假设检验的基本概念与基本思想

合集下载

假设检验的基本概念

假设检验的基本概念
第五节 检验水准与两类错误
第二章
I型错误和II型错误
假设检验是利用小概率反证法思想,从问题的对立面(H0)出发间接判断要解决的问题(H1)是否成立,然后在假定H0成立的条件下计算检验统计量,最后根据P值判断结果,此推断结论具有概率性,因而无论拒绝还是不拒绝H0,都可能犯错误。详见表8-1。
01
P122 例8-3
02
两均数之差的标准误的估计值
03
01
P122 例8-3
02
两均数之差的标准误的估计值
由于u0.05/2=1.96,u0.01/2=2.58,|u|>u0.01/2, 得P<0.01,按α=0.05水准,拒绝H0,接受H1,两组间差别有统计学意义。可以认为试验组和对照组退热天数的总体均数不相等,两组的疗效不同。试验组的平均退热天数比对照组短。例7-7已计算了的95%的可信区间: 天,给出了两总体均数差别的数量大小。
1- :检验效能(power):当两总体确有差别,按检验水准 所能发现这种差别的能力。
a 与 b 间的关系
a
b
减少(增加)I型错误,将会增加(减少)II型错误 增大n 同时降低a 与 b
B
D
A
C
减少I型错误的主要方法:假设检验时设定 值。
提高检验效能的最有效方法:增加样本量。
若 ,不拒绝H0,但不能下“无差别”或“相等”的结论,只能下“根据目前试验结果,尚不能认为有差别”的结论。
第三节 大样本均数的假设检验
单样本数据,每组例数等于或大于60例;两样本数据,两组例数的合计等于或大于60例,而且基本均等。
两总体方差已知。
样本数据不要求一定服从正态分布总体。
另一方面,可信区间不但能回答差别有无统计学意义,而且还能比假设检验提供更多的信息,即提示差别有无实际的专业意义。

4 假设检验和t检验

4 假设检验和t检验

t
2.671
17905113912 /11101971 9462 / 9 ( 1 1)
11 9 2
11 9
=n1+n22=11+9-2=18
(3)确定P值,作出推断结论
以=18,查 t 界值表得 0.01<P<0.02。按=0.05 水
准,拒绝 H0,接受 H1,差异有统计学意义。可以认为 两种饲料对小鼠的体重影响不同。
(2)计算检验统计量
本例n=12,d=53,d2=555,
d d 53 4.42 n 12
sd
d2 (
d)2 / n
555 (53)2 /12 5.40
n 1
12 1
t d 4.42 2.83 sd / n 5.40 / 12
12 1 11
(3)确定P值,作出推断结论
(1)建立检验假设,确定检验水准
H0:1=2 即两组小鼠的体重总体均数相同 H1:1 2 即两组小鼠的体重总体均数不相同 =0.05
(2)计算检验统计量
126.45 105.11
t
2.671
(111)17.762 (9 1)17.802 ( 1 1)
11 9 2
11 9
126.45 105.11
型)选择相应的检验统计量。 如 t 检验、z检验、 F检验和 2 检验等。
本例采用t检验方法 t X X X 0 , n 1
SX S n S n
本例t值为1.54
3. 确定P值,做出推断结论
是指查根表据得所到计检算验的用检的验临统界计值量,确然定后H将0成算立得的可 能性的大统小计,量即与确拒定绝在域检的验临假界设值条作件比下较由,抽确样定误P差引 起差值别。的如概对率双。侧 t 检验 | t | ,则 tα/2(ν) P α ,按检

