岩石力学大作业

合集下载

18春地大《岩石力学》在线作业一

18春地大《岩石力学》在线作业一

------------------------------------------------------------------------------------------------------------------------------ (多选题) 1: 初始地应力主要包括()。

A: 自重应力B: 构造应力C: 自重应力和残余造应力D: 残余应力正确答案:(多选题) 2: 在我国工程岩体分级标准中,岩体基本质量指标是由()指标村确定的?A: RQD和节理密度B: 岩石单轴饱和抗压强度C: 岩体的完整性指数D: 节理密度和地下水正确答案:(多选题) 3: 岩石蠕动变形的影响因素有哪些?()A: 岩性及构造因素B: 压力级因素C: 围压的影响D: 温度、湿度的影响正确答案:(多选题) 4: 我国工程岩体分级标准中是根据哪些因素对岩石基本质量进行修正的?()。

A: 地应力大小B: 地下水C: 结构面方位D: 结构面粗糙度。

正确答案:(多选题) 5: 围岩表面位移可用()测量。

A: 收敛计B: 测杆C: 测枪D: 滑尺正确答案:(多选题) 6: 维护岩石地下工程稳定的基本原则()。

A: 把工程设计在岩石条件好的岩体中B: 避免岩石强度的损坏C: 充分发挥围岩的承载能力让围岩在脱落点以前充分释放弹性性能D: 加固岩体正确答案:(多选题) 7: 影响巷道围岩稳定的主要因素()。

A: 围岩强度B: 应力集中程度C: 原始应力大小D: 巷道支架的支撑力正确答案:(多选题) 8: 压性断层主要指()。

------------------------------------------------------------------------------------------------------------------------------ A: 压逆性断层B: 张性断层C: 逆掩断层D: 剪性断层正确答案:(多选题) 9: 分析影响边坡失稳的主要因素()。

【东大】21春学期《岩石力学》在线作业1满分答案

【东大】21春学期《岩石力学》在线作业1满分答案

【东大】21春学期《岩石力学》在线平时作业1提示:认真复习课程知识,并完成课程作业,本资料仅供学习参考!!一、单选题 (共 15 道试题,共 75 分)1.下列不是喷出岩常见的岩石的是()【A项.】玄武岩【B项.】安山岩【C项.】流纹岩【D项.】花岗岩[此题为必答题,请从以上选项中选择您认为正确的答案]参考选项是:D2.流变性质指材料的应力应变关系与()因素有关系的性质。

【A项.】强度【B项.】时间【C项.】载荷大小【D项.】材料属性[此题为必答题,请从以上选项中选择您认为正确的答案]参考选项是:B3.下列属于表面力的有()【A项.】重力【B项.】流体压力【C项.】剪应力【D项.】拉力[此题为必答题,请从以上选项中选择您认为正确的答案]参考选项是:B4.初始地应力主要包括()。

【A项.】自重应力【B项.】构造应力【C项.】自重应力和构造应力【D项.】残余应力[此题为必答题,请从以上选项中选择您认为正确的答案]参考选项是:C5.地应力是岩体的一种基本属性,又是岩体变形破坏的动力因素,一下那种说法是不对的()【A项.】岩体的本构关系及参数受到地应力的影响【B项.】岩体的承载能力受到初始应力的影响【C项.】岩体的破坏机制不受地应力的影响【D项.】地应力控制岩体中应力传播方式和力学介质模型[此题为必答题,请从以上选项中选择您认为正确的答案]参考选项是:C6.下列那个不是岩石变形特性通常使用的指标()。

【A项.】孔隙率【B项.】泊松比【C项.】变形模量【D项.】弹性模量[此题为必答题,请从以上选项中选择您认为正确的答案]参考选项是:A7.下列不属于马克斯威尔体的性能的是()【A项.】有瞬变性【B项.】有蠕变【C项.】有永久变形【D项.】无松弛[此题为必答题,请从以上选项中选择您认为正确的答案]参考选项是:D8.在平面应力问题中下列那个是正确的()【A项.】σz=0【B项.】τxy=0【C项.】εx=0【D项.】τzy=0[此题为必答题,请从以上选项中选择您认为正确的答案]参考选项是:A9.松弛是指当应变不变时,()随时间的增加而减小的现象。

