数学第24章圆 24.1-24.3练习卷
人教版九年级数学上册第24章圆单元测试题含答案[1]
![人教版九年级数学上册第24章圆单元测试题含答案[1]](https://img.taocdn.com/s3/m/1dc6c268d0d233d4b04e6937.png)
人教版九年级数学上册第24章圆单元测试题含答案(word版可编辑修改) 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(人教版九年级数学上册第24章圆单元测试题含答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为人教版九年级数学上册第24章圆单元测试题含答案(word版可编辑修改)的全部内容。
人教版九年级数学上册第24章圆单元测试题(含答案)一.选择题(共10小题)1.下列说法,正确的是()A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径2.如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()A.3cm B.4cm C. 5cm D.6cm(2题图)(3题图)(4题图) (5题图)(8题图)3.一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O 中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为() A.4 B. 6 C.8 D.94.如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是() A.51°B.56°C.68°D.78°5.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为() A.25°B.50°C.60°D.30°6.⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为( ) A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定7.已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是() A.相离B.相交C.相切D.外切8.如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()A.2,B.2,πC.,D.2,9.如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长() A.2πB.π C.D.10.如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()A.12πB.24πC.6πD.36π二.填空题(共10小题)11.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,则⊙O的半径为.(9题图) (10题图)(11题图) (12题图)12.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为.13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=度.(13题图) (14题图) (15题图) (17题图)14.如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),将⊙P 沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为.15.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.16.已知一条圆弧所在圆半径为9,弧长为π,则这条弧所对的圆心角是.17.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是(结果保留π).18.已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是.19.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是.20.半径为R的圆中,有一弦恰好等于半径,则弦所对的圆心角为.三.解答题(共5小题)21.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)请证明:E是OB的中点;(2)若AB=8,求CD的长.22.已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O 的切线DF,交AC于点F.(1)求证:DF⊥AC;(2)若⊙O的半径为4,∠CDF=22。
人教版(2024)数学九年级上册第二十四章 圆 本章复习与测试(含答案)

第二十四章圆一、选择题1. 已知⊙O的半径为3 cm,OP=4 cm,则点P与⊙O的位置关系是( )A.点P在圆内B.点P在圆上C.点P在圆外D.无法确定2. 已知圆锥的底面半径为3 cm,母线长为4 cm,则圆锥的全面积是( )A.15π cm2B.21π cm2C.20π cm2D.24π cm23. 下列说法:①平分弦的直径垂直于弦;②三点确定一个圆;③相等的圆心角所对的弧相等;④垂直于半径的直线是圆的切线;⑤三角形的内心到三条边的距离相等.其中不正确的有( )个.A.1B.2C.3D.44. 如图,AB为⊙O的直径,CD是⊙O的弦,∠ADC=35∘,则∠CAB的度数为( )A.35∘B.45∘C.55∘D.65∘5. 如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,连接AD,若∠C=22∘,则∠CDA的大小为( )A.112∘B.124∘C.129∘D.136∘6. 如图,在⊙O中,OC⊥AB,∠ADC=32∘,则∠OBA的度数是( )A.64∘B.58∘C.32∘D.26∘7. 在截面为半圆形的水槽内装有一些水,如图,水面宽AB为6分米,如果再注入一些水后,水面上升1分米,此时水面宽变为8分米,则该水槽面半径为( )A.3分米B.4分米C.5分米D.10分米8. 设P为⊙O外一点,若点P到⊙O的最短距离为3,最长距离为7,则⊙O的半径为( )A.3B.2C.4或10D.2或59. 如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若的值为( )QP=QO,则QCQAA.23−1B.23C.3+2D.3+210. 如图,在Rt△AOB中,OA=OB=4,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ,Q为切点,则线段PQ长度的最小值为( )A.5B.7C.23D.32二、填空题11. 如图,AB是⊙O的直径,C,D,E都是⊙O上的点,则∠1+∠2=.12. 如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n∘,则∠DCE=.13. 如图,CD是⊙O的直径,弦AB⊥CD于点E,若AB=6,CE:ED=1:9,则⊙O的半径是.14. 