最新八年级数学上册知识树
人教版初二上学期数学知识点归纳

人教版初二上学期数学知识点归纳人教版初二上学期的数学课程内容丰富多彩,涵盖了代数、几何和统计等多个领域。
以下是对这一学期数学知识点的归纳总结:首先,我们学习了实数的概念,包括有理数和无理数。
实数是数学中最基本的数系之一,它包括了所有的有理数和无理数。
有理数可以表示为两个整数的比,而无理数则不能表示为这种形式,例如圆周率π和黄金分割比φ。
接着,我们深入探讨了代数式。
代数式是由数字、字母和运算符组成的数学表达式。
我们学习了如何对代数式进行加减乘除等基本运算,以及如何合并同类项和简化表达式。
在几何部分,我们首先复习了线段、射线和直线的概念,以及它们之间的关系。
然后,我们学习了角的分类,包括锐角、直角、钝角和平角。
此外,我们还探讨了平行线的性质,包括同位角、内错角和同旁内角。
统计学方面,我们学习了数据的收集、整理和分析。
我们了解了如何使用图表来表示数据,例如条形图、折线图和饼图。
我们还学习了如何计算平均数、中位数和众数,这些统计量可以帮助我们更好地理解数据的分布情况。
此外,我们还学习了多项式的概念。
多项式是由若干个单项式相加或相减组成的代数表达式。
我们学习了如何对多项式进行因式分解,以及如何使用多项式来解决实际问题。
在解决实际问题方面,我们学习了如何应用数学知识来解决生活中的各种问题。
例如,我们学习了如何使用代数方程来解决行程问题、工程问题和增长率问题。
最后,我们还学习了一些数学思想和方法,如转化思想、数形结合思想和分类讨论思想。
这些思想和方法不仅在数学学习中非常重要,而且在解决其他学科问题时也非常有用。
通过这一学期的学习,我们不仅掌握了丰富的数学知识,而且提高了解决问题的能力。
这些知识将为我们今后的学习和生活打下坚实的基础。
八上数学知识点总结初中

八上数学知识点总结初中一、实数1. 有理数与无理数:理解有理数可以表示为两个整数的比,无理数则不能表示为这种形式。
2. 实数的运算:掌握加、减、乘、除等基本运算规则,了解分配律、结合律和交换律。
3. 绝对值:理解绝对值的概念,即一个数距离0的距离,掌握绝对值的计算方法。
4. 估算:学会对无理数进行近似计算,使用四舍五入法进行估算。
二、代数式1. 单项式与多项式:理解单项式是由数字和字母相乘组成的,多项式则是单项式的和。
2. 同类项:识别并合并同类项,即具有相同字母和相同指数的项。
3. 代数式的加减:掌握代数式加减的运算规则,注意去括号和合并同类项。
4. 代数式的乘除:理解单项式与多项式相乘的方法,以及多项式除以单项式的运算过程。
三、方程与不等式1. 一元一次方程:解一元一次方程,掌握移项、合并同类项、系数化为1的方法。
2. 二元一次方程组:了解代入法和消元法解二元一次方程组。
3. 不等式的概念:理解不等式的含义,掌握不等式的表示方法。
4. 一元一次不等式:解一元一次不等式,注意在解集表示中使用大于、小于符号。
5. 一元一次不等式组:解一元一次不等式组,学会找到不等式组的解集。
四、几何1. 平行线与角:理解平行线的性质,掌握同位角、内错角和同旁内角的概念。
2. 三角形的基本概念:了解三角形的分类,包括等边、等腰和直角三角形。
3. 三角形的性质:掌握三角形的内角和定理,了解三角形的中位线定理。
4. 四边形:学习矩形、平行四边形、菱形和正方形的性质和判定方法。
5. 圆的基本性质:掌握圆的基本概念,包括圆心、半径、直径、弦、弧等。
6. 圆的性质:理解圆周角定理,掌握切线的性质和判定。
五、统计与概率1. 统计的基本概念:了解数据的收集、整理、描述和分析过程。
2. 频数与频率:学会计算频数和频率,理解它们之间的关系。
3. 概率的初步认识:理解概率的定义,掌握概率的计算方法。
4. 简单事件的概率:计算简单事件发生的概率,了解概率的加法原理。
初二数学上册知识点汇总(文库)

初二数学上册必背知识点默写版+解析版专题01三角形(解析版)知识点1:三角形的有关概念和性质1.三角形三边的关系:定理:三角形任意两边之和大于第三边;三角形任意两边的之差小于第三边.细节剖析:(1)理论依据:两点之间线段最短.(2)三边关系的应用:判断三条线段能否组成三角形,若两条较短的线段长之和大于最长线段的长,则这三条线段可以组成三角形;反之,则不能组成三角形.当已知三角形两边长,可求第三边长的取值范围.2.三角形按“边”分类:⎧⎪⎧⎨⎨⎪⎩⎩不等边三角形三角形 底边和腰不相等的等腰三角形等腰三角形 等边三角形3.三角形的重要线段:(1)三角形的高从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足之间的线段叫做三角形的高线,简称三角形的高.