初中几何基本概念
初中几何知识点公式总结

初中几何知识点公式总结一、基本概念1. 点、线、面、角点是几何图形的最小单位,没有长度、面积和体积;线是由无数个点无限延伸的,只有长度没有宽度;面是由无数个线段构成的,具有长度和宽度,并且没有厚度;角是由两条射线共同端点构成的,测量角的大小以度为单位。
2. 图形的基本要素边和角是图形的基本组成要素。
多边形是由若干个边组成,每个多边形都有相应数量的顶点和内角。
网格图形是一个由边界为直线,重叠区域为闭合图形的整体。
3. 同位角和异位角同位角是指一个角的内、外两边分别与两条直线形成的四个角,这四个角之一的对角即为同位角。
异位角是指两条直线及这两条直线间的一个角以及另一条线外侧的两个角,这三个角之一的对角即为异位角。
二、平面几何1. 点、线、面点是平面上没有长度和宽度的,具有位置但没有方向;直线是由无数个点组成的,任意两点可确定一条直线;射线是一条有一个起点、一个方向并延伸无限远的直线段;线段是由两点之间的所有点组成。
2. 图形的性质三角形是平面内由三条线段构成的图形,具有内角和外角,内角的和为180°,外角的和为360°;长方形的对角线相等,且垂直,对角线的交点称为对角点,连接对角点的线段叫做对角线;正方形的对角线相等,且相互垂直,对角线的交点就是正方形的中心。
3. 各角三边关系余弦定理:a² = b² + c² - 2bc * cosA正弦定理:a/sinA = b/sinB = c/sinC4. 图形的周长和面积三角形的面积公式:S = 1/2 * a * b * sinC长方形的面积公式:S = a * b正方形的面积公式:S = a²三、立体几何1. 三棱柱与三棱锥三棱柱是由两个平行的三角形底面和三条连接这两个底面相对顶点的直线段组成的立体图形,其体积公式为V = 底面积 * 高;三棱锥是由一个三角形底面和三条连接这个底面的三个顶点的直线段组成的立体图形,其体积公式为V = 1/3 * 底面积 * 高。
初中几何知识点

初中几何知识点初中几何是数学中的一个重要分支,它研究平面和空间中的图形、角、线段、面和体等几何概念以及它们之间的关系。
初中几何是为了培养学生的空间想象力、观察力、推理能力和解决问题的能力而设置的科目。
下面是初中几何的一些经典知识点:一、基础概念1.点:几何中最基本的概念,没有大小和形状。
2.线段:由两个点确定的一条线段,具有长度。
3.直线:由无数个点连续在一起而形成的一条无限延伸的线。
4.射线:一个起点,一个方向,无限延伸的一条线段。
5.角:由两条射线共享一个端点组成的图形。
6.平行线:在同一个平面上,不交于一点的两条直线。
7.垂直线:在同一个平面上,相交于一点,且相互垂直的两条直线。
8.平面:由无数个点组成的一个没有厚度的表面。
二、相交线和角1.垂直角:一对互相垂直的角。
2.相邻角:共享同一边,且不重合的两个角。
3.对顶角:由两条相交线所形成的相对的角。
三、多边形1.三角形:由三条线段组成的图形。
2.直角三角形:一个角为直角(90度)的三角形。
3.等腰三角形:两边相等的三角形。
4.等边三角形:三边都相等的三角形。
5.四边形:由四条线段组成的图形。
6.平行四边形:对边平行的四边形。
7.矩形:有四个直角的平行四边形。
8.正方形:既是矩形,又是菱形的四边形。
9.菱形:对边相等,且相互垂直的四边形。
四、圆1.圆心:圆的中心点。
2.半径:连接圆心和圆上任意一点的线段。
3.直径:通过圆心,且两边界于圆上的线段。
4.弦:连接圆上两个点的线段。
5.弧:圆上的一段曲线。
五、相似与全等1.相似:两个图形形状相同,但大小不同的关系。
2.全等:两个图形既形状相同,又大小相同的关系。
六、立体图形1.三棱柱:五个面是三角形的立体图形。
2.四棱锥:一个面是四边形,其余面是三角形的立体图形。
