高考数学专题14 数列中的最值问题

合集下载

高考数学压轴数列的最值题型分类专题

高考数学压轴数列的最值题型分类专题

高考数学压轴数列的最值题型分类专题题型一、求数列n a 的最大项、最小项求解数列的最大项最小项通常采用 ①利用均值不等式求最值②解不等式组 1+≥n n a a ,1-≥n n a a ③构造函数利用单调性法④根据数列项的正负与单调性求数列的最大最小项.1. 基本不等式法例1.已知数列{}n a 的通项公式为1562+=n na n ,,求{}的最大值n a2.解不等式组例1.已知数列{}n a 的通项公式为1562+=n na n ,,求{}的最大值n a变式练习:(1) 已知数列}{n a 中,)2(8.0+=n a n n ,求数列的最大项.(2)已知等差数列{}n b 的前n 项和为n T ,且15,1054≤≥T T ,求的最大值4a(3)已知数列}{n a 中,)2(8.0+=n a n n ,求数列的最大项.(4)已知数列}{n a 的通项公式nn n n a 11)1(10+=,试求出该数列的最大项.3.构造函数利用单调性 (若1n n a a +<,则此数列为递增数列,若1n n a a +>,则其为递减数列,若1n n a a +=,则其为常数列)例 1 数列}{n a 中,20172016--=n n a n ,则该数列中的最大项与最小项分别是__________例2. 设函数)1x 0(log log )x (f 2x x 2<<-=数列{}n a 满足),2,1n (,n 2)2(f na==(1)求n a 。

(2)求{}n a 的最小项变式练习: (1)已知)N n (98n 97n a n*∈--=则在数列{}n a 的前30项中最大项和最小项分别是_____。

(2) 已知)N n (n131211S n *∈++++= ,记1n 1n 2n S S a ++-=,求数列{}n a 的最小值。

(3) 已知数列)N n (156n n a 2n*∈+=,则该数列中的最大项是第几项?(4) 已知无穷数列{}n a 的通项公式nn n 10)1n (9a +=,试判断此数列是否有最大项,若有,求出第几项最大,若没有,说明理由。

等差数列的前n项和的最值及应用

等差数列的前n项和的最值及应用
索引
法二 同法一,求出公差d=-2. 所以an=25+(n-1)×(-2)=-2n+27. 因为a1=25>0, 又由因aann为=+1n=-∈-2Nn2*+(,2n7+≥10),+27≤0得nn≤ ≥11321212, . 所以当n=13时,Sn有最大值,为S13=169.
索引
法三 因为S8=S18,所以a9+a10+…+a18=0. 由等差数列的性质得a13+a14=0. 因为a1>0,所以d<0. 所以a13>0,a14<0.所以当n=13时,Sn有最大值. 由a13+a14=0,得a1+12d+a1+13d=0,又a1=25, 解得d=-2, 所以 S13=13×25+13×2 12×(-2)=169, 所以 Sn 的最大值为 169.
TUO ZHAN YAN SHEN FEN CENG JING LIAN HE XING SU YANG DA CHENG
一、基础达标
1.已知数列{an}满足an=26-2n,则使其前n项和Sn取最大值的n的值为( D )
A.11或12
B.12
C.13
D.12或13
解析 ∵an=26-2n,∴an-an-1=-2, ∴数列{an}为等差数列. 又 a1=24,d=-2, ∴Sn=24n+n(n2-1)×(-2)=-n2+25n=-n-2252+6425. ∵n∈N*,∴当 n=12 或 13 时,Sn 最大.
索引
3.做一做 《张邱建算经》卷上第22题为:今有女善织,日益功疾,且从第2天 起,每天比前一天多织相同量的布,若第1天织5尺布,现在一月(按30天 16
计)共织390尺布,则每天比前一天多织___2_9____尺布(不作近似计算). 解析 由题意知,该女每天的织布尺数构成等差数列{an},其中 a1=5,S30=390, 设其公差为 d,则 S30=30×5+30×2 29d=390,解得 d=1269.故该女子织布每天增 加1269尺.