细节剖析:三角形的三条高所在的直线相交于一点的位置情况有三种:锐角三角形交点在三角形内;直角三角形交点在直角顶点;钝角三角形交点在三角形外.(2)三角形的中线三角形的一个顶点与它的对边中点的连线叫三角形的中线,细节剖析:一个三角形有三条中线,它们交于三角形内一点,叫做三角形的重心.中线把三角形分成面积相等的两个三角形.(3)三角形的角平分线三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.细节剖析:一个三角形有三条角平分线,它们交于三角形内一点,这一点叫做三角形的内心.知识点2:三角形的稳定性如果三角形的三边固定,那么三角形的形状大小就完全固定了,这个性质叫做三角形的稳定性.细节剖析:(1)三角形的形状固定是指三角形的三个内角不会改变,大小固定指三条边长不改变.(2)三角形的稳定性在生产和生活中很有用.例如,房屋的人字梁具有三角形的结构,它就坚固而稳定;在栅栏门上斜着钉一条(或两条)木板,构成一个三角形,就可以使栅栏门不变形.大桥钢架、输电线支架都采用三角形结构,也是这个道理.(3)四边形没有稳定性,也就是说,四边形的四条边长确定后,不能确定它的形状,它的各个角的大小可以改变.四边形的不稳定性也有广泛应用,如活动挂架,伸缩尺.有时我们又要克服四边形的不稳定性,如在窗框未安好之前,先在窗框上斜着钉一根木板,使它不变形.知识点3:三角形的内角和与外角和1.三角形内角和定理:三角形的内角和为180°.推论:1.直角三角形的两个锐角互余2.有两个角互余的三角形是直角三角形2.三角形外角性质:(1)三角形的一个外角等于与它不相邻的两个内角的和.(2)三角形的一个外角大于任意一个与它不相邻的内角.3.三角形的外角和:三角形的外角和等于360°.知识点4、:、多边形及有关概念1.多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.细节剖析:多边形通常还以边数命名,多边形有n条边就叫做n边形.三角形、四边形都属于多边形,其中三角形是边数最少的多边形.2.正多边形:各个角都相等、各个边都相等的多边形叫做正多边形.如正三角形、正方形、正五边形等.细节剖析:各角相等、各边也相等是正多边形的必备条件,二者缺一不可.如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边形才是正方形.3.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.细节剖析:(1)从n边形一个顶点可以引(n-3)条对角线,将多边形分成(n-2)个三角形;(2)n边形共有(3)2n n条对角线.知识点5:、多边形的内角和及外角和公式1.内角和公式:n边形的内角和为(n-2)·180°(n≥3,n是正整数).细节剖析:(1)一般把多边形问题转化为三角形问题来解决;(2)内角和定理的应用:①已知多边形的边数,求其内角和;②已知多边形内角和,求其边数.2.多边形外角和:n边形的外角和恒等于360°,它与边数的多少无关.细节剖析(1)外角和公式的应用:①已知外角度数,求正多边形边数;②已知正多边形边数,求外角度数.(2)多边形的边数与内角和、外角和的关系:①n边形的内角和等于(n-2)·180°(n≥3,n是正整数),可见多边形内角和与边数n有关,每增加1条边,内角和增加180°.知识点6:、镶嵌的概念和特征1.定义:用一些不重叠摆放的多边形把平面的一部分完全覆盖,通常把这类问题叫做用多边形覆盖平面(或平面镶嵌).这里的多边形可以形状相同,也可以形状不相同.细节剖析:(1)拼接在同一点的各个角的和恰好等于360°;相邻的多边形有公共边.(2)用正多边形实现镶嵌的条件:边长相等;顶点公用;在一个顶点处各正多边形的内角之和为360°.(3)只用一种正多边形镶嵌地面,当围绕一点拼在一起的几个正多边形的内角加在一起恰好组成一个周角360°时,就能铺成一个平面图形.事实上,只有正三角形、正方形、正六边形的地砖可以用.专题02全等三角形(解析版)知识点1:全等三角形的判定与性质知识点2:全等三角形的证明思路SAS HL SSS AAS SAS ASA AAS ASA AAS ⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边知识点3:角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等.2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.