3.圆柱:两个面是圆形,其余面是矩形的立体图形。
4.圆锥:一个面是圆形,其余面是三角形的立体图形。
5.球体:所有的点到球心的距离相等的立体图形。
初中几何知识点总结

初中几何知识点总结
1. 点、线、面
- 点:几何学中最基本的概念,表示位置但没有大小。
- 线:由无数个点连在一起形成,没有宽度和厚度,长度是线
的属性。
- 面:由无数个线组成,有长度和宽度但没有厚度,面积是面
的属性。
2. 角的概念
- 角是由两条射线共享一个端点所形成的,通常用字母表示,
如∠ABC。
- 角的大小用度数来表示,以度(°)为单位。
3. 三角形
- 三角形是由三条线段所围成的一个封闭图形。
- 三角形根据边长分为等边三角形、等腰三角形和普通三角形。
- 三角形根据角度分为钝角三角形、直角三角形和锐角三角形。
4. 四边形
- 四边形是由四条线段所围成的一个封闭图形。
- 四边形根据边的长短和角的大小分为正方形、长方形、菱形、平行四边形和梯形。
5. 圆
- 圆是由一条弧线和弧线两端点所组成的。
- 圆心是圆的中心点。
- 半径是从圆心到圆上任意一点的距离。
6. 平行和垂直
- 平行线是在同一个平面内永不相交的直线。
- 垂直线是相交成直角的两条线。
7. 同位角和内错角
- 同位角是两条平行线被一条横截线所切分而形成的对应角。
- 内错角是两条平行线被一条横截线所切分而形成的相对角。
总结:
初中几何知识点包括点、线、面的定义,角的概念,三角形和
四边形的分类,圆的要素,平行和垂直关系,以及同位角和内错角
的性质。
掌握这些基本知识能够帮助学生在几何学习中打下坚实的基础。
初中几何知识点

初中几何知识点一、基础概念:1.点、线、面的定义及特性;2.直线、射线、线段的定义及表示方法;3.平行线和垂直线的定义及性质;4.三角形、四边形、多边形的定义及特性。
二、线的关系:1.平行线和垂直线的判定方法;2.平行线与一条穿过它们的横线构成的对应角关系;3.重合线、相交线和平行线的性质。
三、三角形:1.三角形的分类及特性,如:等边三角形、等腰三角形、直角三角形等;2.三角形内角和外角的性质;3.三角形内部和外部的重要点:重心、垂心、外心和内心;4.四边形:a.平行四边形的定义、性质和判定方法;b.矩形、正方形、菱形和长方形的特性;c.梯形、平行四边形和矩形之间的关系。
四、相似和全等:1.两个图形全等的判定方法及性质;2.两个三角形相似的判定方法及性质;3.直角三角形的特殊相似关系:勾股定理;4.三角形的比例关系:相似三角形的比例定理。
五、圆的性质:1.圆的基本概念:圆心、半径、直径、弧、弦等;2.圆的周长和面积的计算方法;3.圆的切线、弦与弧、相交弦的性质;4.同圆弧或同圆角的性质。
六、几何证明:1.几何证明的基本思路和方法;2.基于形状和性质的证明方法;3.基于角度和线段的关系的证明方法。
七、空间几何:1.空间图形的分类:立体图形和曲面图形;2.空间图形的特性和性质:体积、表面积等;3.空间图形的切割、投影及相关问题。
以上是初中阶段较为经典的几何知识点,通过学习和掌握这些知识点,能帮助学生深入理解几何的基本概念和性质,提高几何问题的解决能力。
为了更好地理解和掌握这些知识点,学生可以多做习题、课后练习和实践操作,培养几何思维和几何推理能力,提高几何问题的解决能力。
初中几何知识点大总结

初中几何知识点大总结一、点、线、面及其性质1、点:点是几何最基本的概念,不占据空间,通常用大写字母来表示,如A、B、C等。
2、线:线是由许多点连成的,长度可无限延伸的几何对象。
线也常用大写字母来表示,如AB、CD等。
3、线段:线段是线的一部分,在两个端点之间。
线段通常用小写字母表示,如ab、cd等。
4、射线:是一个端点和延伸方向上的所有点的集合,通常也用小写字母表示,如⃗ab、⃗cd等。
5、平面:平面是一个没有边界的二维图形,通常用大写字母来表示,如平面P、平面Q 等。