如图,菱形OABC的边长为2,且点A,B,C在⊙O上,则劣弧BC的长度为.15. 如图,AB是⊙O的直径,AC与⊙O相切于点A,CE∥AB交⊙O于点D,E,CD=2,AB=8.则AD=.16. 如图,矩形ABCD中,AB=2,BC=2,以B为圆心,BC为半径画弧,交AD于点E,则图中阴影部分的面积是.17. 如图所示,边长为2的正方形ABCD的顶点A,B在一个半径为2的圆上,顶点C,D在该圆内,将正方形ABCD绕点A逆时针旋转,当点D第一次落在圆上时,点C运动的路线长为.18. 在⊙O中,AB是⊙O的直径,AB=8 cm,AC=CD=BD,M是AB上一动点,CM+DM的最小值是cm.三、解答题19. 如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).(1) 请画出△ABC绕点O逆时针旋转90∘后的△A1B1C1;并写出A1,B1,C1三点的坐标.(2) 求出(1)中C点旋转到C1点所经过的路径长(结果保留π).20. 已知AB是半圆O的直径,OD⊥弦AC于D,过点O作OE∥AC交半圆O于点E,过点E作EF⊥AB于F,若AC=2,求OF的长.21. 如图,点O为Rt△ABC斜边AB上一点,以OA为半径的⊙O与BC切于点D,与AC交于点E,连接AD.(1) 求证:AD平分∠BAC.(2) 若∠BAC=60∘,OA=2,求阴影部分的面积(结果保留π).22. 如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连接BC.(1) 求证:AE=ED;(2) 若AB=10,∠CBD=36∘,求AC的长.23. 如图,半圆O的直径DE=12 cm,△ABC中,∠ACB=90∘,∠ABC=30∘,BC=12 cm,半圆O以2 cm/s的速度从左向右运动,在运动的过程中,点D,E始终在直线BC上,设运动时间为t(s),当t=0 s时,半圆O在△ABC的左侧,OC=8 cm.(1) 当t=8(s)时,试判断点A与半圆O的位置关系;(2) 当t为何值时,直线AB与半圆O所在的圆相切.24. 如图,点A是半径为12cm的⊙O上的一点,动点P从点A出发,以2πcm/s的速度沿圆周逆时针运动,当点P回到A点立即停止运动.(1) 在点P运动过程中,当∠POA=90∘时,求点P的运动时间.(2) 如图,点B是OA延长线上一点,AB=OA,当点P运动的时间为2s时,试判断直线BP与⊙O的位置关系,并说明理由.25. 已知四边形ABCD内接于⊙O,BC=CD,连接AC,BD.(1) 如图①,若∠CBD=36∘,求∠BAD的大小.(2) 如图②,若点E在对角线AC上,且EC=BC,∠EBD=24∘,求∠ABE的大小.答案一、选择题1. C2. B3. D4. C5. B6. D7. C8. B9. D10. B二、填空题11. 90∘12. n13. 514. 23π15. 416. 22−1−π217. 2π318. 8三、解答题19.(1) 如图,△A1B1C1为所作,A1,B1,C1三点的坐标分别为(−4,2),(−1,1),(−3,4);(2) OC=32+42=5,所以C点旋转到C1点所经过的路径长=90×π×5180=52π.20. ∵OD⊥AC,AC=2,∴AD=CD=1,∵OD⊥AC,EF⊥AB,∴∠ADO=∠OFE=90∘,∵OE∥AC,∴∠DOE=∠ADO=90∘,∴∠DAO+∠DOA=90∘,∠DOA+∠EOF=90∘,∴∠DAO=∠EOF,在△ADO和△OFE中,{∠DAO=∠EFO,∠DAO=∠FOE,OA=OE,∴△ADO≌△OFE(AAS),∴OF=AD=1.21.(1) ∵⊙O切BC于D,∴OD⊥BC,∵AC⊥BC,∴AC∥OD,∴∠CAD=∠ADO,∵OA=OD,∴∠OAD=∠ADO,∴∠OAD=∠CAD,即AD平分∠CAB.(2) 设EO与AD交于点M,连接ED.∵∠BAC=60∘,OA=OE,∴△AEO是等边三角形,∴AE=OA,∠AOE=60∘,∴AE=AO=OD,又由(1)知,AC∥OD,即AE∥OD,∴四边形AEDO是菱形,则△AEM≌△DMO,∠EOD=60∘,∴S△AEM=S△DMO,∴S阴影=S扇形EOD=60π×22360=2π3.22.(1) ∵AB是⊙O的直径,∴∠ADB=90∘,∵OC∥BD,∴∠AEO=∠ADB=90∘,即OC⊥AD,∴AE=ED.(2) ∵OC⊥AD,∴AC=CD,∴∠ABC=∠CBD=36∘,∴∠AOC=2∠ABC=2×36∘=72∘,∴AC=72π×5180=2π.23.(1) ∵△ABC中,∠ACB=90∘,∠ABC=30∘,BC=12 cm,∴AC=tan30∘BC=43,当t=8时,如图,此时OC=8,在Rt△ACO中,AC=43,∴AO=AC2+OC2=47,∵半圆O的直径DE=12 cm,47>6,∴点A在半圆外;(2) ①如图1,过C点作CF⊥AB,交AB于F点;∵∠ABC=30∘,BC=12 cm,∴FO=6 cm;当半圆O与△ABC的边AB相切时,又∵圆心O到AB的距离等于6 cm,且圆心O又在直线BC上,∴O与C重合,即当O点运动到C点时,半圆O与△ABC的边AB相切;此时点O运动了8 cm,所求运动时间为t=82=4(s),②当点O运动到B点的右侧,且OB=12 cm时,如图2,过点O作OQ⊥直线AB,垂足为Q.在Rt△QOB中,∠OBQ=30,则OQ=6 cm,即OQ与半圆O所在的圆相切.此时点O运动了32 cm.所求运动时间为:t=32÷2=16 s,综上可知当t=4 s或16 s时,AB与半圆O所在的圆相切.24.(1) 当∠POA=90∘时,根据弧长公式可知点P运动的路程为⊙O周长的14或34,设点P运动的时间为t s,当点P运动的路程为⊙O周长的14时,2π⋅t=14⋅2π⋅12,解得t=3,当点P运动的路程为⊙O周长的34时,2π⋅t=34⋅2π⋅12,解得t=9,∴当∠POA=90∘时,点P运动的时间为3s或9s.(2) 如图,当点P运动的时间为2s时,直线BP与⊙O相切.理由如下:当点P运动的时间为2s时,点P运动的路程为4πcm,连接OP,PA,∵半径AO=12cm,∴⊙O的周长为24πcm,∴AP的长为⊙O周长的16,∴∠POA=60∘,∵OP=OA,∴△OAP是等边三角形,∴OP=OA=AP,∠OAP=60∘,∵AB=OA,∴AP=AB,∵∠OAP=∠APB+∠B,∴∠APB=∠B=30∘,∴∠OPB=∠OPA+∠APB=90∘,∴OP⊥BP,∴直线BP与⊙O相切.25.(1) ∵BC=CD,∴∠BDC=∠CBD=36∘,∴∠BAC=∠BDC=36∘,∵BC=CD,∴BC=CD,∴∠CAD=∠CBD=36∘,∠BAD=∠BAC+∠CAD=36∘+36∘=72∘.(2) ∠CEB=∠EAB+∠ABE(外角的应用),∵CE=CB,∴∠CEB=∠CBE=∠CBD+∠EBD,∴∠EAB+∠ABE=∠CBD+∠EBD,∵BC=CD,∴BC=CD,∴∠EAB=∠CBD,∴∠ABE=∠EBD=24∘.。
人教版九年级上册数学 24章复习题含答案。