22春东北大学《岩石力学》在线作业一答案参考10

22春东北大学《岩石力学》在线作业一答案参考10

22春东北大学《岩石力学》在线作业一答案参考1. 将油井串联在单管上,利用油层剩余压力将油气密闭输送到联合站的流程是流程。

A.单管B.双管C.三管D.将油井串联在单管上,利用油层剩余压力将油气密闭输送到联合站的流程是流程。

A.单管B.双管C.三管D.抽油机正确答案:A2. 黏土岩极易吸收钻井液中的自由水膨胀而导致( )。

A、井径缩小B、泥包钻头C、井斜D、井漏黏土岩极易吸收钻井液中的自由水膨胀而导致( )。

A、井径缩小B、泥包钻头C、井斜D、井漏本题答案:A3. 岩爆是岩石的一种动力破坏现象。

( )A、错误B、正确参考答案:B4. 在斜面剪切法进行岩体流变试验时,要求垂直荷载保持常数,水平荷载分级施加。

( )A、错误B、正确参考答案:A5. 示功图测试前应检查连接电缆是否完好,各种()是否齐全。

A.车辆B.人员C.制度D.工具示功图测试前应检查连接电缆是否完好,各种()是否齐全。

A.车辆B.人员C.制度D.工具正确答案:D6. 普通加重杆主要类型有钢制加重杆和()A.可通过信号的加重杆B.水银加重杆C.附在电缆上的加重杆D.铁普通加重杆主要类型有钢制加重杆和()A.可通过信号的加重杆B.水银加重杆C.附在电缆上的加重杆D.铁制加重杆正确答案:B7. 围岩破坏区的最大部位出现在巷道周边与初始应力场最大应力分量一致的方位上。

( )A、错误B、正确参考答案:A8. 在化工设备图中,可以作为尺寸基准的有( )。

A.设备简体和封头的中心线B.设备简体和封头时的环焊缝C在化工设备图中,可以作为尺寸基准的有( )。

A.设备简体和封头的中心线B.设备简体和封头时的环焊缝C.设备人孔的中心线D.管口的轴线和壳体表面的交线正确答案:ABD9. 巷道开挖后,通过应力检测可直接获取其周边应力。

( )A、错误B、正确参考答案:A10. 巴西劈裂准则是测岩石的剪切强度。

( )A.错误B.正确参考答案:A11. 岩石分为沉积岩、变质岩、火成岩三类,化石存在于这三类岩石中。

《岩石力学》期末试卷及答案印-(1)

《岩石力学》期末试卷及答案印-(1)

