2021年高中数学苏教版选修2-2教学案:第2章 2.1 2.1.3 推理案例赏析

合集下载

高中数学新苏教版精品教案《苏教版高中数学选修2-2 2.1 合情推理与演绎推理》

高中数学新苏教版精品教案《苏教版高中数学选修2-2 2.1 合情推理与演绎推理》

合情推理教学目标结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比进行简单的推理,体会并认识合情推理在数学发现中的作用.教学重点,难点归纳推理和类比推理的特点及其创新性和不严谨性.教学过程我们生活中有很多谚语,特别是关于农耕的,例如“瑞雪兆丰年〞“邋遢冬至干净年〞,以及一些看云识天气的方法,这些都是我们的祖先根据多年的观察总结归纳出来的经验.这些经验就是人们根据长期的实践经验进行归纳的结果农民观察天气,生物学家会去观察鸟类,心理学家会去观察行为和表情,比方说你们也会观察,总结出我上课写在黑板右侧的总是错的,或者我微微一笑,说明接下来就是一个具有挑战性的问题.当然一个对数学感兴趣的数学家就会去观察一些数字.一.问题情境数学教育家G.波利亚在其名著?数学与猜测?中对哥德巴赫猜测的推理过程进行了模拟演示:首先,波利亚说明:归纳法常常从观察开始.一个生物学家会观察鸟类的生活,一个晶体学家会观察晶体的形状,一个对数论有兴趣的数学家会观察整数1,2,3,4,5,…的性质.这一段表达说明:归纳从观察开始,而观察要有归纳的动因,即要有感兴趣、需研究的问题,归纳推理研究问题、发现规律的手段.接着,波利亚说:假设你想要观察鸟的生活并有可能获得有益的结论的话,那么你就应当对鸟稍有熟悉,对鸟感兴趣,甚至你应当喜欢鸟.同样,假设你要考察数,你就应当对它们感兴趣,并且对它们颇为熟悉,你应当会区别偶数和奇数,你应当知道平方数1,4,9,14,25,…以及素数2,3,5,7,11,13,17,19,23,29,….这里,波利亚想要传达的意思是:对你感兴趣的问题你还需要对相关的知识有一定的了解,也即应该从你对这一课题中已经熟悉的、掌握的内容开始你的探究.波利亚又说:即使只有这一点朴素的知识,你也可能观察到一些东西.比方说你可能会碰到这样几个关系:3+7=103+17=20213+17=30并注意到它们之间的类似之处.它会使你想到:3,7,13,和17都是奇素数,10,20210都是偶数….这三个偶数都能够表示为两个奇素数之和,那么其他偶数又怎么样呢?上述过程说明了归纳推理的非常重要的特征:从特殊情形开始,并且所有的特殊情形都要具有类似之处,这个类似之处正是归纳发现的根底.波利亚接着说:那么其他偶数又怎么样呢?它们也有类似的性质吗?当然头一个等于两个奇素数之和偶数是6=3+3.看看超过6的数,我们发现8=3+510=3+7=5+512=5+714=3+11=7+716=3+13=5+11.这样下去总是对的吗?波利亚想告诉我们的是,对从几个特殊情形经过归纳推理得到的结果不能轻信,需要进一步验证.只有在较多的归纳检验证实的根底上得到的结论才能使我们更有信心.最后,波利亚说:无论如何,所看到的这些个别情况,至少可以启发我们提出一个一般性的命题:任何一个大于4的偶数都是两个奇素数的和.至此,实现了归纳推理的目标:一个一般性的结论〔猜测〕.当然,波利亚还进一步说明了证明的必要性.从波利亚的这个案例我们可以发现,对归纳推理的教学应该突出说明以下几点:1、要使学生认识到归纳推理不是盲目的、毫无目的的尝试,科学发现更不是纯属偶然的巧合,必须有一定的内因的驱动和信念的支撑.2、归纳推理的三个特点:从特殊开始的推理;由归纳推理得到的结论仅仅“似真〞;归纳推理是一种创造性的推理.3、归纳推理的思维规程大致为:【活动一】1.观察以下等式,从中可以得出怎样的一般规律?猜测:任何一个正整数都能表示为四个数的平方和.2.在数列中,,通过计算,试猜测这个数列的通项公式.猜测3.前个正整数的和为,前个正整数的平方和从表中发现,于是猜测.归纳推理要具备下述几个要素:1.多个特例综合分析;特例共性的发现:要存在某种相似性;共性的概括:猜测.归纳推理需要大量的原始数据,这是一个漫长的过程,在大数据时代,电脑已局部取代了这个过程,例如分析你的上网数据,分析你的喜好进行广告推送.但我们还有另外一种常用的推理方法.在高中数学学习中,指数函数与对数函数的类比,等差数列和等比数列的类比,平面几何和立体几何的类比,圆和椭圆和双曲线抛物线的类比,实数与虚数的类比等.〔G波利亚的类比〕类比实数的加法与乘法,并列出它们类似的性质.在实数的加法与乘法之间,可以建立如下的对应关系:加〔+〕乘〔×〕加数、被加数乘数、被乘数和积等等,它们具有以下类似的性质:试将平面上的圆与空间的球进行类比.圆的定义:平面内到一个定点的距离等于定长的点的集合. 球的定义:到一个定点的距离等于定长的点的集合. 圆 球 弦截面圆 直径 大圆 周长 外表积 圆面积球体积例如三角形的性质可以往几个方向类比:一般化为四边形,特殊化为正三角形,升维度为三棱锥,改平面为曲面等【活动二】1.选两个相关知识进行类比2.圆的方程是,那么过圆上一点的切线方程为.猜测新命题:1.类比推理是从特殊到特殊的推理,是寻找事物之间的共同或相似性质.类比的性质相似性越多,相似的性质与推测的性质之间的关系就越相关,从而类比得出的结论就越可靠.2.类比推理的一般步骤:〔1〕找出两类事物之间的相似性或者一致性.〔2〕用一类事物的性质去推测另一类事物的性质,得出一个明确的命题〔猜测〕.【活动三】1.设,为实数,满足,,求的最大值.解:设,那么,即,,将,两式相加得.根据以上解答过程进行类比,尝试解决下题:设,为实数,满足,,求的最大值.〔2021年江苏高考第13题〕设,由此可以求出,,而2021江苏高考数学卷中的题目就表达出多种形式的类比思想。