24.1垂直于弦的直径1. 在⊙O 中,AB 为弦,AB OC ⊥于点C ,交⊙O 于点D ,若5=AO ,2=CD ,则弦AB 的长为( )A.4B.6C.8D.102.如图,⊙O 的弦AB 垂直平分半径OC ,则四边形OACB ( ) A.是正方形 B.是长方形 C.是菱形 D.以上答案都不对3.设P 为半径6cm 的圆内的一点,它到圆心的距离为3.6cm,则经过点P 的最短弦的长度是 ( ).A .4.8cmB .7.2cmC .6.4cmD .9.6cm4.在直径是20cm 的⊙O 中,∠AOB 是60°,那么弦AB 的弦心距是( )5.若圆的半径3,圆中一条弦为52,则此弦中点到弦所对劣弧的中点的距离为 .6.兴隆蔬菜基地建圆弧形蔬菜大棚的剖面如右图所示,已知AB =16m ,半径OA =10m ,高度CD 为_____m.7.圆中一弦把和它垂直的直径分成3 cm 和4 cm 两部分,则这条弦长为________. 8.工程上常用钢珠来测量零件上小孔的直径,假设钢珠的直径是10mm ,测得钢珠顶端离零件表面的距离为8mm ,如图所示, 则这个小孔的直径是 mm.9.已知:如图,AB 是⊙O 的弦,半径OC ,OD 分别交AB 于点E ,F ,且BF AE =.求证:OF OE =.10.已知:如图, ⊙O 的直径CD 垂直弦AB 于P , 且PA =4cm, PD =2cm .AB 第2题图第6题图DBAO CBA 8mm第8题图求:⊙O的半径长.11.如图,已知:⊙O中,弦AB与弦CD互相垂直,垂足为E,又AE=3,EB=7,求O点到CD的距离.12.已知:如图,AB,CD是⊙O的弦,且AB⊥CD于H,A H=4,B H=6,C H=3,D H=8.求:⊙O 的半径.13. 如图弓形的弦AB=6cm,弓形的高是1cm,求其所在圆的半径.14.某机械传动装置在静止时如图所示,连杆PB与B的运动所形成的⊙O交于点A,测量得PA=4cm,AB=8cm,⊙O的半径是5cm,求点P到圆心O 的距离.人教版九年级数学 24.2 点和圆、直线和圆的位置关系一、选择题1. 如图,AB为☉O的切线.切点为A,连接AO,BO,BO与☉O交于点C,延长BO与☉O交于点D,连接AD.若∠ABO=36°,则∠ADC的度数为()A.54°B.36°C.32°D.27°2. 2018·眉山如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连接BC,若∠P=36°,则∠B等于( )A.27° B.32° C.36° D.54°3. 在数轴上,点A所表示的实数为5,点B所表示的实数为a,⊙A的半径为3,要使点B 在⊙A内,则实数a的取值范围是( )A.a>2 B.a>8C.2<a<8 D.a<2或a>84. (2019•益阳)如图,PA、PB为圆O的切线,切点分别为A、B,PO交AB于点C,PO的延长线交圆O于点D,下列结论不一定成立的是A.PA=PB B.∠BPD=∠APDC.AB⊥PD D.AB平分PD5. 选择用反证法证明“已知:在△ABC中,∠C=90°.求证:∠A,∠B中至少有一个角不大于45°.”时,应先假设( )A.∠A>45°,∠B>45° B.∠A≥45°,∠B≥45°C.∠A<45°,∠B<45° D.∠A≤45°,∠B≤45°6. 《九章算术》是我国古代内容极为丰富的数学名著,书中有下列问题:“今有勾八步,股十五步,问勾中容圆径几何.”其意思是:“今有直角三角形(如图),勾(短直角边)长为8步,股(长直角边)长为15步,问该直角三角形能容纳的圆形(内切圆)的直径是多少.”答案是 ( )A.3步B.5步C.6步D.8步7. 已知⊙O的半径为2,点P在⊙O内,则OP的长可能是( )A.1 B.2C.3 D.48. 2020·武汉模拟在平面直角坐标系中,圆心为坐标原点,⊙O的半径为10,则P(-10,1)与⊙O的位置关系为( )A.点P在⊙O上B.点P在⊙O外C.点P在⊙O内D.无法确定二、填空题9. 如图,在平面直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A,B在x轴上,且OA=OB.P为⊙C上的动点,∠APB=90°,则AB长的最大值为________.10. 已知在△ABC中,AB=AC=5,BC=6,以点A为圆心,4为半径作⊙A,则直线BC与⊙A 的位置关系是________.11. 如图,菱形ABOC的边AB,AC分别与☉O相切于点D,E,若点D是AB的中点,则∠DOE= .12. 如图,边长为1的正方形ABCD的对角线相交于点O,以点A为圆心,以1为半径画圆,则点O,B,C,D中,点________在⊙A内,点________在⊙A上,点________在⊙A外.13. (2019•河池)如图,PA、PB是的切线,A、B为切点,∠OAB=38°,则∠P=_______ ___.14. 如图,在矩形ABCD中,AB=8,AD=12,过A,D两点的⊙O与BC边相切于点E.则⊙O 的半径为________.15. 如图,在扇形ABC中,CD⊥AB,垂足为D,⊙E是△ACD的内切圆,连接AE,BE,则∠AEB的度数为________.O16. 在Rt△ABC中,∠C=90°,AC=6,BC=8.若以C为圆心,R为半径所作的圆与斜边AB 只有一个公共点,则R的取值范围是______________.三、解答题17. 2020·凉山州模拟如图,⊙O的直径AB=10 cm,弦BC=6 cm,∠ACB的平分线交⊙O 于点D,交AB于点E,P是AB延长线上一点,且PC=PE.(1)求证:PC是⊙O的切线;(2)求AC,AD的长.18. 已知直线l与⊙O,AB是⊙O的直径,AD⊥l于点D.(1)如图①,当直线l与⊙O相切于点C时,求证:AC平分∠DAB;(2)如图②,当直线l与⊙O相交于点E,F时,求证:∠BAF=∠DAE.19. 已知:如图,在Rt△ABC中,∠C=90°,AC=8,AB=10.点P在AC上,AP=2.若⊙O的圆心在线段BP上,且⊙O与AB,AC分别切于点D,E.求:(1)△BAP的面积S;(2)⊙O的半径.人教版九年级数学 24.2 点和圆、直线和圆的位置关系课时训练-答案一、选择题1. 【答案】D[解析]∵AB为☉O的切线,∴∠OAB=90°.∵∠ABO=36°,∴∠AOB=90°-∠ABO=54°.∵OA=OD,∴∠ADC=∠OAD,∵∠AOB=∠ADC+∠OAD,∴∠ADC=∠AOB=27°,故选D.2. 【答案】A3. 【答案】C4. 【答案】D【解析】∵PA,PB是⊙O的切线,∴PA=PB,所以A成立;∠BPD=∠APD,所以B成立;∴AB⊥PD,所以C成立;∵PA,PB是⊙O的切线,∴AB⊥PD,且AC=BC,只有当AD∥PB,BD∥PA时,AB平分PD,所以D不一定成立,故选D.5. 【答案】A6. 【答案】C7. 【答案】A8. 【答案】B二、填空题9. 【答案】1610. 【答案】相切11. 【答案】60°[解析]连接OA,∵四边形ABOC是菱形,∴BA=BO,∵AB与☉O相切于点D,∴OD⊥AB.∵D是AB的中点,∴OD是AB的垂直平分线,∴OA=OB,∴△AOB是等边三角形,∴∠AOD=∠AOB=30°,同理∠AOE=30°,∴∠DOE=∠AOD+∠AOE=60°,故答案为60°.112. 【答案】O B,D C [解析] ∵四边形ABCD为正方形,∴AC⊥BD,AO=BO=CO=DO. 设AO=BO=x.由勾股定理,得AO2+BO2=AB2,即x2+x2=12,解得x=22(负值已舍去),∴AO =22<1,AC =2>1,∴点O 在⊙A 内,点B ,D 在⊙A 上,点C 在⊙A 外.13. 