七年级上册数学知识树
初中数学知识树

初中数学知识树一、数的认识1. 整数(1)正整数、零、负整数(2)整数的基本性质2. 分数(1)真分数、假分数、带分数(2)分数的基本性质3. 小数(1)小数的意义(2)小数的性质二、数的运算1. 加法(1)整数加法(2)分数加法(3)小数加法2. 减法(1)整数减法(2)分数减法(3)小数减法3. 乘法(1)整数乘法(2)分数乘法(3)小数乘法4. 除法(1)整数除法(2)分数除法(3)小数除法5. 混合运算(1)加减混合运算(2)乘除混合运算(3)加减乘除混合运算三、方程与不等式1. 一元一次方程(1)方程的概念(2)解一元一次方程的方法2. 一元一次不等式(1)不等式的概念(2)解一元一次不等式的方法四、几何图形1. 点、线、面(1)点、线、面的概念(2)点、线、面的性质2. 平面图形(1)三角形(2)四边形(3)圆3. 立体图形(1)长方体(2)正方体(3)圆柱(4)圆锥五、概率与统计1. 概率(1)概率的概念(2)概率的计算方法2. 统计(1)平均数(2)中位数(3)众数(4)方差(5)标准差六、数学应用1. 实际问题求解(1)应用题的解题思路(2)应用题的解题方法2. 数学建模(1)数学建模的概念(2)数学建模的步骤(3)数学建模的应用七、数学思维与能力培养1. 抽象思维(1)抽象思维的概念(2)抽象思维的培养方法2. 逻辑思维(1)逻辑思维的概念(2)逻辑思维的培养方法3. 创新思维(1)创新思维的概念(2)创新思维的培养方法八、数学学习方法与技巧1. 课堂学习(1)认真听讲(2)做好笔记(3)积极参与讨论2. 课后复习(1)及时复习(3)做习题巩固3. 考试技巧(1)合理安排时间(2)仔细审题(3)规范答题九、数学竞赛与拓展1. 数学竞赛(1)数学竞赛的意义(2)数学竞赛的准备(3)数学竞赛的参赛技巧2. 数学拓展(1)数学拓展的意义(2)数学拓展的方法(3)数学拓展的实践十、数学与生活1. 数学与生活(1)数学在生活中的应用(2)数学与生活的关系2. 数学与科技(1)数学在科技中的应用(2)数学与科技的关系3. 数学与艺术(1)数学在艺术中的应用(2)数学与艺术的关系初中数学知识树一、数的认识1. 整数(1)正整数、零、负整数(2)整数的基本性质2. 分数(1)真分数、假分数、带分数(2)分数的基本性质3. 小数(1)小数的意义(2)小数的性质二、数的运算1. 加法(1)整数加法(2)分数加法(3)小数加法2. 减法(1)整数减法(2)分数减法(3)小数减法3. 乘法(1)整数乘法(2)分数乘法(3)小数乘法4. 除法(1)整数除法(2)分数除法(3)小数除法5. 混合运算(1)加减混合运算(2)乘除混合运算(3)加减乘除混合运算三、方程与不等式1. 一元一次方程(1)方程的概念(2)解一元一次方程的方法2. 一元一次不等式(1)不等式的概念(2)解一元一次不等式的方法四、几何图形1. 点、线、面(1)点、线、面的概念(2)点、线、面的性质2. 平面图形(1)三角形(2)四边形(3)圆3. 立体图形(1)长方体(2)正方体(3)圆柱(4)圆锥五、概率与统计1. 概率(1)概率的概念(2)概率的计算方法2. 统计(1)平均数(2)中位数(3)众数(4)方差(5)标准差六、数学应用1. 实际问题求解(1)应用题的解题思路(2)应用题的解题方法2. 数学建模(1)数学建模的概念(2)数学建模的步骤(3)数学建模的应用七、数学思维与能力培养1. 抽象思维(1)抽象思维的概念(2)抽象思维的培养方法2. 逻辑思维(1)逻辑思维的概念(2)逻辑思维的培养方法3. 创新思维(1)创新思维的概念(2)创新思维的培养方法八、数学学习方法与技巧1. 课堂学习(1)认真听讲(2)做好笔记(3)积极参与讨论2. 课后复习(1)及时复习(3)做习题巩固3. 考试技巧(1)合理安排时间(2)仔细审题(3)规范答题九、数学竞赛与拓展1. 数学竞赛(1)数学竞赛的意义(2)数学竞赛的准备(3)数学竞赛的参赛技巧2. 数学拓展(1)数学拓展的意义(2)数学拓展的方法(3)数学拓展的实践十、数学与生活1. 数学与生活(1)数学在生活中的应用(2)数学与生活的关系2. 数学与科技(1)数学在科技中的应用(2)数学与科技的关系3. 数学与艺术(1)数学在艺术中的应用(2)数学与艺术的关系在探索数学的旅程中,我们不仅要掌握基础的知识点,还要学会如何灵活运用这些知识解决实际问题。
七年级上册数学知识点思维导图+考点梳理