概率论与数理统计 第8章

概率论与数理统计  第8章
后所生产的灯管中抽取 25 只,测得平均寿命为 1675 小时。 问采用新工艺后,灯管寿命是否有显著性提高?
现在的问题就是要判别新产品的寿命是服从 μ >1500 的
正态分布,还是服从 μ ≤1500的正态分布? 若是前者,我们 就说新产品的寿命有显著性提高;若是后者,就说新产品的 寿命没有显著性提高。
定义 1 将对总体提出的某种假设称为原假设,记为 H 0 ; 将与原假设矛盾的假设称为备择假设,记为 H 1 。
在例 8-1 中,我们把涉及的两种情况用假设的形式表示
出来,第一个假设 μ ≤1500 表示采用新工艺后产品平均寿命没 有显著性提高,第二个假设 μ >1500 表示采用新工艺后产品平
均寿命有显著性提高。第一个假设为原假设,即“ H 0 :μ
定义 8 给定犯第一类错误的概率不大于 α 所作的假设 检验称为显著性检验,称 α 为显著性水平。 例 8-2 某车间用一台包装机包装食盐,每袋食盐的净 重是一个随机变量,它服从正态分布。当包装机正常时,其 均值为 0.5kg ,标准差为 0.015kg 。某日开工后为检查包装 机工作是否正常,随机地抽取它所包装的食盐 9 袋,称得样 本均值 ������ X =0. 511kg ,问在显著性水平 α =0.05 下,这 天包装机工作是否正常。
由于无论是第一类错误还是第二类错误都是作假设检验 时的随机事件,因此在假设检验中它们都有可能发生。我们 当然希望尽可能使犯两类错误的概率都很小,但一般来说, 当样本的容量固定时,若刻意地减少犯一类错误的概率,则 犯另一类错误的概率往往会增大。若要使两类错误的概率都 减小,就需增大样本的容量。在给定样本容量的情况下,我 们总是对犯第一类错误的概率加以控制,使它不大于 α , 而不关心犯第二类错误的概率 β是增大了还是减小了,这样 的假设检验就是显著性检验。

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第7~8章【圣才出品】

茆诗松《概率论与数理统计教程》第3版笔记和课后习题含考研真题详解-第7~8章【圣才出品】

,xn;
)
0
2.分类数据的χ2 拟合优度检验
定理:在实际观测数与期望观测数相差不大的假定下,在 H0 成立时,对统计量
2
r i 1
(ni
npi0 )2 npi0
有 2
L 2 (r 1) 。
根据定理,采取显著性水平为α 的显著性检验:检验统计量为:
2
r i 1
(ni
npi0 )2 npi0
,拒绝域为W
{ 2
2 1
(r
1)} 。
五、正态性检验 1.W 检验 W 统计量
3 / 117
圣才电子书 十万种考研考证电子书、题库视频学习平台

W
n
(ai
i 1
a
)( x ( i )
x
)
2
n
n
(ai a )2 (x(i) x )2
i 1
i 1
拒绝域{W≤Wa}。
2.比率 p 的检验(见表 7-1-2)
表 7-1-2 比率 p 的检验
2 / 117
圣才电子书 十万种考研考证电子书、题库视频学习平台

四、似然比检验与分布拟合检验
1.似然比检验的思想
假设的似然比
sup p(x1,K ,xn; )
( x1,K
,xn
)
sup
p( x1,K
+(n)}。
7.2 课后习题详解
习题 7.1
1.设 x1,…,xn 是来自 N(μ,1)的样本,考虑如下假设检验问题
4 / 117
圣才电子书 十万种考研考证电子书、题库视频学习平台

H0:μ=2 vs H1:μ=3
若检验由拒绝域为 W {x 2.6}确定。

3.假设检验

3.假设检验
条件下进行推导和运算. 如果得到矛盾,
则推翻原来的假设,结论不成立.
但是,这里所得到的矛盾不是纯形式逻辑上 的矛盾,不是绝对成立的矛盾, 而是与人们 普遍的经验的矛盾, 就是小概率事件在一次 试验中不会发生. 假设检验把这条经验作为
一条原则. 根据这条原则,如果小概率事件在
一次试验中发生了,则认为原来的假设不成立 .
则 变大;反之 变小,则 变大 . 实际应用时,通常只能控制犯第一类错误的 概率, 因此一般事先给定犯第一类错误的概 率 , 力求使犯第二类错误的概率 尽量小. 犯第一类错误的概率 恰好是检验的显著性 水平, 通常情况下 取 0.05, 0.01, 0.001, 0.10.
四、假设检验的步骤: (1) 建立原假设 H0 ; (2) 构造一个含有待检参数 (但不含其它参数) 且分布已知的函数 ; (3) 给定显著水平 α , 利用所构造的函数及其分 布, 结合 H0 给出拒绝域 ;
(二)两个正态总体的参数假设检验:
设有两个正态总体
2 X N 1 , 12 , Y N 2 , 2 ,




从两个总体中分别抽取两个样本
( X1 , X 2 , , X n1 ) , (Y1 , Y2 , , Yn2 ) ,
并设其样本平均数及样本方差分别为
2 X , Y 及 S12 , S2 .
1. 两个正态总体均值的假设检验:
作假设 H 0 : 1 = 2 ;
H1 : 1 2
1) 若 σ12 , σ22 已知, 在 H0 成立的前提下作函数
U=
X Y

