三阶幻方的构造方法(互联网+)
三阶幻方中的规律及证明

三阶幻方中的规律及证明三阶幻方是一个3×3的正方形网格,其中填入了1到9的数字,使得每行、每列和每条对角线上的数字之和都相等。
下面我们将探讨三阶幻方的规律及证明。
首先,我们可以观察到三阶幻方的特点是,中心数字始终为5,而其他数字则根据位置的不同而有所变化。
因此,我们可以将幻方表示为:```abcd5efgh```其中a、b、c、d、e、f、g、h分别代表1到9之间的数字,不重不漏。
根据幻方的定义,我们可以列出一系列等式:1.a+b+c=15(第一行之和)2.d+5+e=15(第二行之和)3.f+g+h=15(第三行之和)4.a+d+f=15(第一列之和)5.b+5+g=15(第二列之和)6.c+e+h=15(第三列之和)7.a+5+h=15(正对角线之和)8.c+5+f=15(反对角线之和)现在我们来推导幻方的规律。
首先,我们可以将式(2)、(4)、(7)和(8)分别改写为:2.d+e=104.a+f=107.a+h=108.c+f=10由于a、d、f、h是1到9之间的数字,且不重不漏,我们可以得出以下结论:1.a+d+f+h的值必须为固定的常数,即15-10=52.c+e的值也必须为固定的常数,即10。
因此,我们可以得出以下结论:1.第一行、第一列、两条对角线的和都必须为15、即a+b+c=d+5+e=f+g+h=a+d+f=b+5+h=c+e+g=a+5+h=c+5+f=152.第二行、第二列的和都必须为10。
即d+5+e=b+5+g=10。
基于以上推论,我们可以根据“顺序原则”来构建三阶幻方。
顺序原则即我们将数字按照顺序依次填入幻方中,从1开始到9结束。
根据顺序原则,我们可以完成以下构造过程:```276951438```其中,每行、每列和每条对角线的和都为15,满足幻方的定义。
接下来,我们来证明三阶幻方的唯一性。
假设存在两个不同的三阶幻方,我们将它们表示为:```abcxyzd5e和m5nfghopq```根据幻方的定义,我们可以列出以下等式:1.a+b+c=x+y+z2.d+5+e=m+5+n3.f+g+h=o+p+q4.a+d+f=x+m+o5.b+5+g=y+5+p6.c+e+h=z+n+q7.a+5+h=x+5+q8.c+5+f=z+5+o将等式1~6代入等式7和等式8中,我们可以得到以下等式:9.x+m+o=x+5+q10.z+n+q=z+5+o由于等式9和等式10的左侧相等,右侧也必须相等。
三阶幻方口诀与规律详解

1、三阶幻方是最简单的幻方,又叫九宫格,是由1,2,3,4,5,6,7,8,9九个数字组成的一个三行三列的矩阵(如右图示),其对角线、横行、纵向的和都为15,称这个最简单的幻方的幻和为15。
中心数为5。
2、一居上行正中央,依次斜填切莫忘,上出框界往下写,右出框时左边放,重复便在下格填,出角重复一个样。
3、居上行正中央——数字1 放在首行最中间的格子中,依次向右上方填入2、3、4…;4、依次斜填切莫忘——向右上角斜行,依次填入数字;5、上出框界往下写——如果右上方向出了上边界,就以出框后的虚拟方格位置为基准,将数字竖直降落至底行对应的格子中;6、右出框时左边放——同上,向右出了边界,就以出框后的虚拟方格位置为基准,将数字平移至最左列对应的格子中;7、重复便在下格填——如果数字{N}右上的格子已被其它数字占领,就将{N +1}填写在{N}下面的格子中;8、出角重复一个样——如果朝右上角出界,和“重复”的情况做同样处理,、也可将所填数在幻方中所对应的数填在幻方中对应的位置。
扩展资料:1、相传,大禹治水时,洛水中出现了一个“神龟”背上有美妙的图案,史称“洛书”,用现在的数字翻译出来,就是三阶幻方。
2、3阶幻方不止一种填法,只要间1放于四个变格的正中,向幻方外侧依次斜填其余数字;若出边,将数字另一侧;若目标格已有数字或出角,回一步填写数字,再继续按一开始的相同方向依次斜填其余数字。
3、将组成幻方的三组数(如:1-9组成的幻方为【1、2、3】【4、5、6】【7、8、9】这三组)乘以A(A≠0),再分别加X、Y、Z(X、Y、Z为等差的数),幻方亦成立。
也就是3个一组的数,组与组等差,每组数与数等差,这样的数能构成3阶幻方。
4、幻方的每个数乘以A(A≠0),再加X,幻方亦成立。
例如把1-9构成的3阶幻方的每个数乘以3,再加3:27 6 2112 18 2415 30 9幻和值=54。
一起来学一学|三阶幻方的填写技巧及其扩展应用