七年级上册数学知识点思维导图+考点梳理七年级上册数学知识点思维导图+考点梳理一、整数1. 整数的概念及表示方法- 整数:正整数、负整数和0的集合。
- 整数的表示方法:带有符号的数或用数轴表示。
2. 整数的比较与大小关系- 整数的大小比较:相同符号,绝对值大的整数大;不同符号,负整数小于正整数。
- 整数的绝对值:正整数的绝对值是本身,负整数的绝对值是去掉符号的数值。
3. 整数的加法与减法- 整数的加法:同号相加,异号相减。
- 整数的减法:减去一个整数等于加上这个整数的相反数。
4. 整数的乘法与除法- 整数的乘法:异号相乘得负,同号相乘得正。
- 整数的除法:除数不为0时,同号得正,异号得负。
二、分数1. 分数的概念及表示方法- 分数:一个整数除以另一个整数所得的结果。
- 分数的表示方法:分子/分母,分子表示几份,分母表示几等分。
2. 分数与小数的转换- 分数转小数:分子÷分母,若能除尽,则为有限小数;若不能除尽,则为无限循环小数。
- 小数转分数:根据小数位数,分子为小数的数值,分母为10的对应次幂。
3. 分数的加法与减法- 分数的加法:通分后相加,最后化简。
- 分数的减法:通分后相减,最后化简。
4. 分数的乘法与除法- 分数的乘法:分子与分子相乘,分母与分母相乘,最后化简。
- 分数的除法:分子与分母互换位置,再进行乘法运算。
三、代数与方程1. 代数式的概念及表示方法- 代数式:用字母或符号表示的数或数与字母的和、差、积、商的表达式。
- 代数式的表示方法:常见的代数字母有x、y、a、b等。
2. 代数式的运算- 代数式的加法与减法:将同类项相加或相减,并合并同类项。
- 代数式的乘法:将同类项相乘,并合并同类项。
- 代数式的除法:将被除数与除数进行约分,并化简。
3. 一元一次方程的概念及解法- 一元一次方程:只有一个未知数的一次方程,形如ax+b=0。
- 解一元一次方程:利用等式性质,将方程化简为未知数的系数与常数的组合,并求解未知数的值。
七年级上册知识结构图

有理数运算规律:先定符号,再求值,第一章有理数有理数定义与分类有关概念与性质有理数的运算定义:整数和分数统称为有理数。
有理数(按定义分)有理数(按性质分)有限小数和无限循环小数统称为有理数正整数负整数分数整数正分数负分数正整数正分数正有理数负有理数负整数负分数数轴:规定了原点、正方向、单位长度的直线叫数轴。
性质:每一个有理数都可以在数轴上找到相应的点;数轴上的点不一定都表示有理数。
相反数:只有符号不同的两个数互为相反数;0的相反数为0;性质:互为相反数的两个数和为0.几何定义:在原点的两侧,到原点的距离相等的两个数互为相反数。
“—”起相反数的作用。
绝对值:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作∣a∣. ∣a∣≧ 0(非负数)性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.加减法乘除法有理数比较大小:数轴上右边的数总大于左边的数;正数大于0;0大于负数;正数大于一切负数;两个负数比较大小,绝对值大的反而小。
a a﹥00 a=0-a a﹤0∣a∣=∣a∣=a a≧0-a a≦0乘方科学记数法及近似数两数相加:同号取相同的符号,并把绝对值相加;异号取绝对值较大加数符号,并用较大绝对值减去较小绝对值。
减去一个数等于加上这个数的相反数;省略加号的和的形式。
两数相乘:同号取正,异号取负,并把绝对值相乘。
除以一个数等于乘以这个数的倒数;互为倒数的两数积为1;多个有理数相乘,积的符号由负因数的个数决定(奇数个积为负;偶数个积为正;0与任何数相乘都得0.求几个相同因数的积的运算,叫做有理数的乘方。
即:a n=aa…a(有n个a) a叫底数,n叫指数。
结果叫幂。
正数的任何次幂都是正数,负数的偶次幂为正,负数的奇次幂为负;0的任何次幂为0;任何数的偶次幂为非负数。
★非负数的和等于0,则每个非负数必为0把一个绝对值大于10的数记成a ×10n的形式(其中1≦︱a︱<10),叫做科学记数法.对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数字都称为这个近似数的有效数字。
(完整版)七年级上册数学知识结构图