数列中的最值问题探析

数列中的最值问题探析

解析:(1)数列{犪狀}为等差数列,犛狀 有最大值,若
犪7 犪6
<-1,则犪7犪+6犪6
<0,可得犱
<0,所以犪6
>0,犪7
+犪6 <0,犪7 <0,所以犪1+犪11=2犪6 >0,犛11 >0,所
以犪1 +犪12 =犪7 +犪6 <0,犛12 <0,故当犛狀 >0时,狀
的最大值为11,本题选 A.
列不等式的恒成立问题中,解答这类问题可仿照函数
单调递减数列,而当狀∈ [45,2020]时,数列{犪狀}也为
单调 递 减 数 列,于 是 可 结 合 函 数 犳(狓)=1 +
槡2020- 槡2019 的图像(此略),就可找到该数列的 狓- 槡2020
最大项是犪45,最小项是犪44,故选 C.
(2)因为数列{犪狀}是等差数列,且犪3+犪7=36,所 以犪4+犪6=36.因为犪4犪6=275,所以犪4,犪6 是一元二
{ 数列的最大项,依据不等式组 犪狀 ≤犪狀-1,(狀 ≥2)就 犪狀 ≤犪狀+1 可确定数 列 的 最 小 项;另 一 种 方 法 是 单 调 性 法,即 利 用函数的单调性或利用数列单调性来求出数列的最 大项或最小项.
例 1 (1) 已 知 数 列 {犪狀} 的 通 项 是 犪狀 =
狀- 槡2019,那么这个数列的前2020项中,最大项与 狀- 槡2020
次方程狋2 -36狋+275=0的二根,由狋2 -36狋+275=
0得(狋-25)(狋-11)=0,所以狋1 =25或狋2 =11.当犪4
=25,犪6
=11时,犱
犪6 -犪4 = 6-4
=112-25=-7,所
以犪狀
=犪4 + (狀-4)犱=-7狀+53,当犪狀 >0,犪狀+1 <0时,

2025年高考数学一轮复习-数列中的最值、范围及奇偶项问题-专项训练【含答案】

2025年高考数学一轮复习-数列中的最值、范围及奇偶项问题-专项训练【含答案】

2025年高考数学一轮复习-数列中的最值、范围及奇偶项问题-专项训练一、基本技能练1.已知等差数列{a n }与数列{b n }满足a 2=1,b 1=a 3≠0,且数列{a n ·b n }的前n 项和S n =(n -2)·2n +1+4,n ∈N *.(1)求数列{a n },{b n }的通项公式;(2)n 项和为T n ,若T n >20222023,求n 的最小值.2.已知等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列.(1)求数列{a n }的通项公式;(2)令b n =(-1)n -14n a n a n +1,求数列{b n }的前n 项和T n .3.已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.二、创新拓展练4.已知在数列{a n }中,a 1=12,a n +1=a n 2a n +3(n ∈N *).(1){a n }的通项公式;(2)已知数列{b n }满足b n =n (3n -1)2na n .①求数列{b n }的前n 项和T n ;②若不等式(-1)n λ<T n +n 2n 对一切n ∈N *恒成立,求实数λ的取值范围.参考答案与解析一、基本技能练1.解(1)a 1·b 1=S 1=0,且b 1≠0,所以a 1=0,又a 2=1,所以{a n }的公差为1,所以a n =n -1(n ∈N *).n ≥2时,a n ·b n =S n -S n -1=(n -1)×2n ,此时b n =2n (n ≥2),又b 1=a 3=2,满足b n =2n ,所以b n =2n (n ∈N *).(2)b n a b n ·a b n +1=2n (2n -1)(2n +1-1)=12n -1-12n +1-1,所以T n …1-12n +1-1>20222023,得2n +1-1>2023,所以n 的最小值为10.2.解(1)∵等差数列{a n }的公差为2,前n 项和为S n ,且S 1,S 2,S 4成等比数列,∴S n =na 1+n (n -1),(2a 1+2)2=a 1(4a 1+12),解得a 1=1,∴a n =2n -1(n ∈N *).(2)由(1)可得b n =(-1)n -14n a n a n +1=(-1)n -当n 为偶数时,T n …1-12n +1=2n 2n +1;当n 为奇数时,T n …1+12n+1=2n+2 2n+1.∴T nn为偶数,n为奇数.3.解(1)设等比数列{a n}的公比为q,因为S3+a3,S5+a5,S4+a4成等差数列,所以S5+a5-S3-a3=S4+a4-S5-a5,即4a5=a3,于是q2=a5a3=14.又{a n}不是递减数列且a1=3 2,所以q=-1 2 .故等比数列{a n}的通项公式为a n=32×-1=(-1)n-1×32n(n∈N*).(2)由(1)得S n=1+12n,n为奇数,-12n,n为偶数.当n为奇数时,S n随n的增大而减小,所以1<S n≤S1=3 2,故0<S n-1S n≤S1-1S1=32-23=56.当n为偶数时,S n随n的增大而增大,所以34=S2≤S n<1,故0>S n-1S n≥S2-1S2=34-43=-712.综上,对于n∈N*,总有-712≤S n-1S n≤56.所以数列{T n}最大项的值为56,最小项的值为-712.二、创新拓展练4.(1)证明因为a 1=12,a n +1=a n 2a n +3(n ∈N *),所以1a n +1=3a n+2,所以1a n +1+1=又1a 1+1=3,3为首项,3为公比的等比数列,故1a n+1=3×3n -1=3n ,则a n =13n -1(n ∈N *).(2)解①由(1)知b n =n 2n ,所以T n =12+222+323+…+n 2n ,所以12T n =122+223+324+…+n -12n +n 2n +1,两式相减,得12T n =12+122+123+…+12n -n 2n +1=121n 1-12-n 2n +1=1-n +22n +1,所以T n =2-n +22n.②由①得(-1)n λ<2-n +22n +n 2n =2-22n ,设c n =2-22n ,则数列{c n }是递增数列.当n 为偶数时,λ<2-22n 恒成立,又c2=32,所以λ<32;当n为奇数时,-λ<2-22n恒成立,又c1=1,所以-λ<1,所以λ>-1.综上所述,λ1。