2 1
n1
+

2 2
N( 0 ,1) ,

卫生统计学:第7-8章 假设检验与t检验

卫生统计学:第7-8章 假设检验与t检验
8
反证法
当一件事情的发生只有A、B两种可能的时候,为了肯 定其中的一种情况A,但又不能直接证实A,这时否定 了另一种情况B,则间接肯定了A。 证明A还是证明B? 抗氧化剂 • 在H0成立的条件下,均数之间的差异是由抽样误差
引起的,有规律可循; • 在H1成立的条件下,均数间的不同包含种种未知情
形,无规律可循。 • 故从H0成立的角度出发,寻求其成立的概率。
分布。
数理统计的中心极限定理表明:从正态总体N ( , ) 中抽取例数均为n 的样 本,样本均 数也服从正态分布N( , X )。
Gosset 将此时的 u 转换:
X
定义为t 转换: t sX
u X X
并将t 值的分布命名为t 分布。
t 分布的图形及特征
• 单峰分布,以0为中心,左右对称 • t分布是一簇曲线,其形状与自由度υ(υ=n-1)
基本原则——小概率事件在一次试验中是不可能发生的。
建立检验假设,确定检验水准
假 设 检 验 步 骤
P≤α
计算检验统计量
确定P值
作推断结论
P>α
拒绝H0,接受H1
不拒绝H0
为了解某地1岁婴儿的血红蛋白浓度,某医 生从该地随机抽取了1岁婴儿25名,测得其血红 蛋白浓度的平均数为123.5g/L,标准差为11.6 g/L, 而一般正常小儿的平均血红蛋白浓度为125 g/L, 故认为该地1岁婴儿的平均血红蛋白浓度低于一 般正常小儿的平均血红蛋白浓度。
│t│值越大,则 P 值越小;反之,│t│值 越小,P 值越大。根据上述的意义,在同 一自由度下,│t│≥ tα ,则P≤ α ; 反之, │t│<tα,则P>α。
t 检验的应用条件:
单样本t 检验中,σ未知且样本含量较小 (n<50)时,要求样本来自正态分布总体;

假设检验

假设检验
X是的无偏估计量,
U | X 0 | ~ N (0,1)
/ n
3° 在假设 H0成立的条件下,由样本判断 y 小概率事件是否发生。 y pU ( x )

P{| U | u / 2 }
2

2
当 0很小时 ,
uα / 2
O uα / 2
x
{| U | u / 2 }是个小概率事件 (如上图) .
第一节
假设检验的 基本概念
一、假设检验的基本原理 二、假设检验的基本概念 三、两类错误

四、假设检验的一般步骤
停 下
实验设计 数理统计 统计推断
参数估计 假设检验 (回归分析)
统计推断: 研究如何加工、处理数据,从而 对所考察对象的性质做出尽可能精确和可靠的 推断.
很难发生. 但“很难发生”不等于“不发生”, 因而 假设检验所作出的结论有可能是错误的. 这种错误 有两类: (1) 当原假设H0为真, 观察值却落入拒绝域, 而 作出了拒绝H0的判断, 称为第Ⅰ类错误, 又叫弃真 错误, 这类错误是“以真为假”. 犯第Ⅰ类错误的概 率就是显著性水平 .
= P { 拒绝原假设H0 | H0为真 }
H0称为原假设或零假设, H1称为备择假设.
4. 拒绝域与临界点样本值x=(x1, x2, · · · , xn)所组成的集合. W1 = { x x 且使H0不成立}
W1 W1 : 拒绝原假设H0的检验统计量的取值范围.
W1 x x , U U
根据小概率原理, 如果H 0为真,则 | x 0 | 不应太大,则由一次试验得到
满足不等式
| u |
| x 0 |
/ n