苏教版高中数学选修2-2第2章2.1.1.docx

苏教版高中数学选修2-2第2章2.1.1.docx

第2章推理与证明§2.1 合情推理与演绎推理2.1.1 合情推理课时目标 1.了解合情推理的含义,能利用归纳和类比等进行简单的推理.2.了解合情推理在数学发现中的作用.1.归纳推理(1)定义:从__________中推演出__________的结论,这样的推理称为归纳推理.(2)思维过程→→2.类比推理(1)定义根据两个(或两类)对象之间在某些方面的________或________,推演出它们在其他方面也__________或________,像这样的推理通常称为类比推理,简称类比法.(2)思维过程观察、比较―→联想、类推―→猜测新的结论3.合情推理的含义合情推理是根据已有的事实和正确的结论,___________________________________等推测出某些结果的推理过程.____________和____________是数学活动中常用的合情推理.一、填空题1.数列2,5,11,20,x,47,…中的x的值为________.2.如图由火柴杆拼成的一列图形中,第n个图形由n个正方形组成:通过观察可以发现:第4个图形中,火柴杆有______根;第n 个图形中,火柴杆有________根.3.已知a 1=1,a n +1>a n ,且(a n +1-a n )2-2(a n +1+a n )+1=0,通过计算a 2,a 3的值,猜想a n =________.4.在等差数列{a n }中,若a 10=0,证明等式a 1+a 2+…+a n =a 1+a 2+…+a 19-n (n<19,n ∈N *)成立,并类比上述性质相应的在等比数列{b n }中,若b 9=1,则有等式________________________________________成立.5.当a ,b ,c ∈(0,+∞)时,由a +b 2≥ab ,a +b +c 3≥3abc ,运用归纳推理,可猜测出的合理结论是____________________.6.观察下列等式:1=1,1-4=-(1+2),1-4+9=1+2+3,1-4+9-16=-(1+2+3+4),…,由此推测第n 个等式为______________________________________.7.设n ≥2,n ∈N ,(2x +12)n -(3x +13)n =a 0+a 1x +a 2x 2+…+a n x n ,将|a k |(0≤k ≤n )的最小值记为T n ,则T 2=0,T 3=123-133,T 4=0,T 5=125-135,…,T n ,…,其中T n =______________. 8.对于平面几何中的命题:“夹在两条平行线之间的平行线段相等”,在立体几何中,类比上述命题,可以得到命题:“_______________________________________________”;这个类比命题的真假性是__________.二、解答题9.平面内有n 个圆,其中每两个圆都相交于两点,且每三个圆都不相交于同一点,若f (n )表示这n 个圆把平面分割的区域数,试求f (n ).10.观察①tan 10°tan 20°+tan 20°tan 60°+tan 60°tan 10°=1.②tan 5°tan 10°+tan 10°tan 75°+tan 75°tan 5°=1.由以上两式成立得到一个由特殊到一般的推广,此推广是什么?并证明你的推广.能力提升11.观察下列等式:①cos 2α=2cos 2α-1;②cos 4α=8cos 4α-8cos 2α+1;③cos 6α=32cos 6α-48cos 4α+18cos 2α-1;④cos 8α=128cos 8α-256cos 6α+160cos 4α-32cos 2α+1;⑤cos 10α=m cos 10α-1 280cos 8α+1 120cos 6α+n cos 4α+p cos 2α-1.可以推测,m -n +p =________.12.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点,若用f (n )表示这n 条直线交点的个数.(1)求f (4);(2)当n >4时,用n 表示出f (n ).1.归纳推理的一般步骤(1)通过观察个别事物发现某些相同的性质.(2)从已知的相同性质中推出一个明确表述的一般性命题.2.类比推理的一般步骤(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质推测另一类事物的性质,得出一个明确的结论.3.合情推理获得的结论未必可靠,但能帮助我们猜测,发现结论.答案知识梳理1.(1)个别事实一般性(2)实验、观察概括、推广猜测一般性结论2.(1)相似相同相似相同3.实验和实践的结果以及个人的经验和直觉归纳推理类比推理作业设计1.32解析∵5-2=3,11-5=6,20-11=9,∴x-20=12,∴x=32.2.133n+13.n2解析计算得a2=4,a3=9.∴猜想a n=n2.4.b1b2…b n=b1b2…b17-n (n<17,n∈N*)解析在等差数列{a n}中,由a10=0,得a1+a19=a2+a18=…=a n+a20-n=a n+1+a19-n=2a10=0,∴a1+a2+…+a n+…+a19=0,即a1+a2+…+a n=-a19-a18-…-a n+1,又∵a1=-a19,a2=-a18,…,a19-n=-a n+1,∴a1+a2+…+a n=-a19-a18-…-a n+1=a1+a2+…+a19-n.若a9=0,同理可得a1+a2+…+a n=a1+a2+…+a17-n.相应地,类比此性质在等比数列{b n}中,可得b1b2…b n=b1b2…b17-n (n<17,n∈N*).5.a 1+a 2+…+a n n ≥n a 1a 2…a n (a i >0,i =1,2,…n ) 解析 a 1+a 2+…+a n n ≥n a 1a 2…a n (a i >0,i =1,2,…n )是基本不等式的一般形式,这里等号当且仅当a 1=a 2=…=a n 时成立.结论的猜测没有定式,但合理的猜测是有目标的.6.12-22+32-42+…+(-1)n -1·n 2=(-1)n -1(1+2+3+…+n )7.⎩⎪⎨⎪⎧0 (n 为偶数)12n -13n (n 为奇数) 解析 观察T n 表达式的特点可以看出T 2=0,T 4=0,……,∴当n 为偶数时,T n =0;又∵T 3=123-133,T 5=125-135,……,∴当n 为奇数时,T n =12n -13n . 8.夹在两个平行平面间的平行线段相等 真命题9.解 ∵f (n )表示n 个圆把平面分割成的区域数,如果再有一个圆和这n 个圆相交,则增加2n 个交点,这些交点将增加的这个圆分成2n 段弧,且每一段弧又将原来的平面区域一分为二,因此,增加一个圆后,平面分成的区域数增加2n 个,即f (n +1)=f (n )+2n ,亦即f (n +1)-f (n )=2n ,又f (1)=2,由递推公式得f (2)-f (1)=2×1,f (3)-f (2)=2×2,f (4)-f (3)=2×3,……,f (n )-f (n -1)=2(n -1).将以上n -1个等式累加得f (n )=2+2[1+2+3+…+(n -1)]=n 2-n +2.10.解 观察到:10°+20°+60°=90°,5°+75°+10°=90°.猜想此推广为α+β+γ=π2且α,β,γ都不为k π+π2(k ∈Z ),则tan αtan β+tan βtan γ+tan γtan α=1. 证明:①γ=0时,等式显然成立.②当γ≠0时,由α+β+γ=π2, 得α+β=π2-γ, 所以tan(α+β)=1tan γ. 又因为tan(α+β)=tan α+tan β1-tan αtan β, 所以tan α+tan β=tan(α+β)·(1-tan α·tan β)=1tan γ(1-tan α·tan β), 所以tan αtan β+tan βtan γ+tan γtan α=tan αtan β+tan γ(tan α+tan β)=tan αtan β+tan γ·1 tan γ(1-tan αtan β)=1. 综上所述,等式成立.11.962解析 观察得:式子中所有项的系数和为1,∴m -1 280+1 120+n +p -1=1,∴m +n +p =162,又p =10×5=50,m =29=512,∴n=-400,∴m-n+p=962.12.解(1)如图所示,可得f(4)=5.(2)∵f(3)=2;f(4)=5=f(3)+3;f(5)=9=f(4)+4;f(6)=14=f(5)+5;……∴每增加一条直线,交点增加的个数等于原来直线的条数.∴f(n)=f(n-1)+n-1,累加得f(n)=f(3)+3+4+5+…+(n-1)=2+3+4+5+…+(n-1)=12(n+1)(n-2).。

高中数学苏教版选修2-2第二章1节《合情推理与演绎推理》第二课时教案设计

高中数学苏教版选修2-2第二章1节《合情推理与演绎推理》第二课时教案设计

课题02. 合情推理( 2)1. 联合数学实例,认识类比推理的含义教课目的 2. 能利用类比方法进行简单的推理教课要点 体 会 并 实 践 类 比 推 理 的 探 索 过 程 以 及 类 比 推 理 的 局 限教课难点 引 导 和 训 练 学 生 从 已 知 的 线 索 中 归 纳 出 正 确 的 结 论讲课方法讲练联合教课协助手段教师活动课前自学:复习1、什么叫推理 ?推原因哪几部分构成 ?2、合情推理的主要形式有 和.3、归纳推理是从 事实中归纳出结论的一种推理模式4、归纳推理的特色 :5 、 22 2 2, 3 33 3, 44 44,L 6 a6a33 8815 15bb( a, b 均为实数),请推断 a =b =。

新知由两类对象拥有某些近似特色和此中一类对象的某些已知特色,推出另一类对象也拥有这些特色的推理 . 简言之,类比推理是由特别到特别的推理.讲堂研究:一、创建情形:1. 工匠鲁班类比带齿的草叶和蝗虫的牙齿, 发了然锯2. 模仿鱼类的外型和它们在水中沉浮的原理, 发了然潜水艇3. 科学家对火星进行研究 , 发现火星与地球有很多近似的特色; 1) 火星也绕太阳运转、饶轴自转的行星;2) 有大气层 , 在一年中也有季节更改 ;3) 火星上大多数时间的温度合适地球上某些已知生物的生计 , 等等 . 科学家猜想 ; 火星上也可能有生命存在 .4.利用平面向量的本定理类比获得空间向量的基本定理.二、研究新知:由两类对象拥有某些近似特色和此中一类对象的某些已知特色,推出另一类对象也拥有这些特色的推理 . 简言之,类比推理是由特别到特别的推理 .类比练习:(i) 圆有切线, 切线与圆只交于一点, 切点到圆心的距离等于半径 . 由此结论如何类比到球体?(ii) 平面内不共线的三点确立一个圆,由此结论如何类比获得空间的结论?由圆的一些特色,类比获得球体的相应特色 . (教材 73 研究 填表)小结:平面→空间,圆→球,线→面 .议论:以平面向量为基础学习空间向量,试举例此中的一些类比思想.三、剖析归纳:1. 由两类对象拥有某些近似特色和此中一类对象的某些已知特色,推出另一教课多媒体学生活动 二次备课通 过 阅 读 教 材 感 受 归 纳 推 理 的 魅 力 从 我 们 的 生 活 实 际 引 出 类 比 推 理概 念教师活动类对象也拥有这些特色的推理.简言之,类比推理是由特别到特别的推理.2.类比推理的几个特色1)类比是从已经掌握了的事物的属性 , 推断正在研究的事物的属性 , 是以旧有的认识为基础 , 类比出新的结果 .2)类比是从一种事物的特别属性推断另一种事物的特别属性 .3 )类比的结果是猜想性的不必定靠谱 , 但它却有发现的功能 .3.特色: 1 )联想2)探索性3)不确定性指出类比推理的结果不一定可靠3.类比推理的一般步骤:学生活动二次备课⑴ 找出两类对象之间能够切实表述的相像特色;⑵ 用一类对象的已知特色去推断另一类对象的特色,进而得出一个猜想;⑶ 查验猜想。

苏教版高中数学选修2-2课件 2.1.3 推理案例赏析课件1

苏教版高中数学选修2-2课件 2.1.3 推理案例赏析课件1

教 学
创设问题情境,让学生结合已学过的数学实例和生活中
当 堂


案 设
的实例,进一步理解合情推理与演绎推理是人类不可少的思
基 达


维过程.