【答案】76【解析】∵是的切线,∴, ∴,∴,∴,故答案为:76.14. 【答案】254【解析】如解图,连接EO 并延长交AD 于点F ,连接OD 、OA ,则OD =OA.∵BC与⊙O 相切于点E ,∴OE ⊥BC ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴EF ⊥AD ,∴DF =AF =12AD =6,在Rt △ODF 中,设OD =r ,则OF =EF -OE =AB -OE =8-r ,在Rt △ODF 中,由勾股定理得DF 2+OF 2=OD 2,即62+(8-r)2=r 2,解得r =254.∴⊙O 的半径为254.解图15. 【答案】135° [解析] 连接CE.∵∠ADC =90°,∴∠DAC +∠DCA =90°.∵⊙E 内切于△ADC ,∴∠EAC +∠ECA =45°,∴∠AEC =135°.由“边角边”可知△AEC ≌△AEB ,∴∠AEB =∠AEC =135°.16. 【答案】R =4.8或6<R ≤8 [解析] 当⊙C 与AB 相切时,如图①,过点C 作CD ⊥AB 于点D .根据勾股定理,得AB =AC 2+BC 2=62+82=10.根据三角形的面积公式,得12AB ·CD=12AC ·BC ,解得CD =4.8,所以R =4.8;当⊙C 与AB 相交时,如图②,此时R 大于AC 的长,而小于或等于BC 的长,即6<R ≤8.PA PB 、O PA PB PA OA =⊥,90PAB PBA OAP ∠=∠∠=︒,90903852PBA PAB OAB ∠=∠=︒-∠=︒-︒=︒180525276P ∠=︒-︒-︒=︒三、解答题17. 【答案】解:(1)证明:连接OC,如图所示.∵AB是⊙O的直径,∴∠ACB=90°.∵CD平分∠ACB,∴∠ACD=∠BCD=45°.∵PC=PE,∴∠PCE=∠PEC.∵∠PEC=∠EAC+∠ACE=∠EAC+45°,而∠EAC=90°-∠ABC,∠ABC=∠OCB,∴∠PCE=90°-∠OCB+45°=90°-(∠OCE+45°)+45°,∴∠OCE+∠PCE=90°,即∠PCO=90°,∴OC⊥PC,∴PC为⊙O的切线.(2)连接BD,如图所示.在Rt△ACB中,AB=10 cm,BC=6 cm,∴AC=AB2-BC2=102-62=8(cm).∵∠ACD=∠BCD=45°,∴∠DAB=∠DBA=45°,∴△ADB为等腰直角三角形,∴AD=22AB=5 2(cm).18. 【答案】证明:(1)如图①,连接OC.∵直线l与⊙O相切于点C,∴OC⊥l.又∵AD ⊥l ,∴AD ∥OC ,∴∠DAC =∠ACO.∵OA =OC ,∴∠ACO =∠CAO ,∴∠DAC =∠CAO ,即AC 平分∠DAB.(2)如图②,连接BF.∵AB 是⊙O 的直径,∴∠AFB =90°,∴∠BAF =90°-∠B.∵∠AEF =∠ADE +∠DAE =90°+∠DAE ,又由圆内接四边形的性质,得∠AEF +∠B =180°,∴90°+∠DAE +∠B =180°, ∴∠DAE =90°-∠B ,∴∠BAF =∠DAE.19. 【答案】解:(1)∵∠C =90°,AC =8,AB =10,∴在Rt △ABC 中,由勾股定理,得BC =6,∴△BAP 的面积S =12AP ·BC =12×2×6=6. (2)连接OD ,OE ,OA.设⊙O 的半径为r ,则S △BAP =12AB ·r +12AP ·r =6r , ∴6r =6,解得r =1.故⊙O 的半径是1.24.3 正多边形和圆(满分120分;时间:120分钟)一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,面积等于b,ab的值为()A.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC 内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究(2)如图②,在△ABC中,AB=BC,∠ABC=120∘,AC=6,求△ABC外接圆的半径及AB+BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD的人工湖,已知AD//BC,AD⊥AB,AB= 180m,BC=300m,AD>BC,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD内建一个湖心小岛P,并分别修建观光长廊PB和PC,且PB和PC相互垂直.为了容纳更多的游客,要使线段PB、PC之和尽可能的大.试问PB+PC是否存在最大值?若存在,请求出PB+PC的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)24.3 正多边形和圆(满分120分;时间:120分钟)一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为()A.6√2cmB.12cmC.6√3cmD.4√3cm2. 已知△ABC是⊙O的内接正三角形,△ABC的面积等于a,DEFG是半圆O的内接正方形,的值为()面积等于b,abA.2B.√62C.3√35D.15√3163. 如图,已知四边形ABCD内接于⊙O,∠ABC=70∘,则∠ADC的度数是( )A.70∘B.110∘C.130∘D.140∘4. 已知正多边形的边心距与边长的比是√3:2,则此正多边形是()A.正三角形B.正方形C.正六边形D.正十二边形5. 四边形ABCD内接于⊙O.如果∠D=80∘,那么∠B等于()A.80∘B.100∘C.120∘D.160∘6. 若一个正九边形的边长为a,则这个正九边形的半径是()A.acos20B.asin20C.a2cos20D.a2sin207. 如图,四边形ABCD为⊙O的内接四边形,若∠BCD=110∘,则∠BAD为()A.140∘B.110∘C.90∘D.70∘8. 如图,把正△ABC的外接圆对折,使点A与劣弧的中点M重合,若BC=5,则折痕在△ABC内的部分DE的长为()A.5√33B.10√33C.103D.529. 如图,某学校欲建一个喷泉水池,底面是半径为4m的正六边形,池底是水磨石地面,所要用的磨光机是半径为2dm的圆形砂轮,磨池底时,磨头磨不到的正六边形的部分为(单位:dm2)()A.2400√3−1200πB.8√3−400πC.8√3−23π D.24√3−23π二、填空题(本题共计 10 小题,每题 3 分,共计30分,)10. 圆内接正六边形的半径为2cm,则其边长等于________.11. 如图,四边形ABCD内接于⊙O,∠A=62∘,则∠C=________∘.12. 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的外角,若∠D=120∘,则∠CBE的度数是________.13. 如图,ABCDEF是⊙O的内接正六边形,若△BCF的面积为18√3cm2,则六边形ABCDEF的面积为________cm2.14 半径为1的圆的内接正三角形的边长为________.15 如图,四边形ABCD外切于⊙O,且AB=16,CD=10,则四边形的周长是________.16. 已知四边形ABCD内接于圆,且弧AB、BC的度数分别为140∘和100∘,若弧AD=2•弧DC,则∠BCD=________.17. 