一起来学一学|三阶幻方的填写技巧及其扩展应用三阶幻方是最简单的幻方,又叫九宫格,是由1,2,3,4,5,6,7,8,9九个数字组成的一个三行三列的矩阵,其对角线、横行、纵向的和都为15,称这个最简单的幻方的幻和为15。
中心数为5。
例题一用1,2,3,4,5,6,7,8,9填入三阶幻方中,使横竖斜的和相等。
例题一解析(1)1,2,3,4,5,6,7,8,9为公差是1的等差数列,求和:1+2+3+4+......+9=(1+9)×9÷2=45等差数列和=(首项+末项)×项数÷2(2)求出横竖斜的和为:45÷3=15(3)求出中间数为:15÷3=5例题一(4)列出3个数相加和为15的算式1+5+9 1+6+82+5+82+4+93+5+7 2+6+74+5+6 3+4+8例题一(5)◉在横竖斜中都会共用3次,看上面算式出现3次的有2,4,6,8由2+5+8,4+5+6两个算式可以看出2和8、4和6应分列对角。
例题一(6)按横竖斜的和为15将剩余空填满例题一例题二用1, 4, 7, 10, 13, 16, 19, 22, 25填入9宫格,是横竖斜的和相等。
例题二解析(1)1, 4, 7 ,10, 13, 16 ,19 ,22, 25 为公差是3的等差数列;例一中的1,2,3,4,5,6,7,8,9 为公差是1的等差数列。
1 2 3 4 5 6 7 8 91 4 7 10 13 16 19 22 25对照前一个三阶幻方数字位置可以直接填出例题二这里来前面的方法验证一下:1+4+7+……+25=26×9÷2=117可求出横竖斜的和117÷3=39中间数为39÷3=13例题二列出3个数相加和为45的算式1+13+25 1+16+224+13+224+16+197+13+19 4+10+2510+13+16 7+10+22得出4个角的数分别为4,10,16,22按规律即可填写完整例题三将如图的三阶幻方填写完整。
数阶幻方的编排方法

数阶幻方的编排方法什么是数阶幻方?数阶幻方是一种古老的数学问题,其中的数字被排列在一个正方形的矩阵中,并且每一行、每一列以及对角线的所有数字之和都相等。
幻方有很多阶数,比如3阶幻方、4阶幻方、5阶幻方,以此类推。
在本文中,我将探讨一些数阶幻方的编排方法。
3阶幻方的编排方法:最简单的3阶幻方可以通过填充1到9之间的数字来实现。
可以使用简单的试错方法,将数字填入3x3矩阵中,并检查每一行、每一列以及对角线的和是否相等。
下面是一种可能的解决方案:```816357492```上面的解决方案是通过不断尝试和调整数字的位置来得到的。
当然,3阶幻方还有其他可能的编排方法,但这是最常见的一种。
4阶幻方的编排方法:4阶幻方相对更加复杂一些,因为需要填充16个数字。
简单的试错方法通常不再适用,需要使用一些更加高级的算法来解决问题。
一种解决4阶幻方问题的方法是使用“奇偶对角线法”。
这种方法涉及到将数字分成两组:奇数和偶数。
首先,将1放置在矩阵的中心,并将2放置在1的上方。
然后,将3放置在2的右方,以此类推,直到填满了一个对角线。
此时,将奇数组的数字放置在偶数组的对角线上,并反之亦然。
最后,将两组数字各自在外侧的对角线上交换位置。
下面是一种可能的解决方案:```11415412679810115133216```需要注意的是,这种方法只是其中一种可能的4阶幻方编排方法,并且可能有多个解决方案。
其他数阶幻方的编排方法:对于更高阶的幻方,编排方法会更加复杂。
通常,需要使用更加高级的算法和数学技巧来解决问题。
对于5阶幻方,可以使用“差位赋值法”来填充数字。
该方法涉及到将数字从1到25分别放在矩阵中不同的位置上,使得每一行、每一列以及对角线的和都相等。
对于6阶幻方,目前还没有找到一种通用的解决方法。
6阶幻方问题一直以来都是数学家们的挑战,至今尚未找到完整的编排方法。
总结:数阶幻方的编排方法各不相同,对于较低阶的幻方,可以使用试错法和一些基本的编排方法来得到解决。
构造三阶幻方的方法

构造三阶幻方的方法
嘿,朋友们!今天咱来聊聊构造三阶幻方的方法。
首先,构造三阶幻方有特定的步骤哦。
先把数字 1 放在第一行中间位置,然后按照斜上方依次填入数字,若遇到边界,就把下一个数字填到相对的那一侧。
就好像走迷宫一样,可有意思啦!但要注意哦,填到已有数字的位置时,就要填到它下面啦。
这步骤简单吧?嘿嘿,是不是觉得挺有趣的。
然后说说这过程中的安全性和稳定性。
就像建房子,每一块砖都要放对位置,才能稳稳当当。
构造三阶幻方也是这样,只要按照规则来,就不会出错,安安稳稳地就把幻方给造出来啦,多靠谱呀!