一般三角形直角三角形判定边角边(SAS)角边角(ASA)角角边(AAS)边边边(SSS)两直角边对应相等一边一锐角对应相等斜边、直角边定理(HL)性质对应边相等,对应角相等(其他对应元素也相等,如对应边上的高相等)备注判定三角形全等必须有一组对应边相等知识点4:全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法. 1.证明线段相等的方法:(1)证明两条线段所在的两个三角形全等.(2)利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3)等式性质.2.证明角相等的方法:(1)利用平行线的性质进行证明.(2)证明两个角所在的两个三角形全等.(3)利用角平分线的判定进行证明.(4)同角(等角)的余角(补角)相等.(5)对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明.4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5.证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.专题03轴对称(解析版)知识点1:轴对称图形1.轴对称图形的定义一个图形沿着某直线折叠,直线两旁的部分能完全重合,这个图形就叫做轴对称图形,该直线就是它的对称轴.要点诠释:轴对称图形是指一个图形,图形被对称轴分成的两部分能够互相重合.一个轴对称图形的对称轴不一定只有一条,也可能有两条或多条,因图形而定.知识点2:轴对称1.轴对称定义把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称(或说这两个图形成轴对称),这条直线叫做对称轴.折叠后重合的点是对应点,也叫做对称点要点诠释:轴对称指的是两个图形的位置关系,两个图形沿着某条直线对折后能够完全重合.成轴对称的两个图形一定全等.2.轴对称与轴对称图形的区别与联系轴对称与轴对称图形的区别主要是:轴对称是指两个图形,而轴对称图形是一个图形;轴对称图形和轴对称的关系非常密切,若把成轴对称的两个图形看作一个整体,则这个整体就是轴对称图形;反过来,若把轴对称图形的对称轴两旁的部分看作两个图形,则这两个图形关于这条直线(原对称轴)对称.知识点3:轴对称与轴对称图形的性质1.轴对称、轴对称图形的性质轴对称的性质:若两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线;轴对称图形的性质:轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.知识点4:线段的垂直平分线定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫线段的中垂线.性质:性质1:线段垂直平分线上的点到线段两端点的距离相等;性质2:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一.同时也给出了引辅助线的方法,那就是遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件.三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心.知识点5:对称轴的作法若两个图形成轴对称,其对称轴就是任何一对对应点所连线段的垂直平分线.因此只要找到一对对应点,再作出连接它们的线段的垂直平分线就可以得到这两个图形的对称轴.轴对称图形的对称轴作法相同.要点诠释:在轴对称图形和成轴对称的两个图形中,对应线段、对应角相等.成轴对称的两个图形,如果它们的对应线段或延长线相交,那么交点一定在对称轴上.如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.知识点6:用坐标表示轴对称1.关于x轴对称的两个点的横(纵)坐标的关系已知P点坐标,则它关于x轴的对称点的坐标为,如下图所示:即关于x轴的对称的两点,坐标的关系是:横坐标相同,纵坐标互为相反数.2.关于y轴对称的两个点横(纵)坐标的关系已知P点坐标为,则它关于y轴对称点的坐标为,如上图所示.即关于y轴对称的两点坐标关系是:纵坐标相同,横坐标互为相反数.3.关于与x轴(y轴)平行的直线对称的两个点横(纵)坐标的关系P点坐标关于直线的对称点的坐标为.P点坐标关于直线的对称点的坐标为.专题04整式的乘法与因式分解(解析版)知识点1:幂的运算 1.