前 自 主 导 学
分组学习,合作交流,让学生进行讨论,分别回报,让 学生经历学习的过程,体会认识合情推理和演绎推理相辅相
课 时 作 业
课 成,相互为用,共同推动着发现活动的过程.
教 师
互 动
联 合情推理的结论需要演绎推理的验证,而演绎推理的方
备 课
探 究
系 向和思路一般是通过合情推理获得的
资 源
菜单
SJ·数学 选修 2-2











归纳推理的应用





方 案
在数列{an}中,已知 a1=2,且对任意的正整数 n,
双 基


计 m,都有 an+m=an+am.
类比推 理
演绎推理

当 堂
方 案

双 基
设 计
理 由部分到整体, 由特殊
形 由特殊到一般 到特殊
由一般到特殊
达 标
课 前

自 主 导 学
结 论
不一定正确,有待证明
在前提和推理形式都正确的 前提下,结论一定正确
课 时 作 业
作 猜测和发现结论,探索和 证明数学结论,建立数学体系
课 堂
用 提供证明思路
的重要思维过程





高中数学苏教版选修2-2第二章1节《合情推理与演绎推理》第三课时教案设计

高中数学苏教版选修2-2第二章1节《合情推理与演绎推理》第三课时教案设计

课题03.演绎推理教学目标1.通过演绎推理的学习,让学生对推理有了全新的认识.2.了解演绎推理的含义、基本方法;正确地运用演绎推理、进行简单的推理.教学重点正确地运用演绎推理进行简单的推理教学难点正确运用“三段论”证明问题.授课方法讲练结合教学辅助手段教学多媒体教师活动学生活动二次备课课前自学:定义特征一般模式思维过程归纳推理由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概括出一般结论的推理归纳推理是由部分到整体、由个别到一般的推理S1具有性质PS2具有性质P……S n具有性质P(S1,S2,…,S n是A类事物对象)所以A类事物具有性质P实验观察→概括推广→猜测一般性结论类比推理由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理类比推理是由特殊到特殊的推理A类事物具有性质a,b,c,dB类事物具有性质a′,b′,c′(a,b,c与a′,b′,c′相似或相同)所以B类事物可能具有性质d′观察、比较猜测新的结论1.归纳推理:从特殊到一般类比推理:从特殊到特殊从具体问题出发――观察、分析比较、联想――归纳.类比――提出猜想.2.演绎推理:从一般性的原理出发,推出某个特殊情况下的结论,这种推理称为演绎推理(或逻辑推理).课堂探究:一、创设情景:观察与思考:1.所有的金属都能导电,铜是金属,所以,铜能够导电.2.一切奇数都不能被2整除,(2100+1)是奇数,所以,(2100+1)不能被2整除.3.三角函数都是周期函数,tanα是三角函数,所以,tanα是周期函数.提出问题:像这样的推理是合情推理吗?如果不是,它与合情推理有何不同(从推理形式上分析)二、探究新知:1.所有的金属都能导电←————大前提铜是金属,←-----小前提所以,铜能够导电←――结论学生结合3个例子,尝试举例,加深概念的理解学生探索,发现问题,总结特征(五号楷体加粗)。