《岩石力学》期末试卷及答案姓名 学号 成绩 选择题(每题1分, 共20分)1.已知岩样的容重为 , 天然含水量为 , 比重为 , 40C 时水的容重为 , 则该岩样的饱和容重 为(.. )A..B..C..D.2.岩石中细微裂隙的发生和发展结果引起岩石的( A. )A. 脆性破坏.B.塑性破坏.C.弱面剪切破坏.D.拉伸破坏3.同一种岩石其单轴抗压强度为 , 单轴抗拉强度 , 抗剪强度 之间一般关系为( . )A...B. .C. .D.4.岩石的蠕变是指(.. )A.应力不变时, 应变也不变; .B.应力变化时, 应变不变化;C.应力变化时, 应变呈线性随之变化.D.应力不变时应变随时间而增长5.模量比是指(A..A. 岩石的单轴抗压强度和它的弹性模量之比B.岩石.弹性模量和它的单轴抗压强度之比C. 岩体的 单轴抗压强度和它的弹性模量之比D. 岩体的 弹性模量和它的单轴抗压强度之比6.对于均质岩体而言,下面岩体的那种应力状态是稳定状态....) A.ϕϕσσσσsin 23131<++-cctg B.ϕϕσσσσsin 23131>++-cctg C.ϕϕσσσσsin 23131=++-cctg D.ϕϕσσσσsin 23131≤++-cctg 7.用RMR 法对岩体进行分类时, 需要首先确定RMR 的初始值, 依据是....)A. 完整岩石的声波速度、RQD 值、节理间距、节理状态与地下水状况B.完整岩石的强度、RQD 值、节理间距、节理状态与不支护自稳时间C.完整岩石的弹性模量、RQD 值、节理间距、节理状态与地下水状况D.完整岩石的强度、RQD 值、节理间距、节理状态与地下水状况8.下面关于岩石变形特性描述正确的是. .. )A.弹性就是加载与卸载曲线完全重合, 且近似为直线B.在单轴实验中表现为脆性的岩石试样在三轴实验中塑性增强C.加载速率对应力-应变曲线没有影响D.岩基的不均匀沉降是由于组成岩基的不同岩石材料含水量不同导致的9.下面关于岩石水理性质描述正确的是... )A. 饱水系数越大, 抗冻性能越好B.冻融系数是岩石试件经反复冻融后干抗压强度与冻融前干抗压强度之比C.抗冻系数为25%, 重力损失率为75%, 则该岩石的抗冻性能良好D.岩石的崩解性是指岩石与水相互作用时体积发生膨胀的性质10.弹塑性理论芬纳公式推导过程中应用到的条件有. . . )A 应力平衡条件和塑性平衡条件B 仅应力平衡条件C 仅塑性平衡条件D 以上都不对11.下面对于喷锚支护设计原则, 叙述不正确的是: . ..)A 对于整体围岩, 一般不支护, 对于大跨度洞室或高边墙洞室, 需要喷锚支护。

岩石力学 大作业

岩石力学 大作业

岩石力学大作业题目:体积压裂中水泥环界面微裂缝的产生和扩展学生姓名:学号:专业班级:2017年 6月27日体积压裂中水泥环界面微裂缝的产生和扩展摘要:页岩气井需要进行水力压裂等措施,对水泥环产生力学冲击,超过水泥环的力学性能极限,会导致井筒密封完整性失效,形成气窜通道,产生环空带压。

水泥环界面脱离产生微环隙是井筒密封失效的常见形式,本文通过建立套管-水泥环-地层组合体力学模型,研究水力压裂施工作业中套管内压连续变化导致微环隙产生的机理;建立体积压裂过程中高压压裂液促使界面裂缝扩展的理论模型,分析各个参数对扩展长度的影响规律。

关键词:体积压裂微裂缝裂缝扩展0 引言固井作业中在套管和地层间注入水泥浆形成水泥环,主要是为了将环形空间进行有效的封隔,防止地层流体在环形空间内发生层间窜流,保证井筒完整性;同时水泥环还会有效的保护和支撑内部套管,改善套管的受力状态,减小地层的地应力对内外套管的挤压,延长套管寿命。

页岩气井需要进行水力压裂等措施,对水泥环产生力学冲击,容易超过水泥环的力学性能极限,是导致井筒密封完整性失效的重要原因之一。

水泥环界面脱离产生微环隙是井筒密封失效的常见形式,微环隙的产生对水泥环密封完整性破坏性较大,会形成沿纵向连通的气窜通道,或将两段本不连通的水泥环失效区域串联起来,使得水泥环密封完整性失效更严重。

压裂过程中的井筒内压力连续变化和射孔完井都是微环隙产生的典型原因,其中压裂过程中的井筒内压力会发生连续变化,由于水泥环与套管及围岩的弹塑性质不同导致在套管内压卸载后出现了径向位移差,使水泥环的两个胶结界面界面脱离,进而会产生微环隙;射孔完井中,射孔弹引爆带来的高温、高速聚能射流将会产生的巨大冲击压力对井筒完整性造成局部损伤,将会产生界面微环隙和水泥环本体裂缝。