同底数幂的乘法:(m n ,为正整数);同底数幂相乘,底数不变,指数相加.2.幂的乘方:(m n ,为正整数);幂的乘方,底数不变,指数相乘.3.积的乘方:(n 为正整数);积的乘方,等于各因数乘方的积. 4.同底数幂的除法:(a ≠0,m n ,为正整数,并且m n >).同底数幂相除,底数不变,指数相减.5.零指数幂:()010.a a =≠即任何不等于零的数的零次方等于1.要点诠释:公式中的字母可以表示数,也可以表示单项式,还可以表示多项式;灵活地双向应用运算性质,使运算更加方便、简洁.知识点2:整式的乘法和除法1.单项式乘以单项式单项式与单项式相乘,把他们的系数,相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.2.单项式乘以多项式单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加.即mc mb ma c b a m ++=++)((c b a m ,,,都是单项式).3.多项式乘以多项式多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.即()()a b m n am an bm bn ++=+++.要点诠释:运算时,要注意积的符号,多项式中的每一项前面的“+”“-”号是性质符号,单项式乘以多项式各项的结果,要用“+”连结,最后写成省略加号的代数和的形式.根据多项式的乘法,能得出一个应用比较广泛的公式:()()()2x a x b x a b x ab ++=+++.4.单项式相除把系数、相同字母的幂分别相除作为商的因式,对于只在被除式里出现的字母,则连同它的指数一起作为商的一个因式.5.多项式除以单项式先把这个多项式的每一项分别除以单项式,再把所得的商相加.即:()am bm cm m am m bm m cm m a b c++÷=÷+÷+÷=++知识点3:乘法公式1.平方差公式:22()()a b a b a b +-=-两个数的和与这两个数的差的积,等于这两个数的平方差.要点诠释:在这里,a b ,既可以是具体数字,也可以是单项式或多项式.平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.2.完全平方公式:()2222a b a ab b +=++;2222)(b ab a b a +-=-两数和(差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍.要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.知识点4:因式分解把一个多项式化成几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.因式分解的方法主要有:提公因式法,公式法,分组分解法,十字相乘法,添、拆项法等.要点诠释:落实好方法的综合运用:首先提取公因式,然后考虑用公式;两项平方或立方,三项完全或十字;四项以上想分组,分组分得要合适;几种方法反复试,最后须是连乘式;因式分解要彻底,一次一次又一次.专题05分式(解析版)知识点1:分式的有关概念及性质1.分式一般地,如果A、B 表示两个整式,并且B 中含有字母,那么式子AB叫做分式.其中A 叫做分子,B 叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式AB才有意义.2.分式的基本性质(M 为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子分母有公因式,要进行约分化简.知识点2:分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算a b a b c c c±±=;同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算a c acb d bd⋅=,其中a b c d 、、、是整式,0bd ≠.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算a c a d adb d bc bc÷=⋅=,其中a b c d 、、、是整式,0bcd ≠.两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方。
八年级数学上册知识树

阅读与思考
教材 资源
数学活动
课程资源的 开发与利用
课外 资源
实物材料 设备
实物模型