已知AB,AC分别是同一圆的内接正方形和内接正六边形的边,那么∠ACB度数为________ .18. 如图,四边形ABCD是⊙O的内接四边形,∠DCE=60∘,则∠BAD=________度.19. 小刚要在边长为10的正方形内设计一个有共同中心O的正多边形,使其边长最大且能在正方形内自由旋转.如图1,若这个正多边形为正六边形,此时EF=________;若这个正多边形为正三角形,如图2,当正△EFG可以绕着点O在正方形内自由旋转时,EF的取值范围为_________.三、解答题(本题共计 6 小题,共计63分,)20. (1)请你用直尺和圆规作出△ABC的外接圆(保留作图痕迹);(2)当AB=AC=4√5,BC=16,求△ABC的外接圆半径.21. 延长圆内接四边形ABCD的边AD和边BC,相交于点E,求证:△ABE∽△CDE.22. 如图,圆内接四边形ABCD,两组对边的延长线分别相交于点E、F,且∠E=40∘,∠F= 60∘,求∠A的度数.23. 如图,在等腰△PAD中,PA=PD,B是边AD上的一点,以AB为直径的⊙O经过点P,C是⊙O上一动点,连接AC,PC,PC交AB于点E,且∠ACP=60∘.(1)求证:PD是⊙O的切线.(2)连结OP,PB,BC,OC,若⊙O的直径是4,则:①当四边形APBC是矩形时,求DE的长;②当DE=________时,四边形OPBC是菱形.24 如图,四边形ABCD是⊙O的内接四边形,∠CBE是它的一个外角.求证:∠D=∠CBE.25. 问题提出(1)如图①,在⊙O中,点M、N分别是⊙O上的点,若OM=4,则MN的最大值为________.问题探究 (2)如图②,在△ABC 中,AB =BC,∠ABC =120∘,AC =6,求△ABC 外接圆的半径及AB +BC 的长;问题解决(3)如图③.某旅游区有一个形状为四边形ABCD 的人工湖,已知AD//BC ,AD ⊥AB ,AB =180m ,BC =300m ,AD >BC ,为了营造更加优美的旅游环境,旅游区管委员会决定在四边形ABCD 内建一个湖心小岛P ,并分别修建观光长廊PB 和PC ,且PB 和PC 相互垂直.为了容纳更多的游客,要使线段PB 、PC 之和尽可能的大.试问PB +PC 是否存在最大值?若存在,请求出PB +PC 的最大值,若不存在,请说明理由.(观光长廊的宽度忽略不计)人教版 九年级数学 24.4 弧长和扇形面积一、选择题1. 如图在等边三角形ABC 中,将边AC 逐渐变成以BA 为半径的AC ︵,其他两边的长度不变,则∠ABC 的度数由60°变为( )图A .(180π)°B .(120π)°C .(90π)°D .(60π)°2. 一个扇形的半径为6,圆心角为120°,则该扇形的面积是( )A .2πB .4πC .12πD .24π3. (2020·聊城)如图,有一块半径为1m ,圆心角为90°的扇形铁皮,要把它做成一个圆锥形容器(接缝忽略不计),那么这个圆锥形容器的高为( )A .41m B .43m C .415m D .23m 4. (2020·聊城)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为点M ,连接OC ,DB ,如果OC∥DB ,OC =23,那么图中阴影部分的面积是( )A .πB .2πC .3πD .4π5. 2019·天水模拟 一个圆锥的轴截面是一个正三角形,则圆锥侧面展开图形的圆心角是( ) A .60° B .90° C .120° D .180°6. 用圆心角为120°,半径为6 cm 的扇形纸片卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是( )A. 2 cm B .3 2 cm C .4 2 cm D .4 cm7. (2020·苏州)如图,在扇形OAB 中,已知90AOB ∠=︒,2OA =,过AB 的中点C作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )AM CBDA.1π-B.12π- C.12π-D.122π-8. 2018·黑龙江 如图在△ABC 中,AB =5,AC =3,BC =4,将△ABC 绕点A 按逆时针方向旋转40°得到△ADE ,点B 经过的路径为弧BD ,则图阴影部分的面积为( )图A.143π-6B.259π C.338π-3D.33+π二、填空题9. (2020·湘潭)如图,在半径为6的⊙O 中,圆心角60AOB ︒∠=,则阴影部分面积为________.10. (2020·绥化)已知圆锥的底面圆的半径是2.5,母线长是9,其侧面展开图的圆心角是______度.11. 如图所示,在△ABC 中,AB =BC =2,∠ABC =90°,则图中阴影部分的面积是________.12. 如图,以点O 为圆心的两个同心圆中,大圆的弦AB 是小圆的切线,点P 为切点,AB =123,OP =6,则劣弧AB ︵的长为________.(结果保留π)13. 如图所示,有一直径是 2 米的圆形铁皮,现从中剪出一个圆心角是90°的最大扇形ABC ,则:(1)AB 的长为________米;(2)用该扇形铁皮围成一个圆锥,所得圆锥的底面圆的半径为________米.14. 已知一个圆心角为270°,半径为3 m 的扇形工件未搬动前如图示,A ,B 两点触地放置,搬动时,先将扇形以点B 为圆心,做如图示的无滑动翻转,再使它紧贴地面滚动,当A ,B 两点再次触地时停止,则圆心O 所经过的路线长为________m .(结果用含π的式子表示)15. (2020·新疆)如图,⊙O 的半径是2,扇形BAC 的圆心角为60°,若将扇形BAC 剪下转成一个圆锥,则此圆锥的底面圆的半径为____________.16. 如图中的小方格都是边长为1的正方形,则以格点为圆心,半径为1和2的两种弧围成的“叶状”(阴影部分)图案的面积为________.三、解答题17. 如图,AB 是半圆O 的直径,C 是半圆O 上的一点,AC 平分∠DAB ,AD ⊥CD ,垂足为D ,AD 交半圆O 于点E ,连接CE.(1)判断CD 与半圆O 的位置关系,并证明你的结论;(2)若E 是AC ︵的中点,半圆O 的半径为1,求图中阴影部分的面积.18. (2020·内江)如图,AB 是⊙O 的直径,C 是⊙O 上一点,ODBC 于点D ,过点C 作⊙O 的切线,交OD 的延长线于点E ,连结BE . (1)求证:BE 是⊙O 的切线;(2)设OE 交⊙O 于点F ,若2DF BC ==,EF 的长; (3)在(2)的条件下,求阴影部分的面积.19. 如图,在正方形ABCD 中,AD =2,E 是AB 的中点,将△BEC 绕点B 逆时针旋转90°后,点E 落在CB 的延长线上的点F 处,点C 落在点A 处,再将线段AF 绕点F 顺时针旋转90°得线段FG ,连接EF ,CG. (1)求证:EF ∥CG ;(2)求点C ,A 在旋转过程中形成的AC ︵,AG ︵与线段CG 所围成的阴影部分的面积.人教版 九年级数学 24.4 弧长和扇形面积 课时训练-答案一、选择题1. 【答案】A [解析] 设变形后的∠B =n °,AB =AC ︵的长=a .由题意可得n180π·a =a ,解得n =180π.2. 【答案】C [解析] 根据扇形的面积公式,S =120×π×62360=12π.