体积压裂时注入的高压压裂液将会进入界面微环隙中,促使裂缝扩展,导致封固完整性进一步恶化。

本文通过建立套管-水泥环-地层组合体力学模型,研究水力压裂施工作业中套管内压连续变化导致微环隙产生的机理;建立体积压裂过程中高压压裂液促使界面裂缝扩展的理论模型,分析各个参数对扩展长度的影响规律。

中国石油大学岩石力学大作业

中国石油大学岩石力学大作业

CHINA UNIVERSITY OF PETROLEUM 岩石力学大作业所在院系:石油工程学院班级:油气井14-1班*名:***学号: **********完成日期:2015 年 5 月 13日目录第1章岩性分析 (1)第2章利用测井数据计算分析地层的弹性模量、泊松比 (2)2.1 纵横波速度的确定 (2)2.2 弹性参数 (3)第3章孔隙压力分析 (4)第4章利用测井数据计算强度参数 (5)第5章地应力 (7)第6章安全泥浆密度窗口 (9)6.1坍塌压力 (9)6.2破裂压力 (10)第7章出砂可能性分析 (10)第8章合理完井方式推荐 (11)第9章启裂压力的计算 (12)第10章参考文献 (14)第1章 岩性分析根据自然伽玛测井数据,计算出不同井深处岩石的泥质含量:m inm ax m in GR I GR GR GR GR --= (1-1)1212GR --=•GCUR I GCUR Vsh (1-2) 式中 V sh ——泥质的体积含量; GCUR ——希尔奇指数,对于第三系地层取值3.7,老地层取值2,这里取3.7; I GR ——泥质含量指数;GR 、GR max 、GR min ——目的层的、纯泥页岩的和纯砂岩层的自然伽马值。

分析得到GR min =35.2,GR max =134.9。

VCL<0.3,Boit=0.8;5.03.0<≤VCL ,Boit=0.65;15.0≤≤VCL ,Boit=0.5。

泥质含量随井深剖面如图1所示:图1 泥质体积含量在砂泥岩剖面中,砂岩显示出最低值,粘土(泥岩、页岩)显示出最高值,而粉砂岩、泥质砂岩介于其间,并随着岩层中泥质含量的增加曲线幅度增大。

在砂泥岩剖面中,砂岩显示出最低值,粘土(泥岩、页岩)显示出最高值,而粉砂岩、泥质砂岩介于其间,并随着岩层中泥质含量的增加曲线幅度增大。

图中红线分别为泥质含量0.3、0.5的临界线。

从图中可看出,大部分井段的泥质含量小于0.3,判断该层段岩性为砂岩,选取Boit 系数为0.8。

岩石力学作业

岩石力学作业

岩⽯⼒学作业地应⼒测试⽅法1 地应⼒及其测试的必要性地应⼒,⼜称原岩应⼒,也称岩体初始应⼒或绝对应⼒,是指存在于地层中的未受⼯程扰动的天然应⼒,是在漫长的地质年代⾥,由于地质构造运动等原因产⽣的。