对于巩固学生的课堂知识 和扩大知识面,培养学生 的理论联系实际,激发学 生的学习兴趣都有好处。
初 中 数 学
如等腰三角形性质的证明可以制作 等腰三角形纸片,借助等腰三角形是 轴对称图形,通过折叠纸片发现等量 关系
数学思考
解决问题 情感态度
知识技能
学会整式乘法和因式分解,掌握 必要的运算技能。 探索具体问题当中的数量关系, 会列分式方程。
掌握轴对称的性质和全等三角形 的性质和判定。掌握基本的推理 能力。
课 标 要 求
能积极参与数学学习活动, 通过观察、实验、归纳 、类比、推断获得数学猜想; 体验数学活动充满着探索性 和创造性。
1.重视运算性质和公式的 发生和归纳过程
2.渗透转化的思想方法。 3.充分发挥学生的主观能 动性
全等三角形
整式乘法与 因式分解
三角形
1.注重数形结合思想和建模思想 2.通过概念认识边角,体会三角 形的重要性。
分式
教学建议
探 索 交 流 获 得 知 识 感 悟 思 想
1.注重数学知识之间的联系, 提高解决问题的能力。
与三角形有 关的线段 三角形的 稳定性
第7章三角形
知 识 整 合
第十二章 全等三角 形
对 应 边 相 相 等 分对 线应 、中 对线 应、 高对 线应 相角 等平 全 等 三 角 面形 积的 相周 等长 、
1.找第三边SSS 1.找夹这个角的另一边 已知两边2.找这两边 已知一 SAS 的夹角SAS 边一角
•2.内容标准
8年级数学上册知识点八年级上数学知识点

8年级数学上册知识点八年级上数学知识点八年级上数学的主要知识点包括:
1. 有理数
- 有理数的概念和性质
- 有理数的四则运算(加法、减法、乘法、除法)
- 带分数和非带分数的相互转化
2. 代数式与简单方程
- 代数式的概念和性质
- 代数式的加减乘除
- 简单方程的概念和解法
3. 分式
- 分式的概念和性质
- 分式的四则运算(加法、减法、乘法、除法)
4. 百分数与比例
- 百分数的概念和性质
- 百分数的转化和应用
- 比例的概念和性质
- 比例的求解
5. 整式的加减
- 整式的概念和性质
- 整式的加减运算
6. 图形的认识
- 平面图形的基本概念和性质
- 直线、射线和线段的概念和性质
- 角的概念和性质
- 三角形的概念和性质
7. 勾股定理和三角形的面积
- 勾股定理的概念和应用
- 三角形面积的计算
8. 数据和概率
- 数据的收集和整理
- 统计图表的制作和分析
- 概率的概念和性质
- 简单的概率计算
以上是八年级上学期数学的主要知识点,希望对你有帮助!。
八年级数学上册知识树

变量与函数
定义:y=kx+b (k≠0) 方程ax+b=0的解 函数y=kx+b中 y=0 时x值 一次函数 一次函数与一 一次函数 元一次方程 用函数观点看 一次函数与二元 方程与不等式 一次方程(组) 一次函数与一 元一次不等式
是九年级学习二次函数的基础。
开鲁县大榆树中学
方程组的解既是 两直线的交点坐标
a a
m n
幂的乘方
mn
三、说建议
7.教学建议
开鲁县大榆树中学
1.注重运用概念求一个数的平方根和立方根 1.注重数学知识之间的联系,提高 2.注重平方运算与开平方运算的互逆关系 解决问题的能力。 3.适当加大练习,为后续学习打好基础 1.关注学生能否通过活动与同伴交 流,归纳出轴对称图形的概念和性质 2.关注学生能否根据条件做出轴对 称图形。 2.注重引导学生探究规律。鼓励学 生自主探索与合作交流
数学思考
解决问题 情感态度
知识技能
认识实数,掌握必要的运算技能。
探索具体问题当中的数量关系,
并能用函数进行描述,掌握轴对 称的性质和全等三角形的性质和判定。 掌握基本的推理能力。
课 标 要 求
能积极参与数学学习活动, 通过观察、实验、归纳 、类比、推断获得数学猜想; 体验数学活动充满着探索性 和创造性。
观察、思考、探究 讨论、归纳等栏目
选学栏目
章前图
章前
引言 学生预习 教师导入新课
正文 章末
小结
知识结构 图、回顾 与 思考
体例安排
初 中 数 学
习题
练习题 习题、复习题
设计了许多学 生熟悉的或感兴 趣的实际问题, 以激发学生的学 习兴趣与求知欲。
八年级数学上册-知识点总结
《数学》(八年级上册)知识点总结第一章 勾股定理1、勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+ 2、勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形。
3、勾股数:满足222c b a =+的三个正整数,称为勾股数。