6、直线、曲线、线段、射线和平面的性质:直线是最短的路径,曲线是不断变向的路径,线段有两个端点,射线有一个端点,平面是无边界的表面。
二、图形的性质1、图形的基本概念:图形是由点、线、面组成的,在平面上所形成的形状称为二维图形,常见的有三角形、四边形、五边形、六边形等。
2、点与线段的位置关系:点可在直线上、直线的延长线上内、外或直线以外,分为三种不同的位置关系。
3、平行线、垂直线、相交线:平行线是不相交的两条直线,垂直线是相交成直角的两条直线,相交线是相交但不平行的两条直线。
4、角:两条直线或射线,在交点处将这两条线分成两部分,所形成的部分称为角,常用小写字母表示,如∠A、∠B。
三、三角形1、三角形的基本概念:三角形是一个有三条边和三个角的图形。
2、三角形的分类:根据三角形的边和角的特征,三角形可分为等边三角形、等腰三角形、直角三角形、钝角三角形和锐角三角形等。
3、三角形的角的性质:三角形内角和为180度,对顶角相等,底角和底边等于它的两个角对边。
四、四边形1、四边形的基本概念:四边形是由四条线段围成的一个几何形状。
2、四边形的分类:四边形根据边和角的特征可分为平行四边形、菱形、长方形、正方形和梯形等。
3、四边形的性质:相对边相等,对角相等,对边平行,邻边相加等于对角。
五、平行线和三角形的性质1、平行线和角的性质:平行的两条直线所形成的对应角相等,错位角相等,内错位角之和为180度。
初三数学几何知识点总结

初三数学几何知识点总结数学几何是初中数学的重要组成部分。
初三学生需要掌握一些基本的几何知识点。
下面是一份关于初三数学几何知识点的总结,希望对初三学生提供一些帮助。
一、平面几何知识点:1. 基本概念与性质:- 点、线、面的概念与性质;- 直线的判定方法,如使用两点确定一条直线,或通过斜率关系等;- 平行线、相交线、垂直线的判定方法;- 角的概念与性质,如对顶角、同位角、对顶角等;- 三角形的分类与性质,如直角三角形、等边三角形、等腰三角形等;- 四边形的分类与性质,如平行四边形、矩形、正方形等;- 圆的概念与性质,如圆心、半径、直径之间的关系等。
2. 图形的计算:- 三角形的面积计算公式与方法,如海伦公式、高度关系等;- 平行四边形的面积计算公式与方法;- 三角形的相似判定与计算;- 圆的面积与周长计算公式。
3. 平面几何的证明:- 等腰三角形的判定与证明;- 同位角、内错角、外错角的性质与证明;- 平行线与垂直线的证明;- 四边形平行条件的证明。
4. 三角函数:- 正弦、余弦、正切等三角函数的定义与性质;- 三角函数的计算问题,如已知两角关系,求三角比等。
二、空间几何知识点:1. 空间几何的基本概念:- 空间点、线、面之间的关系与性质;- 空间几何中的平行、垂直关系判定方法;- 空间中的角(二面角、立体角)概念与性质。
2. 空间图形的计算:- 空间几何中的柱体、圆锥、球体等图形的体积与表面积计算公式与方法;- 空间几何中的平面图形与立体图形的相互转化。
3. 空间几何证明:- 点、线、面之间的关系的证明;- 空间几何中的平行、垂直关系的证明;- 空间图形的特殊性质的证明。
三、向量与坐标几何知识点:1. 向量的定义与性质:- 向量的概念与表示方法;- 向量的加法、减法、数乘运算;- 向量的数量积、向量积的概念与性质。
2. 坐标几何的基本概念:- 直角坐标系的建立与使用;- 坐标点、线段、中点等的表示与计算方法;- 直线的斜率计算公式与性质。
初中几何常用知识点总结

初中几何常用知识点总结一、点、线、面1. 点:初中几何中,点是最基本的几何概念,它是没有大小和形状的。
2. 线:是由点无限延伸而成的,它是几何中的另一个基本概念。
3. 面:是由线无限延伸而成的,面是几何中的重要概念。
二、角1. 角的定义:是由两条射线共同端点形成的图形。