地应⼒是蓄存在岩体内部的⼀种内应⼒,不是岩体的⼀种固有特性,⽽是岩体存在的⼀种⼒学状态。

在⼀定时间和⼀定地区内,地壳中的应⼒状态是各种起源应⼒的总和。

主要由重⼒应⼒、构造应⼒、孔隙压⼒、热应⼒和残余应⼒等耦合⽽成,重⼒应⼒和构造应⼒是地应⼒的主要来源。

地应⼒的形成主要与地球的各种动⼒运动过程有关,另外,温度不均、⽔压梯度、地表剥蚀或其他物理化学变化等也可引起相应的应⼒场。

⽽重⼒作⽤和构造运动是引起地应⼒的主要原因,其中尤以⽔平⽅向的构造运动对地应⼒的形成影响最⼤。

因此,岩⽯中的原地应⼒是由主动施加的⼒和积蓄的残余应变两者引起的。

地应⼒是引起采矿、⽔利⽔电、⼟⽊建筑、铁道、公路、军事和其他各种地下或露天岩⽯开挖⼯程变形和破坏的根本作⽤⼒,是确定⼯程岩体⼒学属性,进⾏围岩稳定性分析,实现岩⽯⼯程设计和决策科学化的必要前提条件。

由于地应⼒的多变性和复杂性,其⼤⼩和⽅向不可能通过数学计算或者模型分析的⽅法来获得,要了解某个地区的地应⼒状态,唯⼀的⽅法就是进⾏地应⼒测试。

地应⼒测试,就是确定拟开挖岩体及其周围区域的未受扰动的三维应⼒状态,这种测试通常是通过多个点的量测来完成的。

地应⼒测试是⼀项综合性的测试,可以说任何⼀种单⼀的⽅法都不能很好地完成,往往需要⼏种⽅法结合起来对⽐使⽤,才可以保证结果的可靠性。

地应⼒测试在矿⼭开采、地下⼯程和能源开发等⽣产实践中起着⾄关重要的作⽤,对地应⼒的研究是当前国际采矿界上的⼀个前沿性课题,近⼏⼗年来,世界上许多国家均开展了地应⼒的测量及应⽤研究⼯作,取得了众多的成果。

2地应⼒测量技术的发展概况美国进⾏地应⼒测量的时间较早,美国⼈劳伦斯于1932年在胡佛⼤坝泄⽔隧洞中⾸次成功进⾏了原岩应⼒测量。

岩石力学大作业-模板

岩石力学大作业-模板

CHINA UNIVERSITY OF PETROLEUM 岩石力学大作业所在院系:石油工程学院班级:姓名:学号:完成日期:年月日一、作业题目结合所学的《岩石力学》课程及相关知识,利用给出的测井数据,对地层力学参数、孔隙压力、地应力、地层坍塌压力与破裂压力进行分析计算,分析储层出砂可能性,作出地层力学参数、地层主应力、地层坍塌、破裂压力剖面,分析井壁坍塌原因;研究储层段的出砂可能性,形成结课作业报告。

2. 已知条件1)A井测井数据,分析孔隙压力,建议采用Eaton法,Eaton指数3.0。

.2)B井对地层力学参数地应力、地层坍塌压力与破裂压力进行分析计算,结合实用泥浆密度分析井壁失稳原因,并提出合理化建议,分析储层出砂可能性,推荐合理的完井方式。

3)已知:✧地层孔隙压力当量密度为1.03g/cm3,✧地层岩性:3000米以前为典型砂泥岩地层,3000米为砂泥岩,夹薄层煤。

✧储层段:2800-3000米砂岩层。

✧地应力实测值:在3690m处实测水平最大主应力大约70MPa,水平最小主应力大约63MPa;✧测井过程中钻井液密度为1.25g/cm3;3. 要求1)编写程序读取、计算、输出数据;2)利用自然伽马测井数据简单分析地层岩性,合理设定或求取Biot系数;3)利用测井数据计算分析地层的弹性模量、泊松比;4)根据抗压试验结果,依据莫尔-库仑准则计算单点的粘聚力和内摩擦角,根据实验结果调整合理的系数,利用测井数据计算粘聚力、内摩擦角与地层抗拉强度的连续剖面;5)采用地层密度积分方法计算上覆主应力,根据地应力实测数据分析水平构造应力系数,采用适当模型计算水平主应力大小,得出上覆主应力、水平最大和最小主应力剖面;6) 采用直井完整性地层坍塌、破裂压力计算模型,不考虑渗流作用,计算地层坍塌压力和破裂压力,结合实用泥浆密度分析井壁失稳原因,并提出合理化建议;7) 分析储层出砂可能性,推荐合理的完井方式;8) 输出结果中单位的使用:地层强度参数采用MPa 为单位,地应力、坍塌压力、破裂压力采用当量泥浆密度为单位;9) 编写结课作业报告。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、作业题目结合所学的《岩石力学》课程及相关知识,利用给出的测井数据,对地层力学参数、孔隙压力、地应力、地层坍塌压力与破裂压力进行分析计算,分析储层出砂可能性,作出地层力学参数、地层主应力、地层坍塌、破裂压力剖面,分析井壁坍塌原因;研究储层段的出砂可能性,形成结课作业报告。

