之和除以4的余数分别是0,1,2,3的概率为0123p p p p ,,,,则0123p p p p ,,,中最大的是( ).(A )0p (B )1p (C )2p (D )3p5(乙).黑板上写有111123100, , ,, 共100个数字.每次操作先从黑板上的数中选取2个数a b ,,然后删去a b ,,并在黑板上写上数a b ab ++,则经过99次操作后,黑板上剩下的数是( ).(A )2012 (B )101 (C )100 (D )99二、填空题(共5小题,每小题6分,共30分)6(甲).按如图的程序进行操作,规定:程序运行从“输入一个值x ”到“结果是否>487?”为一次操作. 如果操作进行四次才停止,那么x 的取值范围是 .6(乙).如果a ,b ,c 是正数,且满足9a b c ++=,111109a b b c c a ++=+++,那么a b cb c c a a b+++++的值为 .7(甲).如图,正方形ABCD 的边长为215,E ,F 分别是AB ,BC 的中点,AF 与DE ,DB分别交于点M ,N ,则△DMN 的面积是 . 7(乙).如图所示,点A 在半径为20的圆O 上,以OA 为一条对角线作矩形OBAC ,设直线BC 交圆O 于D 、E 两点,若12OC =,则线段CE 、BD 的长度差是 。

初一数学竞赛试卷及答案解析

初一数学竞赛试卷及答案解析

初一数学竞赛试卷及答案解析二、填空题1、 有理数a ,b ,c 在数轴上的位置如图所示,化简=------+c c a b b a 11.2、 三个互不相等的有理数,既可以表示为1,a +b ,a 的形式,又可以表示为0,ab ,b 的形式,则a 1992+b 1993=_________. 3、 计算:=-------++-+-)100011)(99911()511)(411)(311)(211(10201970198019902000 . 4、 已知,1||,1||≤≤y x 且u =|x +y |+|y +1|+|2y -x -4|,则u 的最大值和最小值之和等于___________.5、 有理数4.0,5.10,31,0,1.0,21,8,3---+-中,所有正数的和填在下式的〇中,所有负数的和填中下式的□中,并计算出下式的结果填在等号右边的横线上.〇÷□= .6、 已知a = -1,则1+)8)(8(2)6)(6(2)4)(4(2765432a a a a a a ++++++++ +)14)(14(2)12)(12(2)10)(10(21312111098a a a a a a ++++++++=___________。

7、 a 是自然数,且a a 22=,则a = 。

8、 能够使不等式成立的x 的{(|x |-x )(1+x )<0}取值x 范围是_____。

参考答案二、填空题1、 -2解:由图可见,)(00,0b a b a b a b a +-=+⇒<+⇒<<, 又)1(10110--=-⇒<-⇒<<b b b b ,)(00c a c a c a c a --=-⇒<-⇒<<. 由图可知c c c c -=-⇒>-⇒<11011, 所以c c a b b a ------+11)1()]([)]1([)(c c a b b a --------+-=)1()()1()(c c a b b a ---+-++-=211-=+--+-+--=c c a b b a .2、 2解:由于三个互不相等的有理数,既可表示为1,a +b ,a 的形式,又可以表示为0,a b ,b 的形式,也就是说这两个三数组分别对应相等,于是可以判定,a +b 与a 中间有一个为0,a b 与b 中有一个为1,但若a =0,会使a b 没意义,所以a 0≠,只能是a +b =0,即a = -b ,又a 0≠得a b = -1,由于0, a b ,b 为两两不相等的有理数,在a b = -1的情况下,只能是b =1,于是a = -1.所以a 1992+b 1993=(-1)1992+(1)1993=1+1=2.3、 1000000 解:)10001)(9991()51)(41)(31)(21(10201970198019902000-------++-+- 100099999999854433221)1020()19701980()19902000(⋅⋅⋅⋅⋅⋅-++-+-= 10001)10101010(10100÷++++= 个 10001000⨯=1000000=.4、 10解:因为11,11,1,1||≤≤-≤≤-∴≤≤y x y x 从而y x x y y y 24|42|,1|1|-+=--+=+, 当0≤+y x 时, 52)2941)(+=-+++++=x y x y y x u .11≤≤-x ,73≤≤∴u ,又当1,1=-=y x 时, 3=u ;当1,1-=-=y x 时, 7=u ,即u 的最大值为7,最小值为3,则u 的最大值与最小值的和等于10.5、 417403- 解:〇中填的数是:3013135311.0)8(=++++, □中填的数是:10913)4.0()10()21()3(-=-+-+-+-, 而4174031391030403)10139()30403()10913(301313-=⨯-=÷-=-÷.6、 1541 解: 原式=1++-+-+=⨯+⨯+⨯+⨯+⨯+⨯)7151()5131(113152111329112792572352 (15411541151311)151131()131111()11191()9171=+=-+=-+-+-+-.7、 2或4解:a 为自然数,要使 a a 22= ①由于①右边只有质因数2,所以①左边也只能有质因数2,即m a 2=,m 为自然数。