等差数列的最值问题

等差数列的最值问题
2009×2008
解析(1)设数列{ }的公差为d,则由2009 = 0得20091 +
= 0,
2
1
2009−

即1 + 1004 = 0,则 = −
1 ,所以1 + =
1 ,所以 = (1 +
1004
1004
2
2009−

) = ⋅
1 = 1 ⋅ (2009 − 2 ).因为1 < 0, ∈ ∗ ,所以当 = 1004或
由 S5=S12 得 5a1+10d=12a1+66d,
d=- a1<0.
8
1
- a1
n(n-1)
n(n-1)
1
则 Sn = na1 +
d = na1 +
· 8 = - a1(n2 - 17n) = -
16
2
2
17
n-
1
2 289
a1
2 +
a1,因为 a1>0,n∈N*,所以当 n=8 或 9 时,Sn 有最大值.
2
1004
2008
1005
= 1005时, 取得最小值,最小值为
1 .
2
1005−
1
1005−
2
(2)由(1)得 =
1 . 由 ≤ , 得
(2009 − ) ≤
1 .
1004
2008
1004
因为 1 < 0, 所以 2 − 2011 + 2010 ≤ 0, 即 ( − 1)( − 2010) ≤ 0 ,解得 1 ≤
≤ 2010 .故所求 的取值集合为 {|1 ≤ ≤ 2010, ∈ ∗ } .