1. 已知条件1)A井测井数据,分析孔隙压力,建议采用Eaton法,Eaton指数3.0。

.2)B井对地层力学参数地应力、地层坍塌压力与破裂压力进行分析计算,结合实用泥浆密度分析井壁失稳原因,并提出合理化建议,分析储层出砂可能性,推荐合理的完井方式。

3)已知:✧地层孔隙压力当量密度为1.03g/cm3,✧地层岩性:3000米以前为典型砂泥岩地层,3000米为砂泥岩,夹薄层煤。

✧储层段:2800-3000米砂岩层。

✧地应力实测值:在3690m处实测水平最大主应力大约70MPa,水平最小主应力大约63MPa;✧测井过程中钻井液密度为1.25g/cm3;4)岩心抗压强度试验结果:2. 要求1)编写程序读取、计算、输出数据;2)利用自然伽马测井数据简单分析地层岩性,合理设定或求取Biot系数;3)利用测井数据计算分析地层的弹性模量、泊松比;4)根据抗压试验结果,依据莫尔-库仑准则计算单点的粘聚力和内摩擦角,根据实验结果调整合理的系数,利用测井数据计算粘聚力、内摩擦角与地层抗拉强度的连续剖面;5)采用地层密度积分方法计算上覆主应力,根据地应力实测数据分析水平构造应力系数,采用适当模型计算水平主应力大小,得出上覆主应力、水平最大和最小主应力剖面;6)采用直井完整性地层坍塌、破裂压力计算模型,不考虑渗流作用,计算地层坍塌压力和破裂压力,结合实用泥浆密度分析井壁失稳原因,并提出合理化建议;7)分析储层出砂可能性,推荐合理的完井方式;8)输出结果中单位的使用:地层强度参数采用MPa为单位,地应力、坍塌压力、破裂压力采用当量泥浆密度为单位;9)编写结课作业报告;10)6月30日前以打印形式交上;11)上交的电子版文档都用03版的office。

二、基本步骤及公式(B 井)1、岩性分析根据自然伽玛测井数据,计算出不同井深处岩石的泥质含量:minmax min GRI GR GR GR GR --=1212GR --=∙GCUR I GCUR VCl式中 V cl ——泥质的体积含量;GCUR ——希尔奇指数,对于第三系地层取值3.7,老地层取值2,这里取2; I GR ——泥质含量指数;GR 、GR max 、GR min ——目的层的、纯泥页岩的和纯砂岩层的自然伽马值。

这里利用VB 编写程序读取A 井数据并找到GR min =34.83,GR max =143.102。

VCL<0.3,Boit=0.8;5.03.0<≤VCL ,Boit=0.65;15.0≤≤VCL ,Boit=0.5。

泥质含量随井深剖面如图1所示:图1:B井泥质含量随井深变化图B井泥质含量计算结果见“B井泥质含量计算结果.xls”Boit系数随井深剖面如图2:图2:Boit系数随井深剖面B井Boit计算结果见“B井Boit计算结果.xls”2、测定岩石强度参数和弹性参数通过声波测井即可取得整个井身剖面内的全部岩石力学参数,而且测试周期短,能节省大量的人力物力。