(教师用书)高中数学 第二章 推理与证明教案 苏教版选修2-2

(教师用书)高中数学 第二章 推理与证明教案 苏教版选修2-2

第二章推理与证明2.1合情推理与演绎推理2.1.1 合情推理第1课时归纳推理(教师用书独具)●三维目标1.知识与技能了解合情推理的含义,认识归纳推理的基本方法与步骤,能利用归纳推理进行简单的推理应用.2.过程与方法通过学生的积极参与,经历归纳推理概念的获得过程,了解归纳推理的含义.让学生通过欣赏一些伟大猜想产生的过程,体会如何利用归纳去猜测和发现一些新的结论,培养学生归纳推理的思维方式.3.情感、态度与价值观正确认识合情推理在数学中的重要作用,并体会归纳推理在日常活动和科学发现中的作用.学生通过主动探究、合作学习,激发学习兴趣,认识数学的科学价值、应用价值和文化价值,养成认真观察事物、发现探索新知识的良好思维品质.●重点难点重点:归纳推理的含义与特点,能进行简单的归纳推理.难点:运用归纳推理得到一般性的结论,做出猜想.归纳推理是“推理与证明”一章中的重要组成部分,具有猜测和发现结论,探索和提供思路的作用,有利于创新意识的培养,突出体现数学的人文价值和实际应用价值,因此,在高中数学的模块中,归纳推理就显得格外的举足轻重了.为了突破难点,引导学生合作交流,发现特殊实例的共性,抓住本质特征,作出合理猜想.(教师用书独具)●教学建议关于归纳推理的教学,建议以学生熟悉的实例为载体,创设问题情境.例如“猜职业”、“哥德巴赫猜想”等引导学生进行观察、分析、归纳推理,并借助例题具体说明在数学发现的过程中归纳猜想的作用、采取合作交流,培养学生合作学习的意识与数学思维能力.在课堂上渗透数学文化教育,让学生通过数学文化的学习,了解数学发展中起重大作用的历史事件和人物,激发学习数学的兴趣.●教学流程创设问题情境,引导学生得出归纳推理的意义和特点.⇒通过例1及其变式训练,使学生掌握数、式中归纳推理的一般规律.⇒通过例2及其变式训练,使学生掌握图形中归纳推理的特点与思路.⇒学习例3及其变式训练,求解简单实际问题的归纳推理并体会应用的广泛性.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈、矫正.1.(1)若a1=1,a2=2,a3=3,a4=2,…你能猜想出数列{a n}的通项公式吗?(2)直角三角形、等腰三角形、等边三角形的内角和都是180°,你能猜想出什么结论?【提示】(1)a n=n(n∈N*);(2)三角形的内角和都是180°.2.在解决上述问题时,经历了怎样的思维过程?【提示】列出部分→归纳现象→得出结论.1.推理从一个或几个已知命题得出另一个新命题的思维过程称为推理.2.归纳推理(1)归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理.(2)归纳推理的思维过程如图:实验、观察―→概括、推广―→猜测一般性结论.3.归纳推理的特点(1)归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象,该结论超越了前提所包容的范围.(2)由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实践检验.(3)归纳推理是一种具有创造性的推理.n1n+1n(1)求a2,a3,a4;(2)归纳猜想数列通项公式a n,并证明结论的正确性.【思路探究】由a1=1求a2的值,进而求a3,a4→分析a1,a2,a3,a4的特征→猜想a n→数学证明【自主解答】(1)由a1=1,且a n+1=2a n+1(n∈N*),令n=1,得a2=3,令n=2,n=3,进而得a3=7,a4=15,(2)由a1=21-1,a2=22-1,a3=23-1,a4=24-1.可归纳猜想,得a n=2n-1(n∈N*).证明如下:由a n+1=2a n+1,得a n+1+1=2(a n+1).∴{a n+1}是以2为首项,公比为2的等比数列.∴a n+1=2·2n-1=2n,因此a n=2n-1.1.在数列中,常用归纳推理猜测通项公式或前n项和公式;要认真观察数列中各项数字间的规律,分析每一项与对应的项数(序号n)之间的关系,这是解题的关键.2.归纳推理具有由特殊到一般,由具体到抽象的认知功能,归纳推理的一般步骤:(1)通过观察个别情况发现某些共同的特征;(2)从已知的相同性质中推出一个明确表达的一般性命题(猜想).已知:1>12;1+12+13>1;1+12+13+14+15+16+17>32;1+12+13+…+115>2;…根据以上不等式的结构特点,请你归纳一般结论. 【解】 1=21-1,3=22-1,7=23-1,15=24-1,…猜想不等式的左边共有2n -1项,最后一项的分母为2n-1,右边为n 2,由此可得一般性结论.1+12+13+…+12n -1> n 2(n∈N *).理得出它们之间的关系.图2-1-1【思路探究】 先找出凸多面体的面数、顶点数和棱数,观察它们之间有什么关系,再归纳出一般性的结论.【自主解答】 正方体:F =6 V =8 E =12; 三棱柱:F =5 V =6 E =9; 五棱柱:F =7 V =10 E =15; 四棱锥:F =5 V =5 E =8; 两个同底面的四棱锥组成的组合体:F =8 V =6 E =12;通过以上观察发现F ,V ,E 满足F +V -E =2.所以归纳得:在凸多面体中,面数F 、顶点数V 和棱数E 满足以下关系:F +V -E =2.1.在几何中随点、线、面等元素的增加,探究点数、线数、面数等满足的关系及相应的线段、交点、区域部分图形等的增加情况常用归纳推理解决,通过比较,寻找规律是解决该类问题的关键.2.应用归纳推理,注意两点:(1)从图形的数量规律入手,寻找数值变化与数量关系;(2)从图形的结构变化规律入手,找到图形的结构每发生一次变化后,与上一次比较,数值发生了怎样的变化.有两种花色的正六边形地面砖,按如图2-1-2所示的规律拼成若干个图案,则第6个图案中有条纹的正六边形的个数是多少?图2-1-2【解】法一有菱形纹的正六边形个数如下表:为首项,以5为公差的等差数列,所以第6个图案中有条纹的正六边形的个数是6+5×(6-1)=31.法二由图案的排列规律可知,除第一块无纹正六边形需6个有纹正六边形围绕(图案1)外,每增加一块无纹正六边形,只需增加5块菱形纹正六边形(每两块相邻的无纹正六边形之间有一块“公共”的菱形纹正六边形).故第6个图案中有菱形纹的正六边形的个数为:6+5×(6-1)=31.边形.如图2-1-3所示,为一组蜂巢的截面图,其中第一个图有1个蜂巢,第二个图有7个蜂巢,第三个图有19个蜂巢,按此规律,以f(n)表示第n个图的蜂巢总数.图2-1-3试给出f(4),f(5)的值,并求f(n)的表达式.(不要求证明)【思路探究】 根据前三个图形,找出正六边形增加的规律.【自主解答】 由图形可知:每个图形最外面有6×(n-1)个正六边形:f(4)=f(3)+18=19+18=37,f(5)=f(4)+24=37+24=61, 因为f(2)-f(1)=7-1=6, f(3)-f(2)=19-7=2×6, f(4)-f(3)=37-19=3×6, f(5)-f(4)=61-37=4×6, … …所以当n≥2时,有f(n)-f(n -1)=6(n -1). 以上各式相加,当n≥2时,f(n)-f(1)=6[1+2+3+…+(n -1)], ∴f(n)=f(1)+6×(n -1)n 2=3n 2-3n +1.1.在本例中,应注意两点:(1)图形的特点,每个图形从宏观上看均为一大正六边形,每一边上均有n 个小正六边形,(2)式的变化,通过式子,寻求f(n)与f(n -1)的关系,转化成数列问题.2.利用归纳推理,可以使我们对许多实际问题总结出一般性的结论,掌握事物的本质规律.意大利数学家斐波那契在他的1228年版的《算经》一书中记述了有趣的兔子问题:假定每对大兔子每月能生一对小兔子,而每对小兔子过了一个月就可以长成大兔子,如果不发生死亡,那么由一对大兔子开始,一年后能有多少对大兔子呢? 我们依次给出各个月的大兔子对数,并一直推算下去到无尽的月数,可得数列: 1,1,2,3,5,8,13,21,34,55,89,144,233,… 这就是斐波那契数列.此数列中,a 1=a 2=1,当n≥3时,请归纳出a n 与a n -1间的递推关系式.【解】 因为2=1+1,3=1+2,5=2+3,8=3+5,…逐项观察分析每项与其前几项的关系易得:从第三项起,它的每一项等于它的前面两项之和,即a n =a n -1+a n -2(n ≥3,n ∈N *).归纳不完整致误对任意的正整数n,猜想2n与n2的大小关系.【错解】当n=1时,21>12;当n=2时,22=22;当n=3时,23<32.归纳猜想:当n=1时,2n>n2;当n≥2时,2n≤n2.【错因分析】对于2n与n2,n仅取1,2,3来判断它们的大小关系,这不具有代表性,忽略了对n>3时情形的归纳.【防范措施】进行归纳推理时,防止归纳的局限性,可多考查一些特殊情形,从中寻找规律,发现一般性的结论.【正解】当n=1时,21>12;当n=2时,22=22;当n=3时,23<32;当n=4时,24=42;当n=5时,25>52;当n=6时,26>62.归纳猜想:当n=1或n≥5时,2n>n2;当n=2或4时,2n=n2;当n=3时,2n<n2.1.归纳推理是从个别事实中推演出一般性结论的推理方法,应用归纳推理可以发现新事实,获得新结论,为学习研究提供方向.2.我们在进行归纳和猜想时,要善于从变化的特殊性中寻找出不变的本质和规律.通常归纳的个体数目越多,越具有代表性,那么推广的一般性命题也会越可靠,它是一种发现一般性规律的重要方法.1.由数列1,10,100,1 000,…,猜测该数列的第n项可能是________.【解析】该数列可整理为100,101,102,103….【答案】10n-12.如图2-1-4所示的是由火柴杆拼成的一列图形,第n个图形由n个正方形组成.通过观察可以发现:第4个图形中,火柴杆有________根;第n个图形中,火柴杆有________根.图2-1-4【解析】设a n表示第n个图形中的火柴杆数,易知a1=4,a2=4+3=7,a3=7+3=10,a4=10+3=13….∴a n=3n+1.【答案】13 3n+13.(2013·陕西高考)观察下列等式:12=1,12-22=-3,12-22+32=6,12-22+32-42=-10,…,照此规律,第n个等式可为________【解析】12=1,12-22=-(1+2),12-22+32=1+2+3,12-22+32-42=-(1+2+3+4),…,12-22+32-42+…+(-1)n +1n 2=(-1)n +1(1+2+…+n)=(-1)n +1n (n +1)2. 【答案】 12-22+32-42+…+(-1)n +1n 2=(-1)n +1n (n +1)24.已知数列{a n }的首项a 1=1,且a n +1=a n1+a n(n =1,2,3,…),试用归纳法归纳出这个数列的通项公式.【解】 当n =1时,a 1=1; 当n =2时,a 2=11+1=12;a 3=a 21+a 2=13;a 4=a 31+a 3=14.归纳可得,数列{a n }的前四项都等于相应序号的倒数,由此可以猜测,这个数列的通项公式为a n =1n(n =1,2,3,…).一、填空题图2-1-51.如图2-1-5所示的是一串白黑相间排列的珠子,按这种规律往下排,那么第36颗珠子的颜色是________色.