三阶幻方的应用场景那可多啦!比如在数学游戏中,它能带来很多乐趣,让我们玩得不亦乐乎。
它的优势也很明显呀,能锻炼我们的思维能力,就像给大脑做了一场健身操!
我给大家举个实际案例吧。
在一次数学竞赛中,有个题目就是关于三阶幻方的,那些掌握了构造方法的同学,那可真是如鱼得水呀,轻松就解决了问题,看到他们得意的样子,就知道效果有多好啦!
所以呀,构造三阶幻方真的是个超棒的数学技巧,它既能带来乐趣,又能提升我们的能力,为啥不赶紧学起来呢?。
三阶幻方的10种解法

三阶幻方的10种解法《三阶幻方的10种解法》三阶幻方是一种古老的数学游戏,它由9个单元组成,每个单元上都有一个1-9的数字,要求每一行、每一列和每一个正方形中的数字都是不同的,而且每行、每列和每个正方形的数字之和都是相同的。
三阶幻方有10种解法,它们分别是:1. 旋转法:把整个幻方旋转180度,把每一行的数字按顺序排列,把每一列的数字调换位置,把每一个正方形的数字按照某种规律排列,从而达到目的。
2. 调换法:把每一行的数字按顺序排列,把每一列的数字调换位置,把每一个正方形的数字按照某种规律排列,从而达到目的。
3. 交换法:把每一行的数字按顺序排列,把每一列的数字进行交换,把每一个正方形的数字按照某种规律排列,从而达到目的。
4. 排列法:把每一行的数字按照某种规律排列,把每一列的数字按照某种规律排列,把每一个正方形的数字按照某种规律排列,从而达到目的。
5. 对称法:把每一行的数字按照某种规律排列,把每一列的数字按照某种对称规律排列,把每一个正方形的数字按照某种规律排列,从而达到目的。
6. 尝试法:尝试把每一行的数字排列成某种规律,尝试把每一列的数字排列成某种规律,尝试把每一个正方形的数字排列成某种规律,从而达到目的。
7. 反转法:把每一行的数字反转,把每一列的数字反转,把每一个正方形的数字反转,从而达到目的。
8. 合并法:把每一行的数字合并,把每一列的数字合并,把每一个正方形的数字合并,从而达到目的。
9. 翻转法:把每一行的数字翻转,把每一列的数字翻转,把每一个正方形的数字翻转,从而达到目的。
10. 拼接法:把每一行的数字拼接,把每一列的数字拼接,把每一个正方形的数字拼接,从而达到目的。
三阶幻方的10种解法虽然不同,但都是为了达到同样的目的,即把9个单元上的数字按照某种规律排列,从而使每一行、每一列和每一个正方形的数字都是不同的,而且每行、每列和每个正方形的数字之和都是相同的。
这就是三阶幻方的10种解法。
三阶幻方的N种构造方法

三阶幻方的N种构造方法说起幻方,许多人见惯不怪了。
最简单的莫过于三阶幻方或者说四阶幻方,三阶幻方是由1到9这9个数填进3×3的九宫图中,使每行,每列和对角线的三个数之和相等(3阶,幻和为15)。
三阶幻方最早起源于我国,古代人们将三阶幻方称之为“河图”和“洛书”我国宋代数学家杨辉称之为“纵横图”。
好了,其他的不多说了,让我们直奔主题吧。
第一种:变形法将1~9数依顺序填入下框;2和6对调,4和6对调;将2、4、6、8向四个角外移。
这样就快速完成3阶幻方了。
第二种:楼梯法在第一行的中间填上1.,然后依次在“右上角”填上2(下一个数),再在2的“右上角”(相对的)填上3,依次类推。
当遇到“右上角”已经有数的时候,就填在原地的下一个格,再运用楼梯法继续填,知道填到最后一个数。
由于3的右上角已经有数了,所以4要填在3的下一个格。
再填5在4的右上角,就这样以此类推。