07 假设检验

07 假设检验

2=02
202
2
2=()02 2>02 2=()02 2<02
2 n 1 S

2 0
单个正态总体均值已知的方差检验——2检验
问题:总体 X~N(,2),已知 假设
H0 : ; H1 : ;
2 2 0 2
构造2统计量 2
概率论与数理统计
第七章 假设检验
主要内容
假设检验的基本概念 正态总体参数的假设检验 *多个正态总体均值的比较——单因素方差 分析 *2拟合优度检验
§7.1 假设检验的基本概念
一、统计假设与统计假设检验 统计假设:通过实际观察或理论分析对总体分布形式 或对总体分布形式中的某些参数作出某种假设。 同一问题中的统计假设有两个:原假设和备择假设
基本原则——小概率事件在一次试验中是不可能发生的。 思想:如果原假设成立,那么某个分布已知的统计 量在某个区域内取值的概率应该较小,如果样本的观 测数值落在这个小概率区域内,则原假设不正确,所以, 拒绝原假设;否则,接受原假设。
• 假设检验的推理用到概率性质的反证法:先假设
H0正确,看由此可以推出什么结果。如果样本观 测值导致了一个不合理现象的出现,则有理由否 定原假设H0,而接受备择假设H1;否则,只能将 原假设H0当做真的保留下来。
故T统计量的观测值为
x 99.978 100 T 0.0545 S n 1.212 9
因为0.0545<1.86 ,即观测值落在接受域内 所以接受原假设,即可认为这天的包装机工作正常。
单边检验
H0:=0;H1:0
拒绝域为
X 0 P t (n 1) S n
X
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
H0 : 0 ; H1 : 0
的拒绝域.
当 H1 为真时,观测值 x 往往偏大,因此,拒绝域的 形式为
x k ,( k 是某一正数)
又P
拒绝H0 H0为真
P
X k
P
X
0
k
0
/ n / n

2020/10/7
16
目录
上页
下页
返回
因 H0 为真,故
0
,从而 X / n
就前一种情况而言,要求犯错误的概率很小,因此, 人们常常要求
P 拒绝H0 H0为真 ,
其中 (0 1) 是一个人为给定的很小的数,常见地取 0.01,0.05,0.1 等,称 为显著性水平(significance
level). 只对犯第 I 类错误的概率加以控制,而不考虑 犯 第 II 类 错 误 的 概 率 的 检 验 , 称 为 显 著 性 检 验 (significance test),它只涉及到原假设.
n
u
.
2020/10/7
17
目录
上页
下页
返回
类似地,可得左边检验问题
的拒绝域为
H0 : 0 ; H1 : 0
u x 0 / n
u ,即 x
0
n
u
.
2020/10/7
18
目录
上页
下页
返回
内容小结
假设检验的基本原理、相关概念和一般步骤.
假设检验的两类错误
真实情况 (未知)
H0 为真 H0 不真
等式
X 0 / n
u /2 几乎是不会发生的.如果发生了,则有
理由怀疑 H0 的正确性,因而拒绝 H0 .相反,观测值 x 满

X 0 / n
u /2 ,此时没有理由拒绝原假设 H0 ,从而可以
接受 H0 .
2020/10/7
12
目录
上页
下页
返回
一般地,称统计量 U X 0 为检验统计量(test / n
《概率论与数理统计》
*****大学理学院数学系
伯努利(Bernoulli) 柯尔莫哥洛夫(Kolmogorov)
2020/10/7
1
目录
上页
下页
返回
第八章 假设检验
§8.1 假设检验的基本概念和基本思想 §8.2 正态总体均值的假设检验 §8.3 正态总体方差的假设检验 §8.4 分布拟合检验
2020/10/7
98.3,97.7,100.5,98.8,101.2,99.5,102.5, 99.7,100.1
试问此包装机的工作是否正常?
设 X 表示每包饲料的重量,则 X ~ N (, 2 ) .当自动 包装机工作原正假常设时(nu,ll h0ypo1t0h0e,sis) 2 1.152 .
备提择出假两设个(a相lte互rn独at立iv的e h假yp设othesis)
2020/10/7
11
目录
上页
下页
返回
通过以上分析,我们知道假设检验的方法符合“小概率
推断原理”.因为通常 总是取得较小,一般地取 0.1, 0.01 , 0.05 等 . 因 而 , 若 H0 为 真 , 即 当 0 时 ,
X
0
/ n
u
/
2

















理,如果 H0 为真,则由一次试验得到的观测值 x ,满足不
下面结合实例来说明假设检验的基本思想.
2020/10/7
5
目录
上页
下页
返回
【例 1】 某饲料厂用自动包装机将饲料打包,每包饲料 的标准重量规定为 100 斤.每天开工时,需要先检验一 下包装机的工作是否正常.机器正常时,其均值为 100 斤,标准差为 1.15 斤.某日开工后,抽检了 9 包,其重 量数据如下(单位:斤):
(3)
给定显著性水平 ,按 P
拒绝H0
H
为真
0