【解析】 通过观察发现,每5颗珠子为一组,前3颗为白色,后2颗为黑色,所以36=35+1=5×7+1.得第36颗珠子一定为白色的.【答案】 白2.(2013·无锡高二检测)如图2-1-6所示,第n 个图形中,小正六边形的个数为________.图2-1-6【解析】 a 1=7,a 2=7+5=12,a 3=12+5=17,∴a n=7+5(n-1)=5n+2.【答案】5n+23.正整数按下表的规律排列,则上起第2 005行,左起第2 006列的数应为________.【解析】第2 006行的第一个数为2 0062,第2 005行的第2 006列的数是以2 0062为首项,-1为公差的等差数列的第2 007项,∴该数为2 0062+(-1)×2 006=2 005×2 006.【答案】 2 005×2 0064.(2012·江西高考改编)观察下列各式:a+b=1,a2+b2=3,a3+b3=4,a4+b4=7,a5+b5=11,…,则a10+b10=________.【解析】从给出的式子特点观察可推知等式右端的值,从第三项开始,后一个式子的右端值等于它前面两个式子右端值的和,照此规律,则a10+b10=123.【答案】1235.根据给出的数塔猜测123 456×9+7等于________.1×9+2=1112×9+3=111123×9+4=1 1111 234×9+5=11 11112 345×9+6=111 111【解析】等号右边应为n+1个“1”.【答案】 1 111 1116.定义A*B,B*C,C*D,D*B分别对应下列图形图2-1-7那么下列图形中,图2-1-8可以表示A*D ,A*C 的分别是________. 【解析】 由已知图形,抓共性不难总结出: A “|”,B “□”(大),C “—”,D “□”(小). 故A*D 为(2),A*C 为(4). 【答案】 (2),(4)7.经计算发现下列不等式:2+18<210, 4.5+15.5<210,3+2+17-2<210,…根据以上不等式的规律,试写出一个对正实数a ,b 都成立的条件不等式:________.【解析】 ∵2+182=10,4.5+15.52=10,3+2+17-22=10, ∴不难得出,若a +b =20,a +b <210. 【答案】 若a +b =20,则a +b <2108.(2013·镇江高二检测)设函数f(x)=x x +2(x >0),观察:f 1(x)=f(x)=xx +2,f 2(x)=f(f 1(x))=x3x +4,f 3(x)=f(f 2(x))=x7x +8,f 4(x)=f(f 3(x))=x15x +16,……根据以上事实,由归纳推理可得:当n∈N *且n ≥2时,f n (x )=f (f n -1(x ))=________.【解析】 函数结果的分母中x 项系数所组成数列的通项公式,由1,3,7,15,…,可推知该数列的通项公式为a n =2n-1.分母中常数项依次为2,4,8,16,…,其通项为2n. 又函数中,分子都是x .∴当n ≥2时,f n (x )=f (f n -1(x ))=x(2n-1)x +2n.【答案】x(2n-1)x +2n二、解答题9.在△ABC 中,不等式1A +1B +1C ≥9π成立,在四边形ABCD 中,不等式1A +1B +1C +1D ≥162π成立,在五边形ABCDE 中,不等式1A +1B +1C +1D +1E ≥253π成立,猜想在n 边形A 1A 2…A n 中的不等式,为什么?【解】 不等式左边和式个数分别为3,4,5,…时,不等式右边的数依次为9π,162π,253π,…,其分子依次为32,42,52,…,分母依次为(3-2)π,(4-2)π,(5-2)π,…. 故当不等式左边和式个数为n 个时,归纳猜想右边应为n 2(n -2)π(n≥3,n ∈N *),故所求为1A 1+1A 2+…+1A n ≥n 2(n -2)π(n ≥3,n ∈N *).10.已知数列{a n }的前n 项和为S n ,a 1=1且S n -1+1S n+2=0(n≥2),计算S 1,S 2,S 3,S 4,并猜想S n 的表达式.【解】 当n =1时,S 1=a 1=1;当n =2时,1S 2=-2-S 1=-3,∴S 2=-13;当n =3时,1S 3=-2-S 2=-53,∴S 3=-35;当n =4时,1S 4=-2-S 3=-75,∴S 4=-57.猜想:S n =-2n -32n -1(n∈N *).11.观察下列等式: ①cos 2α=2cos 2α-1;②cos 4α=8cos 4α-8cos 2α+1;③cos 6α=32cos 6α-48cos 4α+18cos 2α-1;④cos 8α=128cos 8α-256cos 6α+160cos 4α-32cos 2α+1;⑤cos 10α=m cos 10α-1 280cos 8α+1 120cos 6α+n cos 4α+p cos 2α-1. 求m -n +p 的值.【解】 观察等式可知,cos α的最高次项的系数:2,8,32,128构成了公式比为4的等式数列,故m =128×4=512;取α=0,则cos α=1,cos 10α=1,代入等式⑤,得1=m -1 280+1 120+n +p -1,即n +p =-350.(1)取α=π3,则cos α=12,cos 10α=-12,代入等式⑤,得-12=m(12)10-1 280×(12)8+1 120×(12)6+n ×(12)4+p×(12)2-1,即n +4p =-200.(2) 联立(1)(2), 得n =-400,p =50.故m -n +p =512-(-400)+50=962.(教师用书独具)古希腊人常用小石子在沙滩上摆成各种形状来研究数,比如:图1 图2他们研究过图1中所示的1,3,6,10,…,由于这些数能够表示成三角形,将其称为三角形数;类似地,称图2中所示的1,4,9,16,…,这样的数为正方形数.则289,1 024,1 225,1 378中既是三角形数又是正方形数的是________.【自主解答】 记三角形数构成的数列为{a n },则a 1=1,a 2=3=1+2,a 3=6=1+2+3,a 4=10=1+2+3+4,可得通项公式为a n =1+2+3+…+n =n (n +1)2.同理可得正方形数构成的数列{b n }的通项公式为b n =n 2. 将289,1 024,1 225,1 378分别代入上述两个通项公 式,可得使n 都为正整数的只有1 225. 【答案】 1 225设n≥2,n ∈N ,(2x +12)n -(3x +13)n =a 0+a 1x +a 2x 2+…+a n x n,将|a k |(0≤k ≤n )的最小值记为T n ,则T 2=0,T 3=123-133,T 4=0,T 5=125-135,…,T n ,…,其中T n =________.【解析】 由T 2=0,T 4=0,…猜想T n =0(n 为偶数).T 3=123-133,T 5=125-135,…猜想T n =12n -13n (n 为奇数),因此可得T n =⎩⎪⎨⎪⎧0,n 为偶数,12n -13n ,n 为奇数【答案】 T n =⎩⎪⎨⎪⎧0,n 为偶数,12n -13n ,n 为奇数第2课时 类比推理(教师用书独具)●三维目标 1.知识与技能通过对已学知识的回顾,认识类比推理这一种合情推理的基本方法,并把它用于对问题的发现中去.2.过程与方法正确认识合情推理在数学中的重要作用,养成从小开始认真观察事物、分析问题、发现事物之间的质的联系的良好个性品质,善于发现问题,探求新知识.3.情感、态度与价值观认识数学在日常生产生活中的重要作用,培养学生学数学,用数学,完善数学的正确数学意识.●重点难点重点:了解合情推理的含义,理解类比推理的含义,能利用类比进行简单的推理. 难点:类比时寻求合适的类比对象;培养学生“发现—猜想—证明”的推理能力.(教师用书独具)●教学建议本节教材内容要求学生结合已学过的数学实例和生活中的实例,对合情推理——类比推理进行了概括和总结,让学生在学习过程中体会类比推理在数学结论的发现、证明与数学体系构建中的作用.(1)创设恰当的教学问题情境,如鲁班锯的发现、物理学家惠更斯提出了光波这一科学概念,从而提炼出类比推理的一般过程,概括出类比推理的含义.(2)分组交流,合作学习,讲练结合,将班上同学分成六个小组,分组讨论.从具体问题出发——观察、分析比较、联想——归纳,类比——提出猜想,让学生充分感受和体验类比推理的过程.●教学流程创设问题情境,引导学生提炼类比推理的一般过程和含义.⇒借助例1及其变式训练,使学生掌握数列中定义、性质公式的类比.⇒通过例2及其变式训练,使学生掌握平面图形和空间图形的类比规律.⇒通过例3及其变式训练,理解合情推理的应用广泛性并体会其作用.⇒归纳整理,进行课堂小结,整体认识本节课所学知识与思想方法.⇒完成当堂双基达标,巩固所学知识并进行学后反馈、矫正.已知三角形的如下性质: (1)三角形的两边之和大于第三边; (2)三角形的面积等于高与底积的12.1.试根据上述三角形的性质推测空间四面体的性质. 【提示】 (1)四面体任意三个面的面积大于第四个面的面积. (2)四面体的体积等于底面积与高乘积的13.2.上述两个推理是从特殊到一般的推理吗?【提示】 不是.是从三角形的特征推出四面体的特征,两个推理是从特殊到特殊的推理.1.类比推理根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,像这样的推理通常称为类比推理,简称类比法.其思维过程为:观察、比较猜测新的结论 2.类比推理的特征(1)类比推理是两类事物之间的特殊到特殊的推理; (2)类比推理的结果是猜测性的,不一定可靠.类比推理与归纳推理有何本质的不同?【提示】 类比推理是由特殊到特殊的推理,而归纳推理是由部分到整体,由个别到一般的推理.1.合情推理的含义根据已有的事实、正确的结论、实验和实践的结果,以及个人的经验和直觉等推测某些结果的推理过程称为合情推理.归纳推理和类比推理都是数学活动中常用的合情推理.2.合情推理的特点(1)合情推理的结论超越了前提所包容的范围,带有猜想的成分,因此推理所得的结论未必正确;(2)合情推理具有猜测和发现结论,探索和提供证明的思路和方向的作用.n n 4841281612 类比以上结论有:设等比数列{b n }的前n 项积为T n ,则T 4,________,________,T 16T 12成等比数列.【思路探究】 等差数列的性质结论多与和、差有关,等比数列的性质结论多与积、商有关,注意到类比结论中出现T 16T 12这一形式与S 16-S 12对应,易得答案.【自主解答】 等比数列类比等差数列,其中积类比和,除法类比减法,于是可得类比结论为:设等比数列{b n }的前n 项积为T n ,则T 4,T 8T 4,T 12T 8,T 16T 12成等比数列.【答案】 T 8T 4 T 12T 81.运用类比推理必须寻找合适的类比对象,从等差、等比数列的定义、性质、通项公式与前n 项和公式探求,充分挖掘事物的本质及内在联系.2.类比推理的一般步骤为:(1)找出两类对象之间可以确切表述的相似性(或一致性).(2)用一类对象的性质去推测另一类对象的性质,从而得出一个猜想.(3)检验这个猜想.已知命题:若数列{a n }为等差数列,且a m =a ,a n =b(m≠n,m ,n ∈N *),则a m +n =bn -amn -m.现已知等比数列{b n }(b n >0,n ∈N *),且b m =a ,b n =b (m ,n ∈N *且m ≠n ).