就这样就完成了。
还有,这种方法适用于所有的奇数幻方。
第三种:推理法①1~9个数填入九宫图,容易推出幻和为15,而用1~9个数有以下的算式组合。
1+5+9=152+5+8=153+5+7=154+5+6=152+6+7=152+5+8=152+4+9=154+3+8=158+1+6=15观察上面9条算式容易知道,5出现了4次,1、3、7、9出现了2次,2、4、6、8出现了3次。
再回来想想九宫格的位置特性,中间的格一定要满足4条算式(中间行,中间列,2对角线)成立,故中间应该填的是5;四个角的格也要各满足3条算式成立,故四个角的格应该填的是2、4、6、8。
(其实不用下面步骤都可以构造出来了,因为幻和为15,可以推算出。
)同理,1、3、7、9应该填在前行前列的中间。
这样的话,就很容易构造出3阶幻方。
所以得出的3阶幻方如下:第四种:推理法②前提条件:已知幻和=15,中间是5。
分析:三个数构成幻和为15的等式,这三个数必定是“3个奇数”或者“2个偶数和一个奇数”。
小学奥数之三阶幻方讲义

三阶幻方同学们:在33⨯(三行三列)的正方形方格中,既不重复又不遗漏地填上1—9这9个连续的自然数,使每行、每列、每条对角线上的三个自然数的和均相等,这样的图形叫做三阶幻方。
如果在44⨯(四行四列)的正方形方格中进行填数,就要不重复,不遗漏地在44⨯方格内填上16个连续自然数,且使每行、每列、每条对角线的四个自然数之和均相等,这样的图形叫四阶幻方。
一般地,在几×几(几行几列)的方格里,既不重复又不遗漏地填上几×几个连续自然数,(注意这几×几个连续自然数不一定非要从1开始),每个数占一个格,且每行、每列、每条对角线上的几个自然数和均相等,我们把这个相等的和叫做幻和,几叫做阶,这样排成的数的图形叫做几阶幻方。
(一)思路指导与解答例1. 用1~9这九个数编排一个三阶幻方。
ab c def g hi图1 图2分析:我们先用a 、b 、c 、d 、e 、f 、g 、h 、i 分别填入九个空格内以代表应填的数。
看图(2):(1)通过审题,我们知道幻和是多少才好进行填数。
同时可以看到图(2)中,e 是一个中间数,也是关键数。
因为它分别要与第二行、第二列以及两条对角线上的另外两个数进行求和运算,结果都等于幻和;其次是三阶幻方中四个角上的数:a 、c 、g 、i 它们各自都要参加一行,一列及一条对角线的求和运算。
如果e 以及四个角上的数被确定之后,其它的数字便可以根据幻和是多少填写出来了。
(2)求幻和:幻和=++++++++÷()1234567893=÷=45315(3)选择突破口,显然是e ,看图2。
因为:a e i b e h c e g d e f ++=++=++=++=15 所以:()()()()a e i b e h c e g d e f +++++++++++ =+++=1515151560也就是:()a b c d e f g h i e +++++++++⨯=360 又因为:a b c d e f g h i ++++++++=45 所以45360+⨯=e36045⨯=-e e =5也就是说,图1中的中心方格中应填5,请注意,这个数正好是1~9这九个数中正中间的数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三阶幻方的构造方法
洛阳市王城公园西门内屹立着一椭圆形棕色巨石,那就是河图洛书碑.