第二章 实数一、实数的概念及分类1、实数的分类 正有理数有理数 零 有限小数和无限循环小数 实数 负有理数 正无理数无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。
在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如32,7等;(2)有特定意义的数,如圆周率π,或化简后含有π的数,如3π+8等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数值,如sin60o等 二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a 与b 互为相反数,则有a+b=0,a=—b ,反之亦成立。
2、绝对值在数轴上,一个数所对应的点与原点的距离,叫做该数的绝对值。
(|a|≥0)。
零的绝对值是它本身,也可看成它的相反数,若|a|=a ,则a ≥0;若|a|=-a ,则a ≤0。
3、倒数如果a 与b 互为倒数,则有ab=1,反之亦成立。
倒数等于本身的数是1和-1。
零没有倒数。
4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。
解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。
5、估算三、平方根、算数平方根和立方根1、算术平方根:一般地,如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 就叫做a 的算术平方根。
特别地,0的算术平方根是0。
初中数学八年级上册思维导图
初中数学八年级上册思维导图一、数的开方1. 平方根:如果一个正数x的平方等于a,那么x是a的平方根,记作x=√a。
正数a的平方根有两个,它们互为相反数,分别记作+√a 和√a。
0的平方根是0,负数没有平方根。
2. 立方根:如果一个数x的立方等于a,那么x是a的立方根,记作x=³√a。
每个实数都有唯一的立方根。
3. 开方运算:开方运算是求一个数的平方根或立方根的运算。
对于正数a,开方运算可以表示为√a或³√a。
二、实数1. 实数的概念:实数包括有理数和无理数。
有理数是可以表示为两个整数比的数,无理数是不能表示为两个整数比的数。
2. 实数的分类:实数可以分为正实数、负实数和0。
正实数是大于0的实数,负实数是小于0的实数,0既不是正实数也不是负实数。
3. 实数的运算:实数可以进行加法、减法、乘法和除法运算。
在运算过程中,需要遵循实数的运算规律,如交换律、结合律和分配律。
三、勾股定理1. 勾股定理的内容:勾股定理指出,在一个直角三角形中,直角边的平方和等于斜边的平方。
即a²+b²=c²,其中a、b是直角边,c是斜边。
2. 勾股定理的应用:勾股定理可以用来解决直角三角形中的边长问题,也可以用来解决一些与直角三角形相关的实际问题。
3. 勾股定理的证明:勾股定理的证明有多种方法,其中一种常见的证明方法是使用几何图形的面积关系。
四、一次函数1. 一次函数的概念:一次函数是指函数的图像是一条直线,其一般形式为y=kx+b,其中k是斜率,b是截距。
2. 一次函数的性质:一次函数的图像是一条直线,斜率k表示直线的倾斜程度,截距b表示直线与y轴的交点。
3. 一次函数的应用:一次函数可以用来描述一些线性关系,如物体的速度与时间的关系、正比例关系等。
五、不等式1. 不等式的概念:不等式是表示两个数之间大小关系的数学表达式,如a>b、a<b、a≥b、a≤b等。
2. 不等式的性质:不等式可以进行加减、乘除运算,但在乘除运算中需要注意符号的变化。
人教版新编八年级上册数学笔记重点归纳
人教版新编八年级上册数学笔记重点归纳在八年级的数学学习中,学生们将接触到许多新的概念和技能,这些内容不仅为后续的学习打下基础,也为日常生活中的实际应用提供了支持。
本文将对八年级上册数学的重点内容进行归纳总结,帮助学生更好地理解和掌握这些知识。
一、代数基础1. 代数表达式代数表达式是由数字、字母和运算符组成的数学表达式。
学生需要掌握如何简化代数表达式,包括合并同类项和使用分配律。
例子:简化(3x + 5x 2) 得到(8x 2)。
2. 方程与不等式学生需要学习如何解一元一次方程和不等式。
解方程的基本步骤包括移项、合并同类项和系数的处理。
例子:解方程(2x + 3 = 11),步骤为:(2x = 11 3) →(2x = 8) →(x = 4)。
3. 函数概念函数是描述变量之间关系的数学工具。
学生需要理解函数的定义、表示方法(如图像、表格和公式)以及如何判断一个关系是否为函数。