初一奥林匹克数学竞赛真题及答案

初一奥林匹克数学竞赛真题及答案

初一奥林匹克数学竞赛真题及答案一、选择题(每题1分,共10分)1.如果a,b都代表有理数,并且a+b=0,那么()A.a,b都是0.B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.2.下面的说法中正确的是()A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.C.多项式与多项式的和是多项式.D.整式与整式的和是整式.3.下面说法中不正确的是()A.有最小的自然数.B.没有最小的正有理数.C.没有的负整数.D.没有的非负数.4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()A.a,b同号.B.a,b异号.C.a>0.D.b>0.5.大于-π并且不是自然数的整数有()A.2个.B.3个.C.4个.D.无数个.6.有四种说法:甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.这四种说法中,不正确的说法的个数是()A.0个.B.1个.C.2个.D.3个.7.a代表有理数,那么,a和-a的大小关系是()A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()A.一样多.B.多了.C.少了.D.多少都可能.10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()A.增多.B.减少.C.不变.D.增多、减少都有可能.二、填空题(每题1分,共10分)1.______.2.198919902-198919892=______.3.=________.4.关于x的方程的解是_________.5.1-2+3-4+5-6+7-8+…+4999-5000=______.6.当x=-时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.7.当a=-0.2,b=0.04时,代数式的值是______.8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.9.制造一批零件,按计划18天可以完成它的.如果工作4天后,工作效率提高了,那么完成这批零件的一半,一共需要______天.10.现在4点5分,再过______分钟,分针和时针第一次重合.答案及解析一、选择题1.C2.D3.C4.D5.C6.B7.D8.D9.C10.A提示:1.令a=2,b=-2,满足2+(-2)=0,由此2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.3.1是最小的自然数,A正确.可以找到正所以C“没有的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无非负数,D正确.所以不正确的说法应选C.5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.7.令a=0,马上可以排除A、B、C,应选D.8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.9.设杯中原有水量为a,依题意可得,第二天杯中水量为a×(1-10%)=0.9a;第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;第三天杯中水量与第一天杯中水量之比为所以第三天杯中水量比第一天杯中水量少了,选C.10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为设河水速度增大后为v,(v>v0)则往返一次所用时间为由于v-v0>0,a+v0>a-v0,a+v>a-v所以(a+v0)(a+v)>(a-v0)(a-v)∴t0-t<0,即t0二、填空题提示:2.198919902-198919892=(19891990+19891989)×(19891990-19891989)=(19891990+19891989)×1=39783979.3.由于(2+1)(22+1)(24+1)(28+1)(216+1)=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)=(22-1)(22+1)(24+1)(28+1)(216+1)=(24-1)(24+1)(28+1)(216+1)=(28-1)(28+1)(216+1)=(216-1)(216+1)=232-1.2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=45.1-2+3-4+5-6+7-8+…+4999-5000=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)=-2500.6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+27.注意到:当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%解得:x=45000(克).。

数学竞赛试题及答案初中

数学竞赛试题及答案初中

数学竞赛试题及答案初中试题一:代数问题题目:如果\( a \)和\( b \)是两个连续的自然数,且\( a^2 + b^2= 45 \),求\( a \)和\( b \)的值。

解答:设\( a \)为较小的自然数,那么\( b = a + 1 \)。

根据题意,我们有:\[ a^2 + (a + 1)^2 = 45 \]\[ a^2 + a^2 + 2a + 1 = 45 \]\[ 2a^2 + 2a - 44 = 0 \]\[ a^2 + a - 22 = 0 \]分解因式得:\[ (a + 11)(a - 2) = 0 \]因此,\( a = -11 \)或\( a = 2 \)。

由于\( a \)是自然数,所以\( a = 2 \),\( b = 3 \)。

试题二:几何问题题目:在一个直角三角形中,直角边的长度分别为3厘米和4厘米,求斜边的长度。

解答:根据勾股定理,直角三角形的斜边\( c \)可以通过以下公式计算:\[ c = \sqrt{a^2 + b^2} \]其中\( a \)和\( b \)是直角边的长度。

代入数值:\[ c = \sqrt{3^2 + 4^2} \]\[ c = \sqrt{9 + 16} \]\[ c = \sqrt{25} \]\[ c = 5 \]所以斜边的长度是5厘米。