类比上述结论,求b m +n ,并说明理由.【解】 类比得b m +n =n -m b na m.理由如下:设等比数列{b n }的公比为q , 则b m +n =b m q n.又b m b n =b 1q m -1b 1q n -1=q m -n =a b . ∴q =(ab)1m -n .因此b m +n =b m q n=a (a b )n m -n =(b na m )1n -m =n -mb na m.BC 2+AC2=AB 2.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面积和底面积的关系,可以得出的正确结论是________.【思路探究】 三角形是由直线段围成的封闭图形,三棱锥(四面体)是由三角形围成的封闭图形,因此三角形的边长之间的关系类比到空间为三棱锥的面的面积之间的关系.【自主解答】 考虑到直角三角形的两条边互相垂直,所以我们可以选取有3个侧面两两垂直的三棱锥,作为直角三角形的类比对象.1231.解决此类问题,从几何元素的数目、位置关系、度量等方面入手,将平面几何的相关结论类比到立体几何中.2.类比与归纳推理虽然不一定正确,但都是经过观察、分析、比较、联想,再进行归纳、类比,然后提出合理猜想的推理,为研究学习提供了一盏明灯.已知圆的方程是x 2+y 2=r 2,则经过圆上一点M(x 0,y 0)的切线方程为xx 0+yy 0=r 2.类比上述性质,可以得到椭圆x 2a 2+y2b2=1类似的性质为________.【解析】 圆的性质中,经过圆上一点M(x 0,y 0)的切线方程就是将圆的方程中的一个x 与y 分别用M(x 0,y 0)的横坐标与纵坐标替换.故可得椭圆x 2a 2+y2b2=1类似的性质为:过椭圆x 2a 2+y 2b 2=1上一点P(x 0,y 0)的切线方程为x 0x a 2+y 0yb2=1.【答案】 过椭圆x 2a 2+y 2b 2=1上一点P(x 0,y 0)的切线方程为x 0x a 2+y 0y b 2=1(1)类比“等差数列”给出“等和数列”的定义;(2)探索等和数列{a n }的奇数项和偶数项各有什么特点?并加以说明. (3)在第(2)问中,若a 1=2,公和为5,求a 18和S 21.【思路探究】 先根据等差数列的定义类比出“等和数列”的定义,然后再根据此定义探索等和数列的奇数项、偶数项及其前n 项的和.【自主解答】 (1)如果一个数列从第2项起,每一项与它的前一项的和等于同一个常数,那么这个数列就叫做等和数列.(2)由(1)知a n +a n +1=a n +1+a n +2,所以a n +2=a n .所以等和数列的奇数项相等,偶数项也相等.(3)由“等和数列”的定义,知 a 1=a 3=a 5=…=a 19=a 21=2. a 2=a 4=a 6=…=a 18=a 20=3. 因此a 18=3.S 21=(a 1+a 2)+(a 3+a 4)+…+(a 19+a 20)+a 21 =5×10+2=52.1.本题通过对等差数列定义及性质的理解,类比出等和数列的定义和性质,考查学生的类比应用能力.2.从类比出新数列的定义出发,由特殊到一般,归纳出数列规律,类比是一个伟大的引路人,在探求知识的过程中,我们要充分运用类比的方法,由已知探究未知.设f(x)=12x +2,利用课本中推导等差数列前n 项和公式的方法,可求得f(-5)+f(-4)+…+f(0)+f(1)+…+f(5)+f(6)的值是________.【解析】 等差数列运用“倒序相加”求和.令t =f(-5)+f(-4)+…+f(0)+f(1)+…+f(5)+f(6)① 则t =f(6)+f(5)+…+f(1)+f(0)+…+f(-4)+f(-5).② ∵f(x)=12x +2,∴f(1-x)=121-x +2=2x2+2·2x=2x2(2x+2),因此f(x)+f(1-x)=12x +2+2x2(2x+2)=12=22, 故①+②,得2t =12×22=62, ∴t =3 2. 【答案】 3 2误将类比所得结论作为推理依据致误已知a 1,b 1,c 1,a 2,b 2,c 2都是非零实数,不等式a 1x 2+b 1x +c 1<0,a 2x 2+b 2x+c 2<0的解集分别为M ,N ,则“a 1a 2=b 1b 2=c 1c 2”是“M=N”成立的________条件.【错解】 在方程a 1x 2+b 1x +c 1=0与a 2x 2+b 2x +c 2=0中,若“a 1a 2=b 1b 2=c 1c 2”,则两个方程同解.由a 1a 2=b 1b 2=c 1c 2知两个不等式同解,故“a 1a 2=b 1b 2=c 1c 2”是“M=N”成立的充要条件.【答案】 充要【错因分析】 错解将方程的同解原理类比到不等式中,忽略了不等式与等式的本质区别.【防范措施】 类比推理是不严格的,所得结论的正确与否有待用实践来证明,解题时若直接使用类比所得结论进行推理则容易出现错误,因此要理解好类比对象的本质,忌盲目类比.【正解】 当a 1a 2=b 1b 2=c 1c 2时,可取a 1=b 1=c 1=1,a 2=b 2=c 2=-1,则M =∅,N =R ,即a 1a 2=b 1b 2=c 1c 2D /⇒M =N ;当M =N =∅时,可取a 1=b 1=c 1=1,a 2=1,b 2=2,c 2=3,则a 1a 2≠b 1b 2≠c 1c 2, 即M =ND /⇒a 1a 2=b 1b 2=c 1c 2.综上知“a 1a 2=b 1b 2=c 1c 2”是“M =N ”成立的既不充分也不必要条件. 【答案】 既不充分也不必要1.进行类比推理时,要尽量从本质上思考,不要被表面现象所迷惑,否则,只抓住一点表面的相似甚至假象就去类比,就会犯机械类比的错误.2.类比推理的特点:(1)类比是由已经解决的问题和已经获得的知识出发,推测正在研究的事物的属性,提出新问题作出新发现.(2)类比的结果是猜测性的,不一定可靠,但它有发现功能.3.要熟练掌握一些常见的类比推理,如等式与不等式、椭圆与双曲线的类比,特别是等差数列与等比数列的类比和平面几何与立体几何(包括三角形与四面体、矩形与长方体、圆与球)的类比,需掌握它们的类比特点与一些常用结论.1.若数列{a n }是等差数列,则通项为b n =a 1+a 2+…+a n n 的数列{b n }(n∈N *)也是等差数列.类比上述性质,相应地,若数列{c n }是等比数列,且c n >0(n ∈N *),则有通项为d n =________的数列{d n }(n ∈N *)也是等比数列.【解析】 “和”变“积”,“商”变“开方”. 【答案】nc 1·c 1·…c n2.下面使用类比推理恰当的序号是________.①“若a·3=b·3,则a =b”类推出“a ·c =b ·c ,则a =b ”; ②“(a ·b )·c =a ·(b ·c )”类推出“(a ·b )·c =a ·(b ·c )”; ③“(a +b )c =ac +bc ”类推出“a +bc =a c +bc(c ≠0)”; ④“(ab )n=a n b n”类推出“(a +b )n=a n+b n”. 【解析】 ①②④均错. 【答案】 ③3.在平面直角坐标系O —xy 中,二元一次方程Ax +By =0(A ,B 不同时为0)表示过原点的直线.类似地:在空间直角坐标系O —xyz 中,三元一次方程Ax +By +Cz =0(A ,B ,C 不同时为0)表示________.【解析】 平面几何中的直线类比到立体几何中应为平面,“过原点”类比仍为“过原点”,因此应得到:在空间直角坐标系O —xyz 中,三元一次方程Ax +By +Cz =0(A ,B ,C 不同时为0)表示过原点的平面.【答案】 过原点的平面4.类比圆的下列特征,找出球的相关特征. (1)平面内与定点距离等于定长的点的集合是圆; (2)平面内不共线的3个点确定一个圆; (3)圆的周长和面积可求.【解】 (1)在空间中与定点距离等于定长的点的集合是球面; (2)空间中不共面的4个点确定一个球; (3)球的表面积与体积可求.一、填空题1.对命题“正三角形的内切圆切于三边中点”可类比猜想:正四面体的内切球切于四面各正三角形的________.【解析】 “边的中点”类比为“各面的中心”. 【答案】 中心2.已知{b n }为等比数列,b 5=2,则b 1b 2b 3…b 9=29.若{a n }为等差数列,a 5=2,则{a n }的类似结论为________.【解析】 乘积类比和,幂类比积. ∴a 1+a 2+a 3+…+a 9=2×9. 【答案】 a 1+a 2+a 3+…+a 9=2×93.在平面上,若两个正三角形的边长的比为1∶2,则它们的面积比为1∶4,类似地,在空间内,若两个正四面体的棱长的比为1∶2,则它们的体积比为________.【解析】 若两个正四面体的棱长的比为1∶2,则它们的体积比为1∶8.事实上,由平面几何和立体几何的知识,可知很多比值在平面上成平方关系,在空间内成立方关系.【答案】 1∶84.在圆中,连结圆心和弦的中点的直线垂直于弦,类比圆的上述结论写出球的相应结论为________.【解析】 平面图形中的点线关系类比到空间为线面关系,对应得出球的相应结论:在球中,连结球心和截面圆的圆心的直线垂直于截面.【答案】 在球中,连结球心和截面圆的圆心的直线垂直于截面 5.由代数式的乘法法则类比推导向量的数量积的运算法则: (1)“mn=nm”类比得“a ·b =b ·a ”;(2)“(m +n )t =mt +nt ”,类比得“(a +b )·c =a ·c +b ·c ”; (3)“|m ·n |=|m |·|n |”类比得“|a ·b |=|a |·|b |”; (4)“ac bc =a b ”类比得“a ·cb ·c =ab”. 以上的式子中,类比得到的结论正确的序号是________. 【解析】 (1)(2)均正确,(3)(4)不正确. 【答案】 (1)(2)6.(2013·南通高二检测)已知正三角形内切圆的半径是高的13,把这个结论推广到空间正四面体,类似的结论是________.【解析】 原问题的解法为等面积法,即正三角形的面积S =12ah =3×12ar ⇒r =13h.类比,用等体积法,V =13Sh =4×13r ·S ⇒r =14h.【答案】 正四面体的内切球的半径是高的147.对于大于1的自然数m 的n 次幂可用奇数进行如图2-1-9所示的“分裂”,仿此,记53的“分裂”中的最小数为a ,而52的“分裂”中最大的数是b ,则a +b =________.图2-1-9【解析】 ,,∴a =21,b =9,则a +b =30. 【答案】 30图2-1-108.如图2-1-10所示,对于函数y =x 2(x >0)图象上任意两点A(a ,a 2),B(b ,b 2),线段AB 必在曲线段AB 的上方,点C 分向量AB →的比为λ(λ>0),过C 作x 轴的垂线,交曲线段AB 于C′,则由图象中点C 在点C′的上方可得不等式a 2+λb 21+λ>(a +λb 1+λ)2.请分析函数y =ln x(x >0)的图象,类比上述不等式可以得到的不等式是________.【解析】 y =x 2的图象在x >0时,图象下凹,且A(a ,a 2),B(b ,b 2),所以点C 的纵坐标是a 2+λb 21+λ,点C 与点C′的横坐标都是a +λb 1+λ,而点C′在曲线y =x 2上,点C 在点C′上方,所以y C =a 2+λb 21+λ>y C ′=(a +λb 1+λ)2.。