故选C.3. 【答案】C 【解析】先利用弧长公式求得圆锥的底面半径,再利用勾股定理求圆锥的高.设圆锥形容器底面圆的半径为r ,则有2πr=180190⋅π,解得r =41,则圆锥的高为22)41(1-=415(m).4. 【答案】B【解析】借助圆的性质,利用等积转化求解阴影部分的面积.由垂径定理,得CM =DM ,∵OC ∥DB ,∴∠C =∠D ,又∵∠OMC =∠BMD ,∴△OMC ≌△BMD(ASA),∴OM =BM =21OB =21OC ,∴cos ∠COM =OC OM =21,∴∠COM =60°.∴S 阴影=S 扇形BOC =360)32(602⋅π=2π.5. 【答案】D6. 【答案】C [解析] 设纸帽底面圆的半径为r cm ,则2πr =120×π×6180,解得r =2.设圆锥的高为h cm ,由勾股定理得h2+r2=62,所以h2+22=62,解得h =4 2.7. 【答案】B【解析】本题考查了不规则图形面积的计算,连接OC ,由题意得∠DOC=∠BOC=45°,四边形OECD 为正方形,OC=2,由特殊角的三角函数得OE=OD=1,S 阴影=S 扇形OAB -S 正方形CEOD =290(2)360π⨯-12=2π-1,因此本题选B .8. 【答案】B [解析] ∵AB =5,AC =3,BC =4,∴AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形.由旋转的性质得,△ADE 的面积=△ABC 的面积,由图可知,阴影部分的面积=△ADE 的面积+扇形ADB 的面积-△ABC 的面积, ∴阴影部分的面积=扇形ADB 的面积=40π×52360=259π.二、填空题9. 【答案】6π【解析】本题考查了扇形面积的计算,解题的关键是熟记扇形面积的计算公式.阴影部分面积为26066360ππ⨯=,故答案为:6π.10. 【答案】100【解析】设圆心角的度数是n ,则2π×2.5=9180n π.解得n =100.11. 【答案】π-2 [解析] ∵在△ABC 中,AB =BC =2,∠ABC =90°,∴△ABC 是等腰直角三角形,∴S 阴影=S 半圆AB +S 半圆BC -S △ABC=12π×(22)2+12π×(22)2-12×2×2 =π-2.12. 【答案】 8π 【解析】∵AB 是小圆的切线,∴OP ⊥AB ,∴AP =12AB =6 3.如解图,连接OA ,OB ,∵OA =OB ,∴∠AOB =2∠AOP.在Rt △AOP 中,OA =OP 2+AP 2=12,tan ∠AOP =AP OP =636=3,∴∠AOP =60°.∴∠AOB =120°,∴劣弧AB 的长为120π·12180=8π.13. 【答案】(1)1 (2)14[解析] (1)如图,连接BC.∵∠BAC =90°,∴BC 为⊙O 的直径,即BC = 2. ∵AB =AC ,AB2+AC2=BC2=2, ∴AB =1(米).(2)设所得圆锥的底面圆的半径为r 米. 根据题意,得2πr =90·π·1180,解得r =14.14. 【答案】6π [解析] 由题意易知∠AOB =90°,OA =OB ,∴∠ABO =45°,圆心O 旋转的长度为2×45π×3180=3π2(m),圆心O 平移的距离为270π×3180=9π2(m),则圆心O 经过的路线长为3π2+9π2=6π(m).15.【解析】本题考查了垂径定理,弧长公式,圆锥的侧面展开图.连接OA ,OB ,OC ,过点O 作OD ⊥AC 于点D .∵AB =AC ,OB =OC ,OA =OA ,所以△OAB ≌△OAC ,所以∠OAB =∠OAC =12∠BAC =12×60°=30°.在Rt △OAD 中,因为∠OAC =30°,OA =2,所以OD =1,AD 因为OD ⊥AC ,所以AC =2AD =BC l =60180×π×π.设此圆锥的底面圆的半径为r ,则r .16. 【答案】2π-4 [解析] 如图所示,由题意,得阴影部分的面积=2(S 扇形OAB -S △OAB)=2(90π×22360-12×2×2)=2π-4. 故答案为2π-4.三、解答题17. 【答案】解:(1)CD 与半圆O 相切.证明:∵AC 平分∠DAB ,∴∠DAC =∠BAC.∵OA =OC ,∴∠BAC =∠OCA ,∴∠DAC =∠OCA ,∴OC ∥AD.∵AD ⊥CD ,∴OC ⊥CD.又∵OC 为半圆O 的半径,∴CD 与半圆O 相切.(2)连接OE.∵AC 平分∠DAB ,∴∠DAC =∠BAC ,∴EC ︵=BC ︵.又∵E 是AC ︵的中点,∴AE ︵=EC ︵=BC ︵,S 弓形AE =S 弓形CE ,∴∠BOC =∠EOC =60°.又∵OE =OC ,∴△OEC 是等边三角形,∴∠ECO =60°,CE =OC =1.由(1)得OC ⊥CD ,∴∠OCD =90°,∴∠DCE =30°,∴DE =12,DC =32, ∴S 阴影=S △DEC =12×12×32=38.18. 【答案】(1)证明:连接OC ,如图,∵OD ⊥BC ,∴CD=BD ,∴OE 为BC 的垂直平分线,∴EB=EC ,∴∠EBC=∠ECB ,∵OB=OC ,∴∠OBC=∠OCB ,∴∠OBC+∠EBC=∠OCB+∠ECB ,即∠OBE=∠OCE ,∵CE 为⊙O 的切线,∴OC ⊥CE ,∴∠OCE=90°, ∴∠OBE=90°,∴OB ⊥BE ,∴BE 与⊙O 相切.(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD 中,BD=12BC=∵OD2+BD2=OB2,∴222(2)R R -+=,解得R=4,∴OD=2,OB=4,∴∠OBD=30°,∴∠BOD=60°,∴在Rt △OBE 中,∠BEO=30º,OE=2OB=8,∴EF=OE-OF=8-4=4,即EF=4;(3)由∠OCD=∠OBD=30º和OD ⊥BC 知:∠COD=∠BOD=60º,∴∠BOC=120º,又BC=OE=8,∴=S OBEC S S -阴影四边形扇形OBC =21120482360π⨯⨯ 163π=,【解析】本题考查了切线的判定与性质、垂径定理、扇形面积的计算、含30º角的直角三角形边角关系、勾股定理等知识,熟练掌握每个知识点是解答的关键.(1)连接OC ,如图,根据垂径定理由OD ⊥BC 得到CD=BD ,则OE 为BC 的垂直平分线,所以EB=EC ,根据等腰三角形的性质得∠EBC=∠ECB ,加上∠OBC=∠OCB ,则∠OBE=∠OCE ;再根据切线的性质得∠OCE=90°,所以∠OBE=90°,然后根据切线的判定定理得BE 与⊙O 相切;(2)设⊙O 的半径为R ,则OD=R-DF=R-2,OB=R ,在Rt △OBD ,利用勾股定理解得R=4,再利用含30º角的直角三角形边角关系可求得OE ,利用EF=OE-OF 即可解答;(3)利用(2)中可求得∠BOC=120º,然后利用=S OBEC S S 阴影四边形扇形OBC 代入数值即可求解.19. 【答案】解:(1)证明:∵四边形ABCD 是正方形,∴AB =BC =AD =2,∠ABC =90°.∵△BEC 绕点B 逆时针旋转90°得△BFA ,∴△BFA ≌△BEC ,∴∠FAB =∠ECB ,∠ABF =∠CBE =90°,AF =CE ,∴∠AFB +∠FAB =90°.∵线段AF 绕点F 顺时针旋转90°得线段FG ,∴∠AFB +∠CFG =∠AFG =90°,AF =FG ,∴∠CFG =∠FAB =∠ECB ,CE =FG ,∴CE 綊FG ,∴四边形EFGC 是平行四边形,∴EF ∥CG.(2)∵E 是AB 的中点,∴AE =BE =12AB. ∵△BFA ≌△BEC ,∴BF =BE =12AB =1, ∴AF =AB2+BF2= 5.由(1)知四边形EFGC 是平行四边形,FC 为其对角线,∴点G 到FC 的距离等于点E 到FC 的距离,即BE 的长,∴S 阴影=S 扇形BAC +S △ABF +S △FGC -S 扇形FAG =90π·22360+12×2×1+12×(1+2)×1-90π·(5)2360=52-π4.。