高考数学复习等差数列的前n项和Sn的最值问题

高考数学复习等差数列的前n项和Sn的最值问题

10×9 15×14 解法 2 设公差为 d.因为 S10=S15,所以 10a1+ 2 d=15a1+ 2 d, nn-1 5 5 2 125 代入 a1=20,得 d=-3.所以 Sn=na1+ 2 d=-6n + 6 n= 12×11 5 2 -6(n -25n), 所以当 n=12 或 13 时, Sn 取得最大值为 12a1+ 2 5 ×-3=130.
S7<S8, 所以 S9<S8, 49+21d<56+28d, 7 即 解得-1<d<-8. 63+36d<56+28d,
即d
7 的取值范围为-1,-8 .
a11 5.在等差数列{an}中,a <-1,若它的前 n 项和 Sn 有最大值,则使 Sn 10 取得最小正数的 n=
1 3 - - q∈ . 2 2,2 7
8.在等差数列{an}中,已知 a1=20,前 n 项和为 Sn,且 S10=S15,求当 n 取何值时,Sn 取得最大值,并求出它的最大值.
答案:当 n=12 或 13 时,Sn 取得最大值为 130.
解法 1 因为 S10=S15,所以 S15-S10=0,即 a11+a12+a13+a14+a15=0, 也即 5a13=0,所以 a13=0,即 a1>a2>…>a12>a13=0>a14>a15>…, 13a1+a13 13×20+0 故当 n=12 或 13 时,Sn 取得最大值为 = = 2 2 130.
微专题47
等差数列的前n项和Sn的最 值问题
2 4 1.已知等差数列{an}:5,47,37,…,当 n=
7 或8
时,数列
{an}的前 n 项和 Sn 最大?