1 第一章:有理数★知识结构图:正分数负分数正整数0负整数第二章:整式的加减★知识结构图:2★概念、定义:1.都是数或字母的积的式子叫做单项式(monomial),单独的一个数或一个字母也是单项式。
单项式中的数字因数叫做这个单项式的系数(coefficient)。
32.一个单项式中,所有字母的指数的和叫做这个单项式的次数。
3.几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。
4.多项式里次数最高项的次数,叫做这个多项式的次数。
5.把多项式中的同类项合并成一项,叫做合并同类项。
6.合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母和字母的指数不变。
7.如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;8.如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
4第三章:一元一次方程知识结构图:概念、定义:1.含有一个未知数,未知数的次数都是1,这样的方程叫做一元一次方程。
3等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。
5.等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。
56.把等式一边的某项变号后移到另一边,叫做移项。
7.工程问题:工作总量=工作效率×时间盈亏问题:利润=售价-成本利率=利润÷成本×100%售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间本息和=本金+利息三:图形的初步认识知识结构图:61.我们把实物中抽象的各种图形统称为几何图形(geometric figure)。
72.有些几何图形(如长方体、正方体、圆柱、圆锥、球等)的各部分不都在同一平面内,它们是立体图形(solid figure)。
3.有些几何图形(如线段、角、三角形、长方形、圆等)的各部分都在同一平面内,它们是平面图形(plane figure)。
第一章 有理数 知识树说教材

第 内一 容章 分有 析理 数
五条运算律
让学生体会: 数域扩充后运算律的一致性
四、思想方法分析
数形结合思想
绝 对 值 号 乘 方 符 号
对立统一 思想 转 化 思想
数轴 加减 乘 除 乘 混 法法 法 法 方 合 法法 法 法 法 运 则则 则 则 则 算
负 号
一个工具
分 类 思 想
三个符号
绝对值
利用绝对值比较两负数大小 掌握绝对值的概念及计算 互为相反数的点在数轴上的特点 掌握相反数的概念 借助数轴比较大小 理解数轴上的点和 有理数的对应关系 数轴 相反数 加法 绝对值
互逆
加法法则
加法运算律 减法法则 加减混合运算 减法 乘法法则
掌握数轴的概念
初步了解集合的含义
有理数
有理数 的相关 概念
有理数 的相关 运算
运 算 基 础
物理 化学
其它学科 第 知一 识章 联有 系理 数
生物
地理
做好铺垫
六、通用工具(联系中考)
知识发展的重要线索
2010年:1、(3分) 下列四个数中最小的 是( ) (A)-10(B)-1 (C)0 D)0.1
2012年:1.和数轴上的点一一 对应的是( )
A、整数
B、有理数
C、无理数 D、实数
二、新课标对本学段学习目标要求:
探究
提 出 问 题
思 考 问 题
解 决 问 题
形成创新精神 和实践能力
形成
亲 历 感 受
学会 反思 兴 趣 信 心
运算 推理
能力
知识与 技能
观 念
过程与 方法
数据处理
情感态度 与价值观 总 体 目 标
七年级数学上册知识树

五、教学建议
• 1、灵活使用该教材,设计新颖的教学过程。 • 2、鼓励学生自主探索与合作交流。 • 3、尊重学生个性差异,满足多样化的学习需要。
人教版七年级数学上册知识树
二、整式的加减 一、有理数
三、一元一次方程
图形的初步认识
七 年 级 数 学 上 册
利用数轴比较有理 数的大小
整数
负数 正数
七年级数学上册知识树
教材基本要求
• (1)数与代数。 • (2)空间图形。 • (3)实践与运用。
数与代数
• 学习有理数,整式、方程,探索数、形及实际问题中蕴含的关系和规律,初步掌握一些有效的表示, 处理和交流数量关系及变化规律的工具,发展符号感,体会数学与生活的紧密联系,增强应用意识, 提高运用代数知识解决问题的能力。
谢谢大家
教学资料
• 资料仅供参考
有理数
• 从实例引入正数、负数、数轴、相反数、绝对值。学习有理数的加减法、乘除法和乘方运算的意义、 法则。有理数的运算是本章的重点,对法则的理解是难点,克服它的关键是提高分析问题和解决问 题的能力。
整式的加减
• 由实例引出单项式、多项式的概念及合并同类项、去括号法则、整式的加减。本章主要内容是整式 的加减运算,合并同类项和去括号是整式加减的基础,它们是本章的重点,也是难点。突破这一难 点的关键是通过必要的练习,熟练掌握运算法则。
整式加减
整式
整式概念知识树
单项式系数
单项式次数
单项式
多项式的项
多项式次数
多项式
升降幂排列
整式
整式的加减知识树
同类项
合并同类项
去括号与添括号
整 式 的 加 减
整式的乘除知识树
七年级上册数学第一章知识结构图