所谓洛书,指的是用1,2,3,4,5,6,7,8,9这九个数字,组成三行三列的方阵.它的每行每列及两条对角线上的三个数字的和都等于15.古时候称九宫图 ,数学上称为三阶幻方.这一问题有许多解法.这里介绍七种解法.
一 凑
这个问题介绍给小孩子们,他们会用九张纸片,分别写上九个数字(或者用九张扑克牌)在桌(地)面上摆出来答案.此法是"凑"出来的.
二 转
第一步把九个数字摆成图一.第二步让周围的八个数字绕着中心的数字依次转动一个位置,成图二,第三步将对角的数字进行对换,成图三.这个方法归结为"一排,二转,三对换".这个方法可以让孩子作游戏,也是有趣的.
987654321 698357214 4
923578
16
图一"排" 图二 "转" 图三 "对换"
三 杨辉法
我国古代数学家在"续古摘奇算法"中,总结洛书幻方的构造方法时写到:"九子排列,上下对易,左右相更,四维挺出"具体作法如图四――图七.
9
68
357
24
1
168357249 图四 九子排列 图五 上下对易 16
875
324
9
4
92357816 图六 左右相更 图七 四维挺出
四 罗伯法
[1] 中所举的罗伯法也可以用来作三阶幻方.罗伯法是这样讲的.
1居上行正中央,依次斜填且莫忘,上出框往下写,右出框时左边放.排重便在下格填,右上排重一个样.罗伯法排出的三阶幻方见图八.
294753618 7
84951
623
9
341596
72 图八 图九 图十
巴舍法
先画一个凸阶梯形,先填成图九,然后按"上移下,下移上,左移右,右移左"(作出的结果与杨辉法完全相同)进行调整成为图十.
五 行列交会法
首先将九个数字排成图十一,然后将中间行中间列不动,作为幻方的左右主对角线,如图十二,因每一个数都是一条左对角线与一条右对角线的交点.所以其它每一个数的行列位置按照:"左对角线与中间列的交点的行为行,右对角线与中间行的交点的列为列"的法则确定.作出的结果如图十三.
9876543
21
6
8524 图十一 图十二 6187532
94 98665
432
1x x x x x x x x x 图十三 图十四
六 数学解法
设图十四构成三阶幻方,列出方程组
⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧=++=++=++=++=++=++=++=++)8.(..........15)7..(..........
15)6..(..........15)5..(..........15)4..(..........15)3..(..........15)2..(..........15)1...(. (15753)
951063852
741987654
321x x x x x x x x x x x x x x x x x x x x x x x x 由(7)+(8)+(2)=(4)+(6)+53x 知453305=+x 得55=x
由(1)+(2)得5.....21551542=-+=+x x x x x 代入
得)9.....(220142x x x -=+
若11=x 则1842=+x x 矛盾 所以11≠x
若31=x 则1442=+x x 则只有8,642==x x 或或6842==x x 或只考虑其中一种 以6,321==x x 代入得63=x 矛盾 所以,31≠x
令21=x 代入(9)得1642=+x x 则只有9,742==x x 或 或7,942==x x 或 不妨取7,942==x x 则.
以4)19,2321===x x x 得代入(
以6)47,2321===x x x 得代入(
以8)75,2951===x x x 得代入(
以1)55,9852===x x x 得代入(
以3)15,7654===x x x 得代入(
从而得到三阶幻方的解.
七 奇偶分析法
在"六"中得到55=x 以后,将其代入(2),(5),(7),(8)得到:
⎪⎪⎩⎪⎪⎨⎧=+=+=+=+)13.........(
10)12.........(10)11.........(10)10.........(107391
8264x x x x x x x x 由以上四个方程可以看出73918264,,,x x x x x x x x 与与与与的奇偶性相同,又幻方交换一三两行后仍然是幻方,交换一三两列后仍然是幻方,所以四个角的奇偶性是相同的.今断言,四个角上的数字不能是奇
数,如果四个角上的数字是奇数,那么,,8264x x x x
只能是偶数于是15321≠=+奇+偶+奇 +x x x 矛盾.所以7391.,.x x x x
只能是偶数.由(12),(13)可知,而且只有2+8,4+6,不妨取6.4,8.,27391==x x x x 则 取= 则=随后便可确定,.,8264x x x x 的值.
参考材料:
[1]张君达 《小学数学奥林匹克数学专题讲座》 北京师范学院出版社 1987年北京版 第24页
中师教育研究 1995年第二期。