2. 角的度量:常用的角的度量单位有度和弧度。
一度等于360分之一的周角,弧度是一个弧长等于半径长的角。
3. 角的分类:根据角的大小,可以把角分为锐角、直角、钝角和平角。
三、三角形1. 三角形的定义:是由三条线段所围成的,是最基本的多边形。
2. 三角形的分类:根据三角形的边长和角度,可以将三角形分为等腰三角形、等边三角形、直角三角形、锐角三角形和钝角三角形。
3. 三角形的性质:三角形的内角和为180度,等边三角形的内角都是60度。
4. 三角形的周长和面积的计算:三角形的周长等于三条边长之和,而三角形的面积等于底边乘以高再除以2。
四、四边形1. 四边形的定义:四边形是由四条线段所围成的图形。
2. 四边形的分类:根据四边形的性质,可以将四边形分为平行四边形、矩形、菱形、正方形和梯形。
3. 四边形的性质:一般情况下,四边形的内角和为360度,平行四边形的对角线相互平分,正方形的对角线相等且垂直,矩形和菱形的对角线相等。
五、圆1. 圆的定义:是由一个定点到平面上任意一点的距离等于给定长度的所有点所构成的图形。
2. 圆的性质:圆的半径、直径、周长和面积的计算公式如下:半径:r直径:d=2r周长:C=2πr面积:S=πr²六、相似1. 相似的定义:两个或两个以上的图形,如果它们的形状相同但大小不同,就称为相似的。
2. 相似的判定:两个三角形相似,有相似三角形的三边成比例同比例,则它们相似;有两条边分别成等比倍相似,则它们相似;角相等或成对应相等,则它们相似。
七、射影1. 射影的定义:一个几何图形在与之相交的直线或平面上投影的图形。
2. 射影的分类:射影可以分为平行投影和中心投影。
初中几何知识点总结归纳

初中几何知识点总结归纳几何学是数学的一个重要分支,研究平面图形、空间图形以及它们的性质、关系和变换等。
在初中阶段,学生将会学习到许多几何概念和知识,下面是对一些常见的初中几何知识点进行了总结归纳。
一、基本概念1.点:几何中的最基本单位,没有大小,用大写字母表示。
2.线段:由两个端点确定的线段,可以用一条直线表示。
3.直线:无限延长又无限窄的线段,用小写字母表示。
4.射线:由一个端点和延伸出的一段部分组成的线段。
5.角度:由两条不同的线段(称为边)组成的形状,有角心和两个端点。
用大小写字母表示,如∠ABC。
6.平行线:在同一平面上,永远不会相交的线段。
7.垂直线:两条直线相交时,形成的四个角度中有两个角度互为补角,被称为垂直线。
8.对称:一个图形相对于条线或中心点形成的镜像图形。
9.相似:两个图形的对应角相等,对应边成比例。
10.全等:两个图形的对应边和对应角都相等。
二、图形的性质1.三角形:由三条线段组成的图形,其中最常见的三种三角形是等边三角形、等腰三角形和直角三角形。
2.正方形:具有四条边相等且四个角都为直角的四边形。
3.长方形:具有相对边相等且四个角都为直角的四边形。
4.平行四边形:具有两对平行边的四边形。
5.梯形:具有一对平行边的四边形。
6.圆:平面上所有离圆心的距离都相等的点的集合。
7.弧:圆上两个点间的部分称为弧,圆上一个点所对应的弧称为圆心角。
8.弦:圆上连接两个点的线段。
9.切线:与圆只有一个公共点的直线。
三、图形的计算1.周长:图形的边长总和,矩形、正方形和长方形的周长可以通过边长相加得到。
2.面积:图形所占的二维空间大小,矩形、正方形和长方形的面积可以通过底边乘以高得到。
3.体积:三维图形所占的空间大小。
4.高度:从底边到顶点的垂直距离。
5.半径:从圆心到圆上特定点的距离。
6.直径:穿过圆心的线段的长度,是半径的两倍。
四、相关定理和公式1.垂直角定理:如果两条直线相交,形成的四个角中,两个互为补角。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几何基本概念
1、平行线