定拒绝域W ;一般地,确定临界值就确定了拒绝域;
(4) 作出判断:若 u W ,则拒绝原假设 H0 ,否则接
受原假设 H0 .
2020/10/7
14
目录
上页
下页
返回
三种假设检验
双边假设检验(bilateral hypothesis test)
H0 : 0 ; H1 : 0
所作决策
接受 H0 正确
拒绝 H0 犯第I类错误
犯第II类错误
正确
2020/10/7
19
目录
上页
下页
返回
习题A
2020/10/7
20
目录
上页
下页
返回
2020/10/7
9
目录
上页
下页
返回
为了确定常数 k ,我们考虑统计量 x 0 . / n

P
拒绝H0
H0为真
P
|
X
0
|
k
.
/ n
当 H0 为真时,U
X
0
/n
~
N (0,1) ,由标准正态分布分
位点的定义有 k u /2 ,
若U 的观察值满足 u
x 0 / n
k u /2 ,则拒绝 H0 ,
返回
两类错误
第I类错误(error of the first kind)
(弃真错误 )
P拒 绝 H 0H 0 为 真
第II类错误(error of the second kind) (取伪错误 )
P 接 受 H 0H 0 为 假
2020/10/7
8
目录
上页
下页
返回
实践中,人们习惯地采用如下策略:限制犯第 I 类错 误的概率,或者在限制犯第 I 类错误的概率下,使犯第 II 类错误的概率尽可能地小.
statistic).当检验统计量取某个区域W 中的值时,我 们 拒 绝 原 假 设 H0 , 称 区 域 W 为 拒 绝 域 (rejection region) , 拒 绝 域 的 边 界 点 称 为 临 界 点 (critical
point) , 拒 绝 域 的 补 集 W 称 接 受 域 (acceptance region).例如上例中拒绝域为
而若| u |
x 0 / n
k u /2 ,则接受 H0 .
2020/10/7
10
目录
上页
下页
返回
例如,在本例中取 0.05,则有 k u0.05/2 u0.025 1.96 , 又已知 n 9 , 1.15,即有
x 0 0.493 1.96 , / n
于是接受 H0 ,即可认为这天包装机工作正常.
2
目录
上页
下页
返回
8.1 假设检验的基本概念 和基本思想
2020/10/7
3
目录
上页
下页
返回
假设检验的基本原理
在总体的分布函数完全未知或只知其形式、 但不知其参数的情况下, 为了推断总体的某些性 质, 提出某些关于总体的假设.
例如, 提出总体服从泊松分布的假设;
又如 ,对于正态总体 期提 望出 等 0的 数 于学
拒绝 H0 .考虑到,当 H0 为真时,
X
0
/n
~
N (0,1) .而衡量
x 0
的大小可归结为衡量
x
0
/n
的大小.因此,我们可
适当选定一正数 k ,使得当观测值 x 满足 x 0 k 时就拒 / n
绝原假设
H0
,反之,若
x
/
0
n
k ,就接受原假设 H0 .
2020/10/7
ቤተ መጻሕፍቲ ባይዱ
7
目录
上页
下页
X
0
/n


X
0
k 0
X
k 0
.
/ n / n / n / n

P
X
k
0
,则必有
P
/ n / n
拒绝H0
H0为真
.

X
/
n
~
N (0,1)

P
X
/
n
k
0
/n
,可得
k
/
0
n
u
,即 k
0
n
u .
由此可得拒绝域为 u x 0 / n
u ,即 x
0
W (, 1.96) (1.96, ) ,
而 u u /2 1.96 为两个临界点.
2020/10/7
13
目录
上页
下页
返回
综上所述,参数假设检验的一般步骤如下:
(1) 根据实际问题的要求,提出原假设 H0 及备择假
设 H1 ; (2) 构造一个合适的统计量并确定该统计量的分布,
由样本观测值计算出统计量U 的值 u ;
右边检验
H0 : 0 ; H1 : 0
左边检验
H0 : 0 ; H1 : 0
2020/10/7
15
目录
上页
下页
返回
下面来讨论单边检验的拒绝域.
设 总 体 X ~ N(, 2) , 未 知 、 为 已 知 ,
X1, X 2, , X n 是来自 X 的样本,给定显著性水平 .确 定假设检验问题
假设. 等 假设检验就是根据样本对所提出的假设作
出判断: 是接受, 还是拒绝.
2020/10/7
相关文档
最新文档