苏教版高中数学选修(2-2)-2.1教学建议:推理与证明

苏教版高中数学选修(2-2)-2.1教学建议:推理与证明
选修2—2第二章 推理与证明
• 一 教育价值
• “推理与证明”是数学的基本思维过程,也是人们学习
和生活中经常使用的思维方式。 • 有助于学生体会数学与其他学科以及实际生活的联系。 • 有助于学生理解数学的本质,形式对数学较为完整的认
识。 • 有助于学生认识数学的科学价值、应用价值和文化价值。 • 有助于发展学生的数学思维能力,提高学生的数学素养。 • 有助于发展学生的创新意识和创新能力。 • 因而,它是选修1—2与选修2—2中共有的内容。 • 以往的高中数学课程中,忽视了合情推理,新课标中增 加了合情推理,单独提出了“推理与证明”这一章节,应予充
• 利用教材P87的6个实例来引入演绎推理的 实质:从一般性的归纳其推理模式--“三段论”: ①大前提,②小前提,③结论。
• 演绎推理的书写很重要,要写清楚其三个判断: 第一个是正确的前提,即M是P;第二个是要判断的命 题S是大前提M的一种情况(小前提),即S是M;第三 个是结论,即命题S成立,即S也是P。用集合的观点 解释就是:若集合M的所有元素都有性质P,而S是M的 子集,则S中的元素也都具有性质P。
• 2、类比推理:利用教材P80火星和地球、圆和球的 类比性质,介绍类比推理的本质是在两类不同的对象 之间进行对比,找出若干相同点之后,推测在其他方 面也可能存在相同点的一种推理模式。换句话说类比 推理是由特殊到特殊的推理。再用P82例2:实数的加 法和乘法的运算性质;例3:平面三角形和空间四面 体的类比,让学生练习体会类比推理。
分 把握,以期达到培养学生数学素质的要求。
二 教学安排
• 2.1.1 合情推理
1课时;
• 2.1.1 演绎推理
2课时;
• 2.2.1 综合法和分析法 2课时;