九年级数学上册 第二十四章 圆 24.1 圆的有关性质 24.1.1 圆(拓展提高)同步检测(含解析)(新版)新人教

24.1 圆的有关性质24.1.1 圆基础闯关全练拓展训练1. 如图,是以等边三角形ABC一边AB为半径的四分之一圆周,P为上任意一点,若AC=5,则四边形ACBP周长的最大值是( )A.15B.20C.15+5D.15+52.如图,点B,O,O',C,D在一条直线上,BC是半圆O的直径,OD是半圆O'的直径,两半圆相交于点A,连接AB,AO',若∠BAO'=67.2°,则∠AO'C=度.3.如图所示,三圆同心于O,AB=4 cm,CD⊥AB于O,则图中阴影部分的面积为cm2.能力提升全练拓展训练1.在平面直角坐标系中,☉C的圆心坐标为(1,0),半径为1,AB为☉C的直径,若点A的坐标为(a,b),则点B的坐标为( )A.(-a-1,-b)B.(-a+1,-b)C.(-a+2,-b)D.(-a-2,-b)2.已知半径为R的半圆O,过直径AB上一点C,作CD⊥AB交半圆于点D,且CD=R,则AC的长为.三年模拟全练拓展训练1.(2016江苏无锡期中,9,★★☆)如图,四边形PAOB是扇形OMN的内接矩形,顶点P在弧MN 上,且不与M、N重合,当P点在弧MN上移动时,矩形PAOB的形状、大小随之变化,则PA2+PB2的值( )22A.变大B.变小C.不变D.不能确定2.(2017江苏淮安盱眙二中月考,18,★★☆)如图,直线y=x+3与坐标轴交于A 、B 两点,☉O 的半径为2,点P 是☉O 上动点,△ABP 面积的最大值为 cm 2.五年中考全练 拓展训练在△ABC 中,∠C 为锐角,分别以AB,AC 为直径作半圆,过点B,A,C作,如图所示.若AB=4,AC=2,S 1-S 2=,则S 3-S 4的值是()A. B. C. D.核心素养全练 拓展训练如图,在平面直角坐标系xOy 中,M 点的坐标为(3,0),☉M 的半径为2,过M 点的直线与☉M 的交点分别为A 、B,则△AOB 的面积的最大值为 .24.1.1 圆基础闯关全练 拓展训练1.答案 C 由已知得AC=CB=BP=5,要使四边形ACBP 的周长最大,只要AP 取最大值,AP 的最大值为AD=5,此时四边形ACBP 的周长最大,是15+5,故选C.32.答案 89.6解析 连接OA,∵OA=OB,∴∠BAO=∠B,∴∠AOO'=2∠B. ∵O'A=O'O,∴∠O'AO=∠AOO'=2∠B.∵∠BAO'=∠BAO+∠O'AO=67.2°,∴∠B=22.4°, ∴∠AO'C=∠B+∠BAO'=89.6°.3.答案 π解析 S 阴影=S 大圆=π(4÷2)2=π(cm 2). 能力提升全练 拓展训练1.答案 C 如图,作AD⊥x 轴于D,BE⊥x 轴于E,∵AB 为☉C 的直径,∴CA=CB,而∠ACD=∠BCE, ∴Rt△ACD≌Rt△BCE, ∴AD=BE,DC=CE.∵点A 的坐标为(a,b),☉C 的圆心坐标为(1,0), ∴BE=AD=b,EC=CD=a -1, ∴OE=1-(a-1)=-a+2,∴点B 的坐标为(-a+2,-b),故选C.2.答案R 或R解析 分两种情况:(1)如图1,∵CD⊥AB,∴OD 2=OC 2+CD 2,∵OD=R,CD=R,∴CO=R,∴AC=R.(2)如图2,∵CD⊥AB,∴OD 2=OC 2+CD 2,∵OD=R,CD=R,∴CO=R,∴AC=R.4 4故答案为R 或R.三年模拟全练 拓展训练1.答案 C 连接OP,∵Rt△P AB 中,AB 2=PA 2+PB 2,又∵矩形PAOB 中,OP=AB,∴PA 2+PB 2=AB 2=OP 2.故选C.2.答案 11解析 ∵直线y=x+3与坐标轴交于A 、B 两点,∴A(-4,0),B(0,3),∴OA=4,OB=3.在Rt△AOB 中,由勾股定理得AB=5.∵△PAB 中,AB=5是定值,∴要使△PAB 的面积最大,需☉O 上的点到AB 的距离最大.如图,过点O 作OC⊥AB 于C,CO 的延长线交☉O 于P,此时S △PAB 最大,∵S △AOB=OA·OB=AB·OC,∴OC===,∵☉O 的半径为2,∴CP=OC+OP=,∴S △PAB =AB·CP=×5×=11.五年中考全练 拓展训练答案 D ∵AB=4,AC=2,∴S 1+S 3=2π,S 2+S 4=,∴(S 1-S 2)+(S 3-S 4)=(S 1+S 3)-(S 2+S 4)=π,∵S 1-S 2=,∴S 3-S 4=π,故选D. 核心素养全练 拓展训练答案 6解析∵AB为☉M的直径,☉M的半径为2,∴AB=4,∴当点O到AB的距离最大时,△AOB的面积取得最大值,即当OM⊥AB时,△AOB的面积取得最大值,最大值为×3×4=6.5。
-人教版九年级数学上第24章圆全章测试含答案.doc

第24章 圆 全章测试一、填空题(每题5分,计40分)1、已知点O 为△ABC 的外心,若∠A=80°,则∠BOC 的度数为( ) A .40° B .80° C .160° D .120°2.点P 在⊙O 内,OP =2cm ,若⊙O 的半径是3cm ,则过点P 的最短弦的长度为( ) A .1cmB .2cmCD.3.已知A 为⊙O 上的点,⊙O 的半径为1,该平面上另有一点P,PA =P 与⊙O 的位置关系是( )A .点P 在⊙O 内B .点P 在⊙O 上C .点P 在⊙O 外D .无法确定4.如图,A B C D ,,,为O 的四等分点,动点P 从圆心O 出发,沿O C D O ---路线作匀速运动,设运动时间为t (s ).()APB y =∠,则下列图象中表示y 与t 之间函数关系最恰当的是( )5. 在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定( ) A .与x轴相离、与y 轴相切 B .与x 轴、y 轴都相离 C .与x轴相切、与y 轴相离 D .与x 轴、y 轴都相切6 如图,若⊙的直径AB 与弦AC 的夹角为30°,切线CD 与AB的延长线交于点D,且⊙O 的半径为2,则CD 的长为 ( )A.B.C.2D. 47.如图,△PQR 是⊙O 的内接三角形,四边形ABCD 是⊙O 的内接正方形,BC ∥QR,则∠DOR 的度数是 ( )A.60B.65C.72D. 75第4题图AB C DOP B .D .A .C .第6题图O P Q D B AC 第7题图 R8.如图,A ⊙、B ⊙、C ⊙、D ⊙、E ⊙相互外离,它们的半径都是1,顺次连结五个圆心得到五边形ABCDE ,则图中五个扇形(阴影部分)的面积之和是( )A .