第一章:有理数★知识结构图:正分数负分数 正整数负整数★正数和负数 概念、定义:1.大于0的数叫做正数(positive number)。
2.在正数前面加上负号“-”的数叫做负数(negative number)。
3.整数和分数统称为有理数(rational number)。
4.规定了原点、正方向和单位长度的直线叫做数轴(number axis)。
5.在直线上任取一个点表示数0,这个点叫做原点(origin)。
6.一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value)。
7.一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。
8.正数大于0,0大于负数,正数大于负数。
两个负数,绝对值大的反而小。
★有理数加法法则:1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。
3.一个数同0相加,仍得这个数。
4.有理数的加法中,两个数相加,交换交换加数的位置,和不变。
5.有理数的加法中,三个数相加,先把前两个数相加,或者先将后两个数相加,和不变。
6.有理数减法法则:减去一个数,等于加上这个数的相反数。
★有理数乘法法则1.两数相乘,同号得正,异号得负,并把绝对值向乘;任何数同0相乘,都得0。
2. 有理数中仍然有:乘积是1的两个数互为倒数。
3. 一般的,有理数乘法中,两个数相乘,交换因数的位置,积相等。
4.三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积相等。
5.一般地,一个数同两个数的和相乘,等于把这个数分别同这两个数相乘,再把积相加。
★有理数除法法则1.除以一个不等于0的数,等于乘这个数的倒数。
2.两数相除,同号得正,异号得负,并把绝对值相除。
0除以任何一个不等于0的数,都得0。
★做有理数混合运算时,应注意以下运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
七年级数学上册知识点导图

七年级数学上册知识点导图(本文采用导图形式来呈现数学上册知识点,共分为四个大部分)
一、基本概念
1. 数的基本概念:自然数、整数、有理数、实数
2. 数的分类:正负数、整数、分数
3. 数的性质:交换律、结合律、分配律
二、代数式
1. 代数式的定义及表示方法
2. 代数式的运算:加减乘除
3. 同类项的合并和化简
4. 因式分解和提公因式
三、方程
1. 方程的定义及解的含义
2. 一元一次方程:解法及应用
3. 一元二次方程:解法及应用
4. 同时含有两个及以上未知数的方程
四、几何
1. 几何基础概念:点、线、面
2. 基本图形的性质:角、边、面积、体积
3. 三角形及其性质:等边三角形、等腰三角形、直角三角形
4. 直线和平面的位置关系:平行、垂直、交点
五、统计与概率
1. 统计基础概念:样本、总体、频数、频率、中位数
2. 统计分布及表示方法:直方图、折线图、饼图
3. 概率的基本概念及计算方法:概率的定义、加法原理、乘法原理
通过以上的数学知识导图,七年级的同学们可以快速了解数学上册知识点的基本内容,方便对知识点进行系统性学习和分析,为更好地掌握数学知识打下坚实的基础。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.单项式中的所有字母的指数的和叫做这个 单项式的次数,数字因数叫做这个单项式的 指数。
2.几个单项式的和叫做多项式,多项式里次 数最高项的指数,叫做这个多项式的次数。
3.把多项式中的同类项合并成一项,叫做合 并同类项。
1.含有未知数的等式——方程。
2.只含有一个未知数,未知数的次数都是1, 这样的方程叫做一元一次方程。 3.等式两边加(或减)同一个数(或式子), 结果仍相等。 4.等式两边同乘一个数,或除以同一个不为 0的数,结果仍相等。
1.我们把从实物中抽象出的各种图形统称为 几何图形。 2.有些几何图形的各部分不都在同一平面内, 它们是立体图形。 3.两点确定一条直线。
4.两点之间,线段最短。
5.有理数的乘方
1.同号两数相加,取相同的符号,并把绝对值相加。
2.绝对值不相等的异号两数相加,取绝对值较大的
加数的符号,并用较大的绝对值去减较小的绝对值,
互为相反数的两个数相加得0.
3.一个数同0相加,仍得这个数。 4.减去一个数,等于加这个数的相反数。
1.两数相乘,同号得正,异号得负,并把绝 对值相乘。
七年级上册数学知识形认识初步
1.正数和负数
2.有理数
正整数、0、负整数 正分数、负分数
(1)数轴
直线、原点、 正方向
(2)相反数
只有符号不同的两个 数叫做互为相反数
(3)绝对值
一般地,数轴上表示数a的 点与原点的距离叫做数a 的绝对值。
3.有理数的 加减法
4.有理数的 乘除法
2.任何数同0相乘,都得0.
3.除以一个不等于0的数,等于乘这个数的 倒数。 4两数相除,同号得正,异号得负,并把绝 对值相除。0除以任何一个不等于0的数,都 得0.
1.求n个相同因数的积的运算,叫做乘方, 乘方的结果叫幂。 2.负数的奇次幂是负数,负数的偶次幂 是正数。
3正数的任何词幂都是正数,0的任何正 整数次幂都是0.