而且声波测井采用最新的电子技术,在将以电子计算机为中心的数据分析和处理技术应用于岩石力学研究中必将取到重要作用。

2.1 纵横波速度的确定我们知道,当扰动产生产生于弹性体中的一点时,波动将由此点开始向各个方向传播,此时的波前并不在一个平面上,但距离扰动中心足够远时,则可以近似认为波动的转播将以平面的形式向前推进,且所有质点的运动都平行或垂直于传播方向,这种波称为平面波。

其中,当质点运动方向平行于传播方向时,称为纵波;而当质点运动方向垂直于传播方向时,称为横波。

在声波测井中,纵、横波速度通过测井解释后可以直接从测井解释曲线中得到。

测井曲线记录的为各类波传播的时间,单位为微米/米。

经过换算即可得到纵、横波速度,换算公式为:(3.1)(3.2)在大部分的油田测井作业中,并不做全波列测井,即缺失横波测井资料,因此,针对某一地层,就要借助经验公式来估计横波速度。

对于大多数地层,常用的基于回归的经验公式[2]为:(3.3)2.2 弹性参数若已知介质的密度、弹性模量和泊松比,则可确定出介质的纵、横波速度,反过来若测得岩石的纵、横波速度和密度,则可求得岩石的弹性模量和泊松比,即:动态泊松比(3.4)P P t V ∆=1SS t V ∆=1554.0704.0-=P S V V )(22)(2222222222s p s p p s p s d V V V V t t t t --=∆-∆∆-∆=μ动态弹性模量(3.5)ρ—为岩石的容积密度。

一般认为,动、静弹性模量之间有着较好的线性关系[3]:(3.6)(3.7)图2.1 泊松比变化曲线32222292222210)43(10)43(-⨯--=⨯∆-∆∆-∆∆=sps p s ps ps sd VV V V V tt t t tE ρρ1239.03615.0+=d S μμ1989.06042.0-=d S E E图2.2 弹性模量变化曲线2.3 强度参数由于取心的困难,长期以来,国内外的专家都在寻找一种更简便的方法来确定地层的强度。

岩石抗拉强度(3.8)粘聚力(3.9)12/)0035.00045.0(d cl t E V S +=)78.01()11)(21(422cl p dd d V A C +-+-=υρμμμA —常数,取决于公式推导的条件和所采用的计算单位。

内摩擦角(3.1)图2.3 粘聚力、内摩擦角、抗拉强度变化曲线3、利用测井数据计算分析地层的弹性模量、泊松比岩石动态弹性模量与纵横波时差关系式:岩石动态泊松比与纵横波时差关系式:C4952.0545.36-=φ横波时差与纵波时差关系式:动静态弹性模量与泊松比转换公式:B井岩石静态弹性模量随井深变化见图3:图3:B井岩石静态弹性模量随井深变化图B井岩石静态模量计算结果见“B井岩石静态模量计算结果.xls”岩石泊松比随井深变化见图4:图3:B井岩石静态泊松比随井深变化图B井岩石静态泊松比计算结果见“B井岩石静态泊松比计算结果.xls”3.利用测井数据计算粘聚力、内摩擦角与地层抗拉强度的连续剖面。

岩心抗压强度试验结果见表1。

)245(2)245(231ϕϕσσ-︒⋅+-︒=ctg C ctg ,可求出3030m 和3110m处的粘聚力和内摩擦角:3030m 处 522.34,233.4==ϕC 3110m 处 635.33,055.6==ϕC将以上结果代入公式粘聚力公式)78.01)11)(21((224cl p dd d V V A C +-+-=ρμμμ可算出系数A ,00485.0,00654.021==A A ,取21A A 、的平均值有 A =0.0057。

所以)78.01)11)(21(0057.0(224cl p dd d V V C +-+-=ρμμμ 将两点处ϕ、C 值代入公式C b a ⋅+=ϕ可算得 a =36.583,b =-0.489,即C ⋅-=489.0583.36ϕ地层抗拉强度可由单轴抗拉强度)245(2ϕ-⋅⋅=ctg C UCS 和公式12UCS S t =求出。