高中数学 第二章 第二节 第一课时合情推理教案 苏教版选修2-2-苏教版高二选修2-2数学教案

高中数学 第二章 第二节 第一课时合情推理教案 苏教版选修2-2-苏教版高二选修2-2数学教案

第二章 合情推理与演绎推理§2.1.1.1合情推理(第一课时)一、教学目标:1、知识与技能:掌握归纳推理的技巧,并能运用解决实际问题。

2、过程与方法:通过“自主、合作与探究”实现“一切以学生为中心”的理念。

3、情感、态度与价值观:感受数学的人文价值,提高学生的学习兴趣,使其体会到数学学习的美感。

二、教学重点:归纳推理及方法的总结。

三、教学难点:归纳推理的含义及其具体应用。

四、教学过程:(一)探入与展示:1、推理 根据一个或几个已知的判断来确定一个新的判断的思维过程就叫推理. 推理一般由两部分组成:前提和结论2、(二)探读与思考引入1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, ……, 50=13+37, ……, 100=3+97,猜测:任一偶数(除去2,它本身是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家无人能解,成为数学史上举世闻名的猜想. 1973年,我国数学家陈景润,证明了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为“1+2”.引入 2. 费马猜想:法国业余数学家之王—费马(1601-1665)在1640年通过对020213F =+=,121215F =+=,2222117F =+=,32321257F =+=,4242165537F =+=的观察,发现其结果都是素数,于是提出猜想:对所有的自然数n ,任何形如221nn F =+的数都是素数. 后来瑞士数学家欧拉,发现5252142949672976416700417F =+==⨯不是素数,推翻费马猜想.引入3:1.由铜、铁、铝、金、银等金属都能导电,猜想:一切金属都能导电.2.由三角形内角和为180°,凸四边形内角和为360°,凸五边形内角和为540°,猜想:凸n 边形内角和为(n -2)·180°.1、归纳推理的定义:由某类事物的部分对象具有某些特征,推出该类事物的全部对象都具有这些特征的推理,或者有个别事实概括出一般结论的推理,称为归纳推理(简称归纳)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.1.3推理案例赏析2.1.4[对应学生用书P23]归纳推理的应用[例1]观察如下图的 "三角数阵〞:记第n行的第2个数为a n(n≥2 ,n∈N*) ,请仔细观察上述 "三角数阵〞的特征,完成以下各题:(1)第6行的6个数依次为__________、__________、______________、______________、______________、______________;(2)依次写出a2、a3、a4、a5;(3)归纳出a n+1与a n的关系式.[思路点拨](1)观察数阵,总结规律:除首|末两数外,每行的数等于它上一行肩膀上的两数之和,得出(1)的结果.(2)由数阵可直接写出答案.(3)写出a3-a2 ,a4-a3 ,a5-a4 ,从而归纳出(3)的结论.[精解详析](1)由数阵可看出,除首|末两数外,每行中的数都等于它上一行肩膀上的两数之和,且每一行的首|末两数都等于行数.[答案]6,16,25,25,16,6(2)a2=2 ,a3=4 ,a4=7 ,a5=11(3)∵a3=a2+2 ,a4=a3+3 ,a5=a4+4 ,∴由此归纳:a n+1=a n+n.[一点通]对于数阵问题的解决方法,既要清楚每行、每列数的特征,又要对上、下行,左、右列间的关系进行研究,找到规律,问题即可迎刃而解了.1.设[x]表示不超过x的最|大整数,如[5]=2 ,[π]=3 ,[k]=k (k∈N*).我的发现:[1]+[2]+[3]=3;[4]+[5]+[6]+[7]+[8]=10;[9]+[10]+[11]+[12]+[13]+[14]+[15]=21;…通过归纳推理,写出一般性结论_____________________________________________ __________________________________________________________(用含n的式子表示).解析:第n行右边第|一个数是[n2] ,往后是[n2+1] ,[n2+2] ,…,最|后一个是[n2+2n].等号右边是n(2n+1).答案:[n2]+[n2+1]+[n2+2]+…+[n2+2n]=n(2n+1)2.(1)如图(a)、(b)、(c)、(d)所示为四个平面图形,数一数,每个平面图形各有多少个顶点?多少条边?它们将平面围成了多少个区域?顶点数边数区域数(a)(b)(c)(d)(2)观察上表,推断一个平面图形的顶点数、边数、区域数之间有什么关系?(3)现某个平面图形有999个顶点,且围成了999个区域,试根据以上关系确定这个平面图形有多少条边?解:(1)各平面图形的顶点数、边数、区域数分别为顶点数边数区域数(a) 3 3 2(b) 8 12 6(c) 6 9 5(d)10157(2)观察:3+2-3=2;8+6-12=2;6+5-9=2;10+7-15=2 ,通过观察发现,它们的顶点数V ,边数E ,区域数F之间的关系为V+F-E=2.(3)由V=999 ,F=999 ,代入上述关系式得E=1 996 ,故这个平面图形有1 996条边.类比推理的应用[例2] 通过计算可得以下等式: 23-13=3×12+3×1+1; 33-23=3×22+3×2+1; 43-33=3×32+3×3+1; …(n +1)3-n 3=3×n 2+3×n +1. 将以上各等式两边分别相加 ,得(n +1)3-13=3(12+22+…+n 2)+3(1+2+3+…+n )+n , 即12+22+32+…+n 2=16n (n +1)(2n +1).类比上述求法 ,请你求出13+23+33+…+n 3的值.[思路点拨] 类比上面的求法;可分别求出24-14 ,34-24,44-34 ,…(n +1)4-n 4 ,然后将各式相加求解.[精解详析] ∵24-14=4×13+6×12+4×1+1 , 34-24=4×23+6×22+4×2+1 , 44-34=4×33+6×32+4×3+1 , …(n +1)4-n 4=4×n 3+6×n 2+4×n +1. 将以上各式两边分别相加 ,得(n +1)4-14=4×(13+23+…+n 3)+6×(12+22+…+n 2)+4×(1+2+…+n )+n ∴13+23+…+n 3=14⎣⎡ (n +1)4-14-6×16n (n +1)·⎦⎤(2n +1)-4×n (n +1)2-n =14n 2(n +1)2.[一点通] (1)解题方法的类比通过对不同题目条件、结论的类比 ,从而产生解题方法的迁移 ,这是数学学习中很高的境界 ,需要学习者熟练地掌握各种题型及相应的解题方法.(2)类比推理的步骤与方法第|一步:弄清两类对象之间的类比关系及类比关系之间的(细微)差异.第二步:把两个系统之间的某一种一致性(相似性)确切地表述出来 ,也就是要把相关对象在某些方面一致性的模糊认识说清楚.3.二维空间中圆的一维侧度(周长)l =2πr ,二维测度(面积)S =πr 2 ,观察发现S ′=l ;三维空间中球的二维测度(外表积)S =4πr 2 ,三维测度(体积)V =43πr 3 ,观察发现V ′=S .那么四维空间中 "超球〞的三维测度V =8πr 3 ,猜测其四维测度W =________.解析:(2πr 4)′=8πr 3. 答案:2πr 44.在平面上 ,我们如果用一条直线去截正方形的一个角 ,那么截下一个直角三角形 ,按图所标边长 ,由勾股定理有:c 2=a 2+b 2.设想正方形换成正方体 ,把截线换成如图的截面 ,这时从正方体上截下三条侧棱两两垂直的三棱锥OLMN ,如果用S 1 ,S 2 ,S 3表示三个侧面的面积 ,S 4表示截面的面积 ,那么你类比得到的结论是________.解析:由于平面图形中的边长应与空间几何体中的面积类比 ,因此所得到的结论为:S 24=S 21+S 22+S 23.答案:S 24=S 21+S 22+S 23演绎推理的应用[例3] {a n }为等差数列 ,首|项a 1>1 ,公差d >0 ,n >1且n ∈N *. 求证:lg a n +1lg a n -1<(lg a n )2.[思路点拨] 对数之积不能直接运算 ,可由根本不等式转化为对数之和进行运算. [精解详析] ∵{a n }为等差数列 , ∴a n +1+a n -1=2a n . ∵d >0 ,∴a n -1a n +1=(a n -d )(a n +d )=a 2n -d 2<a 2n .∵a 1>1 ,d >0 ,∴a n =a 1+(n -1)d >1. ∴lg a n >0. ∴lg a n +1·lg a n -1≤⎝⎛⎭⎫lg a n +1+lg a n -122=⎣⎡⎦⎤12lg (a n -1a n +1)2<⎣⎡⎦⎤12lg a 2n 2=(lg a n )2 , 即lg a n +1·lg a n -1<(lg a n )2.[一点通] 三段论推理的根据 ,从集合的观点来讲 ,就是:假设集合M 的所有元素都具有性质P ,S 是M 的子集 ,那么S 中所有元素都具有性质P .5.如图 ,棱柱ABC -A 1B 1C 1的侧面BCC 1B 1是菱形 ,B 1C ⊥A 1B .(1)证明:平面AB 1C ⊥平面A 1BC 1;(2)设D 是A 1C 1上的点 ,且A 1B ∥平面B 1CD ,求A 1D ∶DC 1的值. 要求:写出每一个三段论的大前提、小前提、结论.解:(1)因为菱形的对角线互相垂直(大前提) ,侧面BCC 1B 1是菱形(小前提) , 所以B 1C ⊥BC 1(结论).又线面垂直的判定定理(大前提) , B 1C ⊥A 1B ,且A 1B ∩BC 1=B (小前提) , 所以B 1C ⊥平面A 1BC 1(结论). 又面面垂直的判定定理(大前提) ,B 1C ⊂平面AB 1C ,B 1C ⊥平面A 1BC (小前提) , 所以平面AB 1C ⊥平面A 1BC 1(结论).(2)设BC 1交B 1C 于点E ,连接DE ,那么DE 是平面A 1BC 1与平面B 1CD 的交线. 根据线面平行的性质定理(大前提) ,因为A 1B ∥平面B 1CD (小前提) ,所以A 1B ∥DE (结论). 又E 是BC 1的中点 ,所以D 为A 1C 1的中点 ,即A 1D ∶DC 1=1∶1. 6.求证:函数y =2x -12x +1是奇函数 ,且在定义域上是增函数.证明:y =f (x )=(2x +1)-22x +1=1-22x +1 ,所以f (x )的定义域为x ∈R .f (-x )+f (x )=⎝ ⎛⎭⎪⎫1-22-x +1+⎝ ⎛⎭⎪⎫1-22x+1 =2-⎝ ⎛⎭⎪⎫22x +1+22-x +1=2-⎝ ⎛⎭⎪⎫22x +1+2·2x2x +1=2-2(2x +1)2x +1=2-2=0 ,即f (-x )=-f (x ) ,所以f (x )是奇函数. 任取x 1 ,x 2∈R ,且x 1<x 2 ,那么f (x 1)-f (x 2)=⎝ ⎛⎭⎪⎫1-22x 1+1-⎝ ⎛⎭⎪⎫1-22x 2+1=2⎝ ⎛⎭⎪⎫12x 2+1-12x 1+1=2·2x 1-2x 2(2x 2+1)(2x 1+1).因为x 1<x 2 ,所以2x 1<2x 2 ,2x 1-2x 2<0 , 所以f (x 1)<f (x 2).故f (x )为增函数.1.通俗地说 ,合情推理是指 "符合情理〞的推理 ,数学研究中 ,得到一个新结论之前 ,合情推理常常能帮助我们猜测和发现结论;证明一个数学结论之前 ,合情推理常为我们提供证明的思路和方向.2.在数学推理活动中常常利用归纳和类比去发现结论 ,再想方法去证明或否认发现的结论.[对应学生用书P25]一、填空题1.设k 棱柱有f (k )个对角面 ,那么k +1棱柱对角面的个数为f (k +1)=f (k )+________. 解析:k 棱柱增加一条侧棱时 ,那么这条侧棱和与之不相邻的k -2条侧棱可构成k -2个对角面 ,而增加一条侧棱时也使一个侧面变成了对角面.所以f (k +1)=f (k )+k -2+1=f (k )+k -1. 答案:k -12.如果一个凸多面体是n 棱锥 ,那么这个凸多面体的所有顶点所确定的直线共有____条.这些直线中共有f (n )对异面直线 ,那么f (4)=______;f (n )=______.(答案用数字或含n的式子表示)解析:所有顶点确定的直线共有:棱数+底边数+对角线数 ,即n +n +n (n -3)2=n 2+n2.f (4)=4×2+4×12×2=12 ,f (n )=n (n -2)+n (n -3)2×(n -2)=n (n -1)(n -2)2.答案:n 2+n 2 12 n (n -1)(n -2)23.(陕西(高|考))f (x )= x1+x,x ≥0 ,假设 f 1(x )=f (x ) ,f n +1(x )=f (f n (x )) ,n ∈N *, 那么f 2 014(x )的表达式为________.解析:由f 1(x )=x 1+x ⇒f 2(x )=f ⎝ ⎛⎭⎪⎫x 1+x =x 1+x 1+x 1+x =x1+2x ;又可得f 3(x )=f (f 2(x ))=x1+2x 1+x 1+2x =x 1+3x ,故可猜测f 2 014(x )=x1+2 014x . 答案:x1+2 014x4.对于大于1的自然数m 的三次幂可用奇数进行以下方式的 "分裂〞: 23=⎩⎨⎧3 533=⎩⎨⎧791143=⎩⎨⎧1315 1719….仿此 ,假设m 3的 "分裂数〞中有一个是2 015 ,那么m =________. 解析:根据分裂特点 ,设最|小数为a 1 , 那么ma 1+m (m -1)2×2=m 3 ,∴a 1=m 2-m +1.∵a 1为奇数 ,又452=2 025 , ∴猜测m =45. 验证453=91 125=(1 979+2 071)×452.答案:45 5.观察以下等式sin 230°+cos 290°+3sin 30°·cos 90°=14;sin 225°+cos 285°+3sin 25°·cos 85°=14;sin 210°+cos 270°+3sin 10°·cos 70°=14.推测出反映一般规律的等式:____________________. 解析:∵90°-30°=60° ,85°-25°=60° ,70°-10°=60° , ∴其一般规律为sin 2α+cos 2(60°+α)+3sin αcos(60°+α)=14.答案:sin 2α+cos 2(60°+α)+3sin αcos(60°+α)=14二、解答题6.试将以下演绎推理写成三段论的形式:(1)太阳系的大行星都以椭圆形轨道绕太阳运行 ,海|王星是太阳系中的大行星 ,所以海|王星以椭圆形轨道绕太阳运行;(2)所有导体通电时发热 ,铁是导体 ,所以铁通电时发热;(3)一次函数是单调函数 ,函数y =2x -1是一次函数 ,所以y =2x -1是单调函数; (4)等差数列的通项公式具有形式a n =pn +q (p ,q 是常数) ,数列1,2,3… ,n 是等差数列 ,所以数列1,2,3 ,… ,n 的通项具有a n =pn +q 的形式.解:(1)太阳系的大行星都以椭圆形轨道绕太阳运行 ,(大前提) 海|王星是太阳系中的大行星 ,(小前提) 海|王星以椭圆形轨道绕太阳运行.(结论) (2)所有导体通电时发热 ,(大前提) 铁是导体 ,(小前提) 铁通电时发热.(结论)(3)一次函数都是单调函数 ,(大前提) 函数y =2x -1是一次函数 ,(小前提) y =2x -1是单调函数.(结论)(4)等差数列的通项公式具有形式a n =pn +q (p ,q 是常数) ,(大前提)数列1,2,3 ,… ,n是等差数列,(小前提)数列1,2,3 ,… ,n的通项具有a n=pn+q的形式.(结论)7.平面几何与立体几何的许多概念、性质是相似的,如: "长方形的每一边与其对边平行,而与其余的边垂直〞; "长方体的每一面与其相对面平行,而与其余的面垂直〞,请用类比法写出更多相似的命题.(写出三种即可)解:(1)(平面)在平行四边形中,对角线互相平分;(立体)在平行六面体中,体对角线相交于同一点,且在这一点互相平分.(2)(平面)在平行四边形中,各对角线长的平方和等于各边长的平方和;(立体)在平行六面体中,各体对角线长的平方和等于各棱长的平方和.(3)(平面)圆面积等于圆周长与半径之积的1/2;(立体)球体积等于球外表积与半径之积的1/3.(4)(平面)正三角形外接圆半径等于内切圆半径的2倍;(立体)正四面体的外接球半径等于内切球半径的3倍.8.某少数民族的刺绣有着悠久的历史,图(1)(2)(3)(4)为她们刺绣中最|简单的四个图案,这些图案都是由小正方形构成,小正方形数越多刺绣越漂亮;现按同样的规律刺绣(小正方形的摆放规律相同) ,设第n个图形包含f(n)个小正方形.(1)写出f(5)的值;(2)利用合情推理的 "归纳推理思想〞,归纳出f(n+1)与f(n)之间的关系式,并根据你得到的关系式求出f(n)的表达式;(3)求1f(1)+1f(2)-1+1f(3)-1+…+1f(n)-1的值.解:(1)f(5)=41.(2)因为f(2)-f(1)=4=4×1 , f(3)-f(2)=8=4×2 ,f(4)-f(3)=12=4×3 ,f (5)-f (4)=16=4×4 , …由以上规律 ,可得出f (n +1)-f (n )=4n , 因为f (n +1)-f (n )=4n ,所以f (n +1)=f (n )+4n , 所以当n ≥2时 , f (n )=f (n -1)+4(n -1) =f (n -2)+4(n -1)+4(n -2)=f (n -3)+4(n -1)+4(n -2)+4(n -3) =…=f [n -(n -1)]+4(n -1)+4(n -2)+4(n -3)+…+4[n -(n -1)] =2n 2-2n +1.f (1)=1也适合上式 ,故f (u )=2n 2-2n +1(n ∈N *). (3)当n ≥2时 ,1f (n )-1=12n (n -1)=12⎝⎛⎭⎪⎫1n -1-1n ,所以1f (1)+1f (2)-1+1f (3)-1+…+1f (n )-1=1+12⎝ ⎛⎭⎪⎫1-12+12-13+13-14+…+1n -1-1n =1+12⎝⎛⎭⎫1-1n =32-12n .。

相关文档
最新文档