①同位角相等,两条直线平行
②内错角相等,两条直线平行
③同旁内角互补,两条直线平行
④两条直线平行,同位角相等
⑤两条直线平行,内错角相等
⑥两条直线平行,同旁内角互补
2、三角形全等
①如果两个三角形的三边分别对应相等,那么这两个三角形全等。
(S.S.S)
②如果两个三角形由两边及其夹角分别对应相等,那么这两个三角形全等。
(S.A.S)
③如果两个三角形的两个角及其夹边分别对应相等,那么这两个三角形全等。
(A.S.A)
④如果两个三角形的两个角及其中的一角的对边分别对应相等,那么这两个三角形全等。
(A.A.S)
⑤如果两个直角三角形的斜边及一条直角边分别对应相等,那么这两个三角形全等。
(H.L)
⑥全等三角形的对应边、对应角分别相等。
3、三角形性质
①内角和等于
180,外角和
360
②三角形的外角等于和它不相邻的两个内角和
③直角三角形两锐角互余
④重心:三角形三条中线的交点,分中线的比为2:1
⑤垂心:三角形三边上高的交点
⑥内心:三角形三条角平分线的交点,可作三角形内切圆
⑦外心:三角形三边中垂线的交点,可作三角形外接圆
⑧直角三角形斜边上的中线等于斜边的一半
4、等腰三角形
①如果一个三角形有两个角相等,那么这两个角所对的边也相等。
(等角对等边)
②等腰三角形的两个底角相等。
(等边对等角)
③等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。
(等腰三角形的三线合一)
5、角平分线
①角平分线上的点到这个角的两边的距离相等。
②到一个角两边距离相等的点在这个角的平分线上。
6、垂直平分线
①线段垂直平分线上的点到这条线段的两个端点的距离相等。
②到一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上。
7、中位线
①连接三角形两边中点的线段,平行于第三边,并且等于第三边的一半。
②连接梯形两腰中点的线段,平行于两底边,并且等于两底和的一半。
8、多边形的性质
①n边形内角和()
-
n,外角和
2⨯
180
360
9、平行四边形
①一组对边平行且相等的四边形是平行四边形
②两组对边分别相等的四边形是平行四边形
③两组对角线分别相等的四边形是平行四边形
④对角线互相平分的四边形是平行四边形
10、矩形、菱形、正方形
①矩形的四个角都是直角,对角线相等。
②菱形的四条边相等,对角线互相垂直,并且每一条对角线平分一组对角。
③有三个角是直角的四边形是矩形
④四条边相等的四边形是菱形
⑤正方形的四个角都是直角,四条边都相等。
正方形两条对角线相等,且互相垂直平分,每一条对角线平分一组对角。
⑥有一个角是直角的菱形是正方形,有一组邻边相等的矩形是正方形。
11、等腰梯形的性质
①同一条底边上的两个内角相等②两条对角线相等
12、圆的性质
①经过切点垂直于过切点的半径的直线是圆的切线;经过切点垂直于切线的直线必经过圆心;。
②从圆外一点到圆的两条切线的长相等,那点与圆心的连线平分切线的夹角。
③圆与直线位置关系:相交、相切、相离;圆与圆的位置关系:外离、内含、外切、内切、相交。
④一个三角形有唯一确定的外接圆和内切圆。
外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等。
⑤内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。
13、相似三角形
①平行于三角形一边的直线截其他两边所在的直线,截得的三角形与原三角形相似。
②如果一个三角形的两个角与另一个三角形的两个角对应相等, 那么这两个三角形相似。
(AA')
③如果两个三角形的两组对应边的比相等,并且相应的夹角相等, 那么这两个三角形相似(SAS)
④如果两个三角形的三组对应边的比相等,那么这两个三角形相似(SSS)。