试题三:数列问题题目:一个等差数列的前三项分别是2,5,8,求这个数列的第10项。

解答:等差数列的通项公式是:\[ a_n = a_1 + (n - 1)d \]其中\( a_n \)是第\( n \)项,\( a_1 \)是首项,\( d \)是公差。

已知首项\( a_1 = 2 \),公差\( d = 5 - 2 = 3 \)。

代入公式求第10项:\[ a_{10} = 2 + (10 - 1) \times 3 \]\[ a_{10} = 2 + 9 \times 3 \]\[ a_{10} = 2 + 27 \]\[ a_{10} = 29 \]所以这个数列的第10项是29。

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案

七年级数学竞赛试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. -12. 如果一个数的3倍加上5等于这个数的5倍减去9,那么这个数是:A. 3B. 4C. 5D. 63. 一个长方形的长是14厘米,宽是10厘米,那么它的周长是多少厘米?A. 24B. 28C. 48D. 564. 下列哪个分数是最接近0.5的?A. 1/2B. 3/5C. 4/7D. 5/95. 一个数的75%是60,那么这个数是多少?A. 80B. 120C. 160D. 2006. 一个班级有48名学生,其中2/3是男生,那么这个班级有多少名女生?A. 16B. 24C. 32D. 407. 一个数除以3的商加上2等于这个数除以4的商,这个数是多少?A. 6B. 9C. 12D. 158. 下列哪个数是质数?A. 2B. 4C. 6D. 89. 一个长方体的体积是120立方厘米,长是10厘米,宽是6厘米,那么它的高是多少厘米?A. 1B. 2C. 3D. 410. 下列哪个表达式的结果是一个整数?A. (1/2) + (1/3)B. (1/2) + (1/4)C. (1/3) + (1/6)D. (1/4) + (1/5)二、填空题(每题4分,共40分)11. 一个数的1/4加上它的1/2等于______。

12. 如果5个连续的整数的和是45,那么中间的数是______。

13. 一个数的2倍与7的和是35,那么这个数是______。

14. 一个等腰三角形的两个底角都是70度,那么它的顶角是______度。

15. 一本书的价格是35元,如果打8折出售,那么现价是______元。

16. 一辆汽车以每小时60公里的速度行驶,2小时后它行驶了______公里。

17. 一个数的3/4加上它的1/2等于5,那么这个数是______。

18. 一个长方体的长、宽、高分别是8厘米、6厘米和5厘米,那么它的表面积是______平方厘米。

七年级超难数学竞赛题带解析

七年级超难数学竞赛题带解析

七年级超难数学竞赛题带解析一、代数部分。

1. 已知a,b为有理数,且a + b√(2)=(1 - √(2))^2,求a^b的值。

- 解析:- 先将(1-√(2))^2展开,根据完全平方公式(a - b)^2=a^2 - 2ab+b^2,这里a = 1,b=√(2),则(1-√(2))^2=1-2√(2)+2 = 3 - 2√(2)。

- 因为a + b√(2)=3 - 2√(2),所以a = 3,b=-2。

- 那么a^b = 3^-2=(1)/(9)。

2. 若x^2 - 3x + 1 = 0,求x^4+(1)/(x^4)的值。

- 解析:- 由x^2 - 3x + 1 = 0,因为x = 0不满足方程,所以方程两边同时除以x得x-3+(1)/(x)=0,即x+(1)/(x)=3。

- 对x+(1)/(x)=3两边平方得(x +(1)/(x))^2=x^2+2+(1)/(x^2)=9,所以x^2+(1)/(x^2)=7。

- 再对x^2+(1)/(x^2)=7两边平方得(x^2+(1)/(x^2))^2=x^4 + 2+(1)/(x^4)=49,所以x^4+(1)/(x^4)=47。

3. 化简(1)/(1×2)+(1)/(2×3)+(1)/(3×4)+·s+(1)/(2019×2020)。

- 解析:- 因为(1)/(n(n + 1))=(1)/(n)-(1)/(n + 1)。

- 所以原式=(1-(1)/(2))+((1)/(2)-(1)/(3))+((1)/(3)-(1)/(4))+·s+((1)/(2019)-(1)/(2020))- 去括号后中间项都可以消去,得到1-(1)/(2020)=(2019)/(2020)。

4. 已知a^2 + b^2=6ab,且a>b>0,求(a + b)/(a - b)的值。

- 解析:- 因为a^2 + b^2 = 6ab,所以(a + b)^2=a^2+2ab + b^2=8ab,(a - b)^2=a^2-2ab + b^2 = 4ab。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