数列和最值问题

数列和最值问题

数列和最值问题
数列和最值问题是一个在数学中非常常见的问题类型,涉及到对一系列数字(数列)进行求和,并找到这些和的最大值或最小值。

这类问题在数学、物理、工程和经济等多个领域都有应用。

数列和最值问题通常可以通过以下几种方法来解决:
1. 直接计算:对于一些简单的数列,可以直接计算出数列的和,然后找到其中的最大值或最小值。

2. 数学归纳法:对于一些复杂的数列,可以使用数学归纳法来证明数列和的性质,从而找到最值。

3. 函数性质:将数列和表示为函数,然后利用函数的性质(如单调性、凹凸性等)来找到最值。

4. 优化算法:对于大规模的数列和最值问题,可以使用优化算法(如梯度下降、遗传算法等)来找到最优解。

在实际应用中,需要根据具体的问题场景和数据规模选择合适的方法来解决数列和最值问题。

数列中的最大最小项问题20题解析

数列中的最大最小项问题20题解析

数列中的最大最小项问题20题一、单选题1.(2022·江西赣州·高三期中(理))设公比为q 的等比数列{}n a 的前n 项和为n S ,前n 项积为n T ,且11a >,202120221a a >,20212022101a a -<-,则下列结论正确的是()A .1q >B .2021202210S S ->C .2022T 是数列{}n T 中的最大值D .数列{}n T 无最大值2.(2022·贵州·黔西南州义龙蓝天学校高三阶段练习(理))设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,且满足条件11a >,202020211a a >,()()20202021110a a --<,则下列选项错误的是()A .01q <<B .202020211S S +>C .2020T 是数列{}n T 中的最大项D .40411T >【答案】D【分析】根据题意,分析可得20201a >,20211a <,从而有11a >,01q <<,则等比数列{}n a 为正项的递减数列.再结合等比数列的性质逐一判断即可.【详解】等比数列{}n a 的公比为q ,若202020211a a >,则2019202024039111()()()()1a q a q a q =>,由11a >,可得0q >,则数列{}n a 各项均为正值,若20202021(1)(1)0a a --<,当1q ≥时,由11a >则1n a >恒成立,显然不适合,故01q <<,且20201a >,202101a <<,故A 正确;因为202101a <<,所以20202020202120211S S a S +>+=,故B 正确;根据122020202110a a a a >>⋯>>>>⋯>,可知2020T 是数列{}n T 中的最大项,故C 正确;由等比数列的性质可得21404124040202020222021a a a a a a a ==⋯==,202101a <<所以4041404112404120211T a a a a =⋯=<,故D 错误.故选:D .3.(2022·安徽·蒙城县第六中学高三开学考试(文))设数列{}m A :1a ,2a ,…,()2m a m ≥,若存在公比为q 的等比数列{}1m B +:1b ,2b ,…,1m b +,使得1k k k b a b +<<,其中1k =,2,…,m ,则称数列{}1m B +为数列{}m A 的“等比分割数列”.若数列{}10A 的通项公式为()21,2,,10n n a n == ,其“等比分割数列”{}11B 的首项为1,则数列{}11B 的公比q 的取值范围是()A .()9102,2B .()10112,2C .()1092,2D .()11102,24.(2021·北京房山·高三开学考试)已知等比数列{}n a 中,1n n a q +=,那么“01q <<”是“1a 为数列{}n a 的最大项”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】利用充分条件和必要条件的定义,结合等比数列的性质判断即可【详解】当01q <<时,可知1n n a q +=递减,所以1a 为数列{}n a 的最大项,当1a 为数列{}n a 的最大项时,则12a a >,所以23q q >,解得1q <且0q ≠,所以“01q <<”是“1a 为数列{}n a 的最大项”的充分而不必要条件,故选:A二、多选题5.(2022·江苏盐城·模拟预测)设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件11a >,201920201a a ⋅>,20192020101a a -<-,下列结论正确的是()A .20192020S S <B .2019202110a a ⋅-<C .2020T 是数列{}n T 中的最大值D .若1n T >,则n 最大为4038.【答案】ABD【分析】先根据题意可确定01q <<,根据20200a >可判断A ;根据等比数列的性质结合6.(2020·湖南·华容县教育科学研究室高一期末)等比数列{}n a 的公比为q ,其前n 项的积为n T ,并且满足条件11a >,9910010a a ->,99100101a a -<-.给出下列结论其中正确的结论是()A .01q <<B .10010110a a -<C .100T 的值是n T 中最大的D .T 99的值是Tn 中最大的7.(2023·全国·高三专题练习)已知等比数列{}n a 满足10a >,公比1q >,且1220211a a a ⋅⋅⋅<,1220221a a a ⋅⋅⋅>,则()A .20211a >B .当2021n =时,12n a a a ⋅⋅⋅最小C .当1011n =时,12n a a a ⋅⋅⋅最小D .存在1011n <,使得12n n n a a a ++=8.(2023·全国·高三专题练习)设{}n a 是各项为正数的等比数列,q 是其公比,n T 是其前n 项的积,且67T T <,789T T T =>,则下列结论正确的是()A .1q >B .81a=C .106T T >D .7T 与8T 均为nT 的最大值【答案】BD【分析】结合等比数列的性质依次分析选项即可.【详解】由题意知,9.(2022·山东·邹平市第一中学高三期中)已知等差数列{}n a ,前n 项和为202312022,0,1n a S a a ><-,则下列结论正确的是()A .20220a >B .n S 的最大值为2023S C .n a 的最小值为2022a D .40440S <10.(2022·浙江省常山县第一中学高二期中)公差为d 的等差数列{}n a 前n 项和为n S ,若1089S S S <<,则下列选项,正确的有()A .d >0B .0n a >时,n 的最大值为9C .n S 有最小值D .0n S >时,n 的最大值为1711.(2023·全国·高三专题练习)已知等差数列{}n a 的前n 项和为67,n S S S <,且78S S >,则()A .在数列{}n a 中,1a 最大B .在数列{}n a 中,3a 或4a 最大C .310S S =D .当8n ≥时,0n a <【答案】AD【分析】根据67S S <,且78S S >,可推出70a >,8780a a a <>,,故0d <,可判断AD 正确,B 错误,结合等差数列的性质可判断103770S S a -=>,判断C.【详解】{}n a 为等差数列,∵67S S <,且78S S >,∴7678787800S S a S S a a a -=>-=<>,,,即0d <,∴{an }是递减等差数列,1a 最大,当7n ≤时,0n a >,当8n ≥时,0n a <,故AD 正确,B 错误,10310987654770S S a a a a a a a a ++++=++-=>,则103S S ≠,故C 错误,故选:AD .12.(2022·河北·石家庄二中高二期末)等差数列{}n a 中,6778,S S S S <>,则下列命题中为真命题的是()A .公差0d <B .96S S <C .7a 是各项中最大的项D .7S 是n S 中最大的值【答案】ABD【分析】由6778,S S S S <>得:780,0a a ><,进而再等差数列的性质逐个判断即可【详解】由6778,S S S S <>得:780,0a a ><,所以870d a a =-<,且各项中最大的项为1a ,故A 正确,C 错误;96987830S S a a a a -=++=<,所以96S S <,故B 正确;因为780,0a a ><,等差数列{}n a 递减,所以7S 最大,故D 正确;故选:ABD13.(2022·辽宁·沈阳二中高二阶段练习)已知数列{}n a 为等差数列,若981a a <-,且数列{}n a 的前n 项和n S 有最大值,则下列结论正确的是()A .{}n a 中的最大值为8aB .n S 的最大值为8SC .170S >D .160S <14.(2022·黑龙江·哈九中高二期末)设等差数列{}n a 的前n 项和为n S ,公差为d ,已知312a =,120S >,70a <,则()A .60a >B .43d -<<-C .0n S <时,n 的最小值为13D .数列n n S a ⎧⎫⎨⎬⎩⎭中最小项为第7项15.(2021·全国·高二专题练习)已知无穷等差数列{}n a 的前n 项和为n S ,10a >,0d <,则()A .数列{}n a 单调递减B .数列{}n a 没有最小值C .数列{}n S 单调递减D .数列{}n S 有最大值16.(2020·江苏省句容高级中学高二阶段练习)已知等差数列{}n a 的首项是正数,记n S 为数列的前n 项和,若1232020a a a S ++=,则下列结论中正确的有()A .0d <B .20230S =C .{}n a 是先增后减数列D .10111012S S =且为n S 的最大值三、填空题17.(2021·全国·高二课时练习)已知{an }是等差数列,d 为其公差,Sn 是其前n 项和,若只有S 4是{Sn }中的最小项,则可得出的结论中正确的是________.①d >0②a 4<0③a 5>0④S 7<0⑤S 8>018.(2020·广东·大沥高中模拟预测)已知等差数列{}n a 的通项公式为31()n a tn t Z =-∈,当且仅当10n =时,数列{}n a 的前n 项和n S 最大.则当10k S =-时,k =___________.19.(2020·湖北·武汉市钢城第四中学高一阶段练习)等差数列{}n a 前n 项和为n S ,若180S >,190S <,当n S 取得最大值时,n 的值为_______.20.(2020·江西·宜丰中学高二开学考试(文))等差数列{}n a 中,设n S 为其前n 项和,且10a >,311S S =,则当n 为______时,n S 最大.【答案】7【分析】方法一:因为公差不为零的等差数列的前n 项和n S 是关于n 的二次函数,由311S S =可知对称轴为7n =,又开口向下,即可得出结果.方法二:由311S S =,10a >可得780+=a a ,0d <,则70a >,80a <,即可得出结果.【详解】解法一:由于()2f x ax bx =+是关于x 的二次函数,且(),n n S 在二次函数()f x 的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.已知等差数列 的前 项和是 ,若
,
,则 最大值是
A.
B.
C.
D.
【答案】C
【解析】由等差数列的前 n 项和的公式可得:


,故在数列 中,当
时,
,当
,所
以 时, 达到最大值.
2.若等差数列 的前 项和
,则
的最小值为
A.
B.8
C.6
D.7
【答案】D
3.已知正项等比数列 的前 项和为 ,且
,则
为 A. 10 B. 15 【答案】C
C. 20
D. 25
【解析】由题意可得:
,由
可得
由等比数列的性质可得: 可得:
成等比数列,则
的最小值
, ,综上
,


当且仅当
时等号成立.综上可得,则
的最小值为 20.
4.已知数列 的通项公式为
最大值为 A.4 【答案】C
B.5
C.6
【解析】
,记数列 的前 项和为,则使 D.8
成立的 的 ,
,
,…,所以使
成立的 的最大值为 ,故选 C.
5.设数列 为等差数列, 为其前 项和,若
,
,
,则 的最大值

A. 3 B. 4 C.
D.
【答案】B




∵S4≥10,S5≤15,∴a1+a2+a3+a4≥10,a1+a2+a3+a4+a5≤15,∴a5≤5,a3≤3,a1+4d≤5,a1+2d≤3,
两式相加得:2(a1+3d)≤8,∴a4≤4,故选 B.
6. 等比数列 的前 项和
( 为常数),若
恒成立,则实数
的最大值是 A. 3 B. 4 【答案】C
C. 5
D. 6
7. 正项等比数列{an}中,存在两项 am,a(n m,n
的最小值为 A. 5 B. 6 【答案】B
C. 7
D. 8
)使得 aman=16a12,且 a7=a6+2a5,则 +