粘聚力、内摩擦角与地层抗拉强度的连续剖面如图4、5、6所示。

图4:粘聚力随井深变化曲线图5:内摩擦角随井深变化曲线图6:抗拉强度随井深变化曲线4.计算水平主应力大小,得出上覆主应力、水平最大和最小主应力剖面(1)上覆岩层压力的计算上覆岩层压力梯度一般分段计算,密度和岩性接近的层段作为一个沉积层,即g H i ni i b v ∆=∑=0)(ρσ已知上覆主应力在2050m 处地层当量密度为2.517g/cm 3。

本次给出的测井数据中i H ∆为0.5m,由此可以得出上覆岩层压力当量密度随井深的变化曲线。

(2)水平主应力的计算使用黄荣樽法(六五),σμμωσααH s s z p p P P =-+⎛⎝ ⎫⎭⎪-+11()σμμωσααh s s z p p P P =-+⎛⎝ ⎫⎭⎪-+12()式中:ωω12,是反应两个水平方向上构造应力大小的常数,即构造应力系数。

根据已知的地应力测量结果,在3690m 处实测水平最大主应力大约70MPa ,水平最小主应力大约63MPa ,可以确定ωω12,的值μμασασω----=11p v p H P P μμασασω----=12p v p h P P 由计算结果知,可取,。

由上述公式可计算不同井深处的水平最大、最小地应力。

地层主应力纵向规律如图7所示。

图7:地层主应力随井深变化曲线5.不考虑渗流作用,计算直井完整性地层坍塌压力和破裂压力(1)坍塌压力假设泥页岩的渗透率很小,而且钻井液的性能优良,基本上与泥页岩地层见不发生渗透流动,可知井壁坍塌失稳在90°和270°处,该处的有效差应力为最大值,由摩尔库伦强度准则可得到保持井壁稳定的坍塌压力公式()100)1()1(2322⨯+-+--=HK K P CK p h H b ασσρ 式中,)245(ϕ-︒=ctg K(2)破裂压力当井内的钻井液柱所产生的压力升高到足以压裂地层,使其原有的裂隙张开延伸或形成新的裂隙时的井内流体压力称为地层的破裂压力,从力学上说,地层破裂压力是由于井内钻井液密度过大,使井壁岩石所受的周向应力超过岩石的拉伸强度而造成的,即t S θσ=-(St 为抗拉强度)。

当此拉伸力大到足以克服岩石的抗拉强度时,地层即产生破裂,造成井漏。

破裂发生在θσ最小处,即θ=0°或θ=180°处。

保持井壁稳定的破裂压力公式1003⨯---=HS P tp H h f ασσρ根据以上计算,得到地层坍塌、破裂压力纵向分布图,如图8所示。

图8:地层坍塌压力、破裂压力随井深变化曲线从图中我们可以看出,在钻井的过程中,实用泥浆密度1.25有时会低于地层的坍塌压力当量密度,这就是造成地层不稳定的主要因素。

因此,为了避免地层坍塌,可以在某些井段适当增大泥浆密度,但不能超过地层的破裂压力。

6.地层出砂预测(1)采用B指数法预测地层出砂的可能性当B>=2.0*104MPa时,在正常压力的生产方式下开采,油气层不会出砂;当B<2.0*104MPa时,开采时将造成储层出砂。

计算地层的B指数曲线如下图:从图中可以看出,在所有的层位,B指数均小于2.0*104MPa,因此开采时有可能造成出砂。

(2)采用Schlumberger指数法预测地层出砂可能性当SR>=5.9*107MPa2时开采初期储层不会出砂,而当SR<5.9*107MPa2时开采过程中储层可能出砂,应严格控制生产压差。

相关文档
最新文档