全国初一初中数学竞赛测试
班级:___________ 姓名:___________ 分数:___________
一、选择题
1.船在江中顺水航行与逆水航行的速度之比为7:2,那么它在两港间往返一次的平均速度与顺
水速度之比为( )。

A.B.C.D.。

2.如右图所示,三角形ABC的面积为1cm2。

AP垂直ÐB的平分线BP于P。

则与三角形PBC的面积相等的长方形是( )。

3.设a,B是常数,不等式+>0的解集为x<,则关于x的不等式bx-a>0的解集是( )。

A.x>B.x<-C.x> -D.x<。

4.下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定。

如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加( )个螺栓。

A.1B.2C.3D.4 。

5.对四堆石子进行如下“操作”:每次允许从每堆中各拿掉相同个数的石子,或从任一堆中取出
一些石子放入另一堆中。

若四堆石子的个数分别为2011,2010,2009,2008,则按上述方式
进行若干次“操作”后,四堆石子的个数可能是( )。

A.0, 0, 0, 1B.0, 0, 0, 2C.0, 0, 0, 3D.0, 0, 0, 4 。

二、填空题
1.对整数按以下方法进行加密;每个数字的数字变为与7乘积的个位数字,再把每个数位上的
数字a变为10-a。

如果一个数按照上面的方法加密后为473392,则该数为。

2.老师问A、B、C、D、E五位学生:“昨天你们有几个人玩过游戏?”他们的回答分别为A:
没有人;B:一个人;C:二个人;D;三个人;E:四个人。

老师知道:他们之中有人玩过
游戏,也有人没有玩过游戏。

若没有玩过游戏的人说的是真话,那么他们5个人中有个
人玩过游戏。

3.公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管
显示,如下图所示:
由于坏了一支荧光管,某公交线路号变成“351”。

若该线路号恰好等于两个不同的两位质数
的积,则正确的线路是路。

4.在下面的加法竖式中,如果不同的汉字代表不同的数字。

使得算式成立,那么四位数
“华杯初赛”的最小值是 。

全国初一初中数学竞赛测试答案及解析 一、选择题 1.船在江中顺水航行与逆水航行的速度之比为7:2,那么它在两港间往返一次的平均速度与顺
水速度之比为( )。

A .
B .
C .
D .。

【答案】D
【解析】分析:设出顺水速度和逆水速度,那么可让总路程÷总时间求得平均速度,相比即可.
解答:解:设船在江中顺水速度为7x ,则逆水速度为2x ,一次的航程为1.
∴平均速度==x ,
∴它在两港间往返一次的平均速度与顺水速度之比为
x :7x=. 故选D .
2. 如右图所示,三角形ABC 的面积为1cm 2。

AP 垂直ÐB 的平分线BP 于P 。

则与三角形PBC 的面积相等的长方形是( )。

【答案】B
【解析】分析:过P 点作PE ⊥BP ,垂足为P ,交BC 于E ,根据AP 垂直∠B 的平分线BP 于P ,即可求出
△ABP ≌△BEP ,又知△APC 和△CPE 等底同高,可以证明两三角形面积相等,即可证明三角形PBC 的面积. 解答:解:过P 点作PE ⊥BP ,垂足为P ,交BC 于E ,
∵AP 垂直∠B 的平分线BP 于P , ∠ABP=∠EBP ,
又知BP=BP ,∠APB=∠BPE=90°,
∴△ABP ≌△BEP , ∴AP=PE , ∵△APC 和△CPE 等底同高, ∴S △APC =S △PCE ,
∴三角形PBC 的面积=三角形ABC 的面积=
cm 2, 选项中只有B 的长方形面积为
cm 2,
故选B.
3.设a,B是常数,不等式+>0的解集为x<,则关于x的不等式bx-a>0的解集是( )。

A.x>B.x<-C.x> -D.x<。

【答案】C
【解析】分析:这是一个含有字母系数的不等式,仔细观察+>0,通过移项、系数化为1求得解集,由不等
式解集是x<,不等号的方向已改变,说明运用的是不等式的性质3,运用性质3的前提是两边都乘以(•或除以)同一个负数,从而求出a<0,b>0.再通过移项、系数化为1求得关于x的不等式bx-a>0解集.
解答:解:不等式+>0的解集为>-,
x<-,x<.
所以=-且a<0,b>0,
所以不等式bx-a>0的解集为
bx>a
x>
x>-.
故选C.
4.下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定。