【解析】∵
,∴

,又
,∴
,
,∴
,即
,
,当且仅当
,即
时等号成立,∴
的最小值为 6,故选 B.
8. 等差数列 的公差为 ,关于 的不等式
的解集为 ,则使数列
的前 项和 最大的正整数 的值是 A. B. C. D. 【答案】B
9. 已知等差数列 的公差
,且 , , 成等比数列,若
, 为数列 的
前 项和,则
的最小值为
A. 4
B.3
【答案】A
【解析】由已知有


C. ,所以有
D.2
,数列 通项
,


,当且仅当
,即
时等号成立.故选
A.
10. 已知三个数 ,
,
成等比数列,其倒数重新排列后为递增的等比数列 的


前三项,则能使不等式
成立的自然数 的最大值为
A.9 【答案】C
B.8
【解析】因为三个数
C.7
D.5
等比数列,所以
,倒数重
新排列后恰好为递增的等比数列 的前三项,为
,公比为 ,数列
是以 为首
项, 为公比的等比数列,则不等式
等价为
,整理,得
,故选 C.
11. 设等差数列 满足:
,公差
, 若当且仅当

A.
B.
【答案】A
时, 的前 项和 取得最大值,则首项 的取值范围
C.
D.
12. 设 数 列
首项 ,当 取最大值时,
,为
的前 项和,若


A. 4 【答案】D
B.2C. 6
D. 3
【解析】由题意得
,所以
当且仅当
时取等号,
故选 D. 二、填空题 13.将 10 个数 1,2,3,…,9,10 按任意顺序排列在一个圆圈上,设其中连续相邻的 3 数之和为 , 则 的最大值不小于__________. 【答案】18
14.已知 是等比数列,且
,
【答案】



,则 的最大值为__________. 】
,即 的最大值为 .
15.设等差数列 满足 __________. 【答案】-12 【解析】因为数列
,
,且
是等差数列,且
有最小值,则这个最小值为
,所以
,


是一元二次方程
,

,
的二根,由 ,当
,当
得 时,
时,
取得最小值,由
解得
,
时,
取得最小
值,此时 ,
,当 ,当
时,
时,
取得
最小值,由
解得
,
时,
取得最小值,此时
, 故答案为 .
16.设等差数列 的前 项和为 ,且

,数列 的前 项和为 ,若
最大值是__________. 【答案】2
( 是常数,
),
,

恒成立,则正整数 的
17.数列{an}是等差数列,数列{bn}满足 bn=anan+1an+2(n∈N*),设 Sn 为{bn}的前 n 项和.若
,则当 Sn 取得最大值时 n 的值等于_____.
【答案】
【解析】设 的公差为 ,由

,
,即
,所以


,从而可知
时,
,
,
,
,因为
,所以
中 最大,故答案为 16.
,
时,
,
,
,所以
,从而 ,故
,所以 ,故
18.已知等比数列 的首项为 ,公比为 ,前 项和为 ,则
的最大值与最小值
之和为__________. 【答案】
【解析】由等比数列前 n 项和公式可得
,令
,当 为奇数时,
单调递减,
,当 为偶数时,
单调递增,
,则
,即
,

,函数单调递减,则:
,最大值与最小值之和为
. 19.等差数列 满足
,则
的取值范围是________.
【答案】
.


三、解答题
20.已知数列 的各项为正数,其前 项和为 满足
,设
. (1)求证:数列 是等差数列,并求 的通项公式; (2)设数列 的前 项和为 ,求 的最大值.
(3)设数列 的通项公式为
,问: 是否存在正整数 t,使得
成等差数列?若存在,求出 t 和 m 的值;若不存在,请说明理由.


21.已知数列 是首项等于 且公比不为 1 的等比数列, 是它的前 项和,满足

(1)求数列 的通项公式;
(2)设

,求数列 的前 项和 的最值.
【解析】(1)
,
,
.
整理得
,解得

(舍去).


.
(2)
.
1)当 时,有
增的等差数列.

,得 .所以
数列
是以
为公差的等差数列,此数列是首项为负的递 . 的没有最大值.
2)当
时,有
递减的等差数列.
,得 ,
,数列 是以
为公差的等差数列,此数列是首项为正的
. 的没有最小值.

相关文档
最新文档