例子:函数(y = 2x + 1) 表示每个(x) 值对应一个(y) 值。
二、几何知识1. 平面几何学生需要掌握基本的几何图形及其性质,包括三角形、四边形、圆等。
特别是三角形的内角和、外角和以及相似三角形的性质。
例子:三角形的内角和为180度。
2. 面积与周长学生需要学习如何计算各种图形的面积和周长。
常见图形的公式包括:矩形:面积= 长×宽,周长= 2(长+ 宽)圆:面积= πr²,周长= 2πr3. 立体几何学生需要了解立体图形的基本性质,包括长方体、正方体、圆柱体等的体积和表面积计算。
例子:长方体的体积公式为(V = 长×宽×高)。
三、统计与概率1. 数据收集与整理学生需要学习如何收集、整理和表示数据,包括使用频数表、条形图和折线图等。
例子:通过频数表整理班级学生的身高数据。
2. 平均数、中位数与众数学生需要掌握如何计算一组数据的平均数、中位数和众数,这些统计量能够帮助我们更好地理解数据的特征。
八年级数学上册知识点总结(推荐12篇)
八年级数学上册知识点总结第1篇第十一章三角形一、知识框架:知识概念:1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。
3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。
4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。
6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
8、多边形的内角:多边形相邻两边组成的角叫做它的内角。
9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。
10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。
11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。
12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,13、公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和。
性质2:三角形的一个外角大于任何一个和它不相邻的内角。
⑶多边形内角和公式:边形的内角和等于·180°⑷多边形的.外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。
②边形共有条对角线。
第十二章全等三角形一、知识框架:二、知识概念:1、基本定义:⑴全等形:能够完全重合的两个图形叫做全等形。
⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。
⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。
⑷对应边:全等三角形中互相重合的边叫做对应边。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
全等三角形
轴对称
整式的乘除法
三角形
八 年 级 上 册
分式
与三角形有关线段
多边形及其 内角和
角平分线性 质与判定
判定
与三角形有关角
三角形
性质
全等三角形
整式
整式 的乘 法
数与式
空间与 图形
轴对称 定义
乘法公式
定义 分式 运算 方程
八 年 级 数 学 上 册 知 识 树
画图
完全平方公式
零指数和 负整数指 数幂
同底数幂 的除法
单项式除 以单项式
幂的乘法运算
单项式乘 以多项式
多项式乘 以多项式
整式乘法
整式除法
多项式除 以单项式
整式的乘除
第15章知识树
定义 性质 判定
分式乘除
概 性质 念
分式方程 概念
概念
分 式
定义 性质 判定 等边三角形 概 念
作图
等腰三角形
性质
轴对称 轴 对 称
轴对称变换
作
坐标表示
图
概念
第14章知识树 整式的乘除知识树
(a b)(a b) a2 b2 (a b)2 a2 2ab b2
同底数幂 的乘法
幂的乘方 积的乘方 单项式乘 以单项式 乘法公式
平方差公式
第11章知识树
角平 分线 中线 高
内角和1800
外角和3600
内角
外角
内角和
1800(n-2)
角 线段
多边形及其内 角和
三角形 的边
三 角 形
ቤተ መጻሕፍቲ ባይዱ
第12章知识树
SAS 全等三角形 的概念 全等三角形
ASA AAS
SSS
三角形全等的 条件
角平分线的性质
全等三角形 的性质
全 等 三 角 形
第13章知识树