如果在木条交叉点打孔
加装螺栓的办法使其形状稳定,那么至少需要添加( )个螺栓。

A.1B.2C.3D.4 。

【答案】A
【解析】分析:用木条交叉点打孔加装螺栓的办法来达到使其形状稳定的目的,可用三角形的稳定性解释.
解答:解:如图:
A点加上螺栓后,
根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边.
故选A.
5.对四堆石子进行如下“操作”:每次允许从每堆中各拿掉相同个数的石子,或从任一堆中取出
一些石子放入另一堆中。

若四堆石子的个数分别为2011,2010,2009,2008,则按上述方式
进行若干次“操作”后,四堆石子的个数可能是( )。

A.0, 0, 0, 1B.0, 0, 0, 2C.0, 0, 0, 3D.0, 0, 0, 4 。

【答案】B
【解析】分析:先观察四个数,可得最小的为2008,根据题意可得出都拿走2008后四堆所剩的石子个数为:3,2,1,0,此时可将前三堆中的一个石子放到第四堆,然后再在每堆拿走1个石子,可得出四堆只剩下2个石子,
继而结合选项可得出答案.
解答:解:①分别从四堆中拿走2008个石子,四堆所剩的石子个数为:3,2,1,0,
②将第一堆的一个石子放入第四堆,然后再分别从这四堆石子中各拿走1个石子,此时四堆石子的个数为:1,1,0,0,共剩余两个石子,
结合选项可得,只有B选项剩余2个石子.
故选B.
二、填空题
1.对整数按以下方法进行加密;每个数字的数字变为与7乘积的个位数字,再把每个数位上的
数字a变为10-a。

如果一个数按照上面的方法加密后为473392,则该数为。

【答案】891134
【解析】根据题意算出从0到9加密后对应的数字,根据所给加密后的数字可得原数
解:对于任意一个数位数字(0-9),经加密后对应的数字是唯一的.
规律如下:
例如数字4,4与7相乘的末位数字是8,再把8变2,也就是说4对应的是2;
同理可得:1对应3,2对应6,3对应9,4对应2,5对应5,6对应8,7对应1,8对应4,9对应7,0对应0;∴如果加密后的数为473392,那么原数是891134,
故答案为891134
2.老师问A、B、C、D、E五位学生:“昨天你们有几个人玩过游戏?”他们的回答分别为A:
没有人;B:一个人;C:二个人;D;三个人;E:四个人。

老师知道:他们之中有人玩过
游戏,也有人没有玩过游戏。

若没有玩过游戏的人说的是真话,那么他们5个人中有个
人玩过游戏。

【答案】4
【解析】本题先根据题意没有玩过游戏的人说的是真话,由此可以推断出这5种说法中一定只有一种是正确的,
从而得出只有一个人没有玩过游戏,由此可得出结论.
解:∵这5个人中没有玩游戏的说的是真话,而他们一共有5种说法
∴他们中只有一个人的说法是对的,
∵没有玩过游戏的人说的是真话,
∴只有一个人没有玩过游戏,
∴他们5个人中有4个人玩过游戏.
故答案为:4
3.公交车的线路号是由数字显示器显示的三位数,其中每个数字是由横竖放置的七支荧光管
显示,如下图所示:
由于坏了一支荧光管,某公交线路号变成“351”。

若该线路号恰好等于两个不同的两位质数
的积,则正确的线路是路。

【答案】391
【解析】先确定可能是哪些路线,然后再根据条件:该线路号恰好等于两个不同的两位质数的积,找到符合要求的数即可
:解:∵该路线有可能为:951或361或391或357,
又∵该线路号恰好等于两个不同的两位质数的积,
∴此路线是:391=17×23.
故答案为:391
4.在下面的加法竖式中,如果不同的汉字代表不同的数字。

使得算式成立,那么四位数
“华杯初赛”的最小值是。

【答案】1026
【解析】要使四位数“华杯初赛”取得最小值,先确定“华”的值,进一步确定“杯”和“十”值,在确定“初”的值,经过试
算“可推出“兔”“六”的值,再由剩下的数字得出“年”“届”“赛”三个数字,由此解决问题.
解:因为四位数“华杯初赛”取得最小值,“华”只能为1,“杯”可以为0,那么“十”只能是9,“初”可以是2,那么
“兔”“六”“初”三个数字和只能向前一位今1,可推出“兔”“六”可以为3、4,3、5,3、6,再由剩下7、8数字和为15,说明“年”“届”“赛”三个数字和得向前一位进2,由此推出“兔”“六”为3、4,“年”“届”“赛”三个数字为6、7、8,所以赛
最小为6,四位数“华杯初赛”的最小值是 1026.
故答案为1026。

相关文档
最新文档