πB .1.5πC .2πD .2.5π 二 选择题(每题5分,计30分) 9.如图,直角坐标系中一条圆弧经过网格点A 、B 、C ,其中,B 点坐标为(4,4),则该圆弧所在圆的圆心坐标为 .10. 如图,在ΔABC 中,∠A=90°,AB=AC=2cm ,⊙A 与BC 相切于点D ,则⊙A 的半径长为 cm.11.善于归纳和总结的小明发现,“数形结合”是初中数学的基本思想方法,被广泛地应用在数学学习和解决问题中.用数量关系描述图形性质和用图形描述数量关系,往往会有新的发现.小明在研究垂直于直径的弦的性质过程中(如图,直径AB ⊥弦CD 于E ),设AE x =,BE y =,他用含x y ,的式子表示图中的弦CD 的长度,通过比较运动的弦CD 和与之垂直的直径AB 的大小关系,发现了一个关于正数x y ,的不等式,你也能发现这个不等式吗?写出你发现的不等式 .(12题图)12.如图,∠AOB=300,OM=6,那么以M 为圆心,4为半径的圆与直OA 的位置关系是_________________. 13.如图,△㎝,则AC的长等于_______㎝。
人教版九年级数学上册《第二十四章圆 》测试卷-附参考答案

人教版九年级数学上册《第二十四章圆》测试卷-附参考答案一、单选题1.已知AB是⊙O的直径,的度数为60°,⊙O的半径为2cm,则弦AC的长为()A.2cm B.cm C.1cm D.cm2.已知圆O的半径为5,同一平面内有一点P,且OP=4,则点P与圆O的关系是()A.点P在圆内B.点P在圆外C.点P在圆上D.无法确定3.如图,是的直径,若,则圆周角的度数是()A.B.C.D.4.如图,已知半圆O与四边形的边相切,切点分别为D,E,C,设半圆的半径为2,则四边形的周长为()A.7 B.9 C.12 D.145.如图,是的内接三角形,作,并与相交于点D,连接BD,则的大小为()A.B.C.D.6.如图,点A,B,C在上,四边形是平行四边形.若对角线,则的长为()A.B.C.D.7.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.8.如图,半径为的扇形中,是上一点,垂足分别为,若,则图中阴影部分面积为( )A.B.C.D.二、填空题9.如图,是的弦,C是的中点,交于点D.若,则的半径为 .10.如图,是的直径,交于点,且,则的度数= .11.AB为半圆O的直径,现将一块等腰直角三角板如图放置,锐角顶点P在半圆上,斜边过点B,一条直角边交该半圆于点Q.若AB=2,则线段BQ的长为.12.如图,为的外接圆,其中点在上,且,已知和则.13.如图,以正方形的顶点为圆心,以对角线为半径画弧,交的延长线于点,连结,若,则图中阴影部分的面积为.(结果用表示)三、解答题14.如图,CD是⊙O的直径,弦AB⊥CD于E,是的中点,连接BC,AO,BD.求的大小.15.如图,是的外接圆,且,点M是的中点,作交的延长线于点N,连接交于点D.(1)求证:是的切线;(2)若,求的半径.16.如图,等腰内接于,AC的垂直平分线交边BC于点E,交于F,垂足为D,连接AF并延长交BC的延长线于点P.(1)求证:;(2)若,求的度数.17.如图,在中,是边上一点,以为圆心,为半径的圆与相交于点,连接,且.(1)求证:是的切线;(2)若,求的长.18.如图,⊙O的半径OC垂直于弦AB于点D,点P在OC的延长线上,AC平分∠PAB.(1)判断AP与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,弦AB平分OC,求与弦AB、AC围成的阴影部分的面积.参考答案:1.A2.A3.B4.D5.A6.C7.D8.B9.510.24°11.12.13.14.解:又是中点在和中≌∴BD=OA是直径,OA是半径90°且30°. 15.(1)证明:∵∴∵点M是的中点∴∴∴∴是的直径∴∵∴∴是的切线;(2)解:如图所示,连接,设交于D∵∴设的半径为r,则∵∴在中,由勾股定理的∴∴∴的半径为.16.(1)证明:如图,连接BF.∵AC的垂直平分线交边BC于点E,交于F,且圆是轴对称图形,∴O,E,F三点共线,∴∴∴,∵,∴(2)解:如图,连接CF,设,则∵∴∵∴∴∴.∵∴,即易证(SAS),∴∵,∴,∴,∴,解得∴∴的度数为108°.17.(1)证明:连接OD.∵AC=CD∴∠A=∠ADC.∵OB=OD∴∠B=∠BDO.∵∠ACB=90°∴∠A+∠B=90°.∴∠ADC+∠BDO=90°.∴∠ODC=180°﹣(∠ADC+∠BDO)=90°.又∵OD是⊙O的半径∴CD是⊙O的切线.(2)解:∵AC=CD,∠A=60°∴△ACD是等边三角形.∴∠ACD=60°.∴∠DCO=∠ACB﹣∠ACD=30°.在Rt△OCD中,OD=CDtan∠DCO tan30°=2.∵∠B=90°﹣∠A=30°,OB=OD∴∠ODB=∠B=30°.∴∠BOD=180°﹣(∠B+∠BDO)=120°.∴的长18.(1)解:AP与⊙O的位置关系是相切,理由如下:连接平分垂直于弦,且是半径是的切线;(2)解:连接OB,如图所示:∵弦AB垂直平分OC∴∴∴∵OA=OC∴△OAC是等边三角形∴∴△OBD≌△CAD(ASA)∴。
新人教版九年级上数学第24章《圆》基础练习(7套)
时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.以已知点O为圆心作圆,可以作()A.1个B.2个C.3个D.无数个2.如图J2411,在⊙O中,弦的条数是()A.2 B.3 C.4 D.以上均不正确图J2411 图J2412 图J24133.如图J2412,在半径为2 cm的⊙O内有长为2 3 cm的弦AB,则∠AOB 为()A.60° B.90° C.120° D.150°二、填空题(每小题4分,共8分)4.过圆内的一点(非圆心)有________条弦,有________条直径.5.如图J2413,OE,OF分别为⊙O的弦AB,CD的弦心距,如果OE=OF,那么______(只需写一个正确的结论).三、解答题(共8分)6.如图J2414,已知AB是⊙O的直径,AC为弦,OD∥BC,交AC于点D,OD=5 cm,求BC的长.图J2414时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J2415,AB是⊙O的直径,»BD=»CD,∠BOD=60°,则∠AOC=() A.30° B.45° C.60° D.以上都不正确2.如图J2416,AB,CD是⊙O的直径,»AE=»BD,若∠AOE=32°,则∠COE的度数是()A.32° B.60° C.68° D.64°图J2415 图J2416 图J2417 图J2418二、填空题(每小题4分,共8分)3.如图J2417,CD⊥AB于点E,若∠B=60°,则∠A=________.4.如图J2418,D,E分别是⊙O的半径OA,OB上的点,CD⊥OA,CE⊥OB,CD=CE,则»AC与»CB的弧长的大小关系是______________.三、解答题(共11分)5.如图J2419,已知AB=AC,∠APC=60°.(1)求证:△ABC是等边三角形;(2)求∠APB的度数.图J2419时间:10分钟满分:25分一、选择题(每小题3分,共9分)1.已知圆的半径为3,一点到圆心的距离是5,则这点在()A.圆内B.圆上C.圆外D.都有可能答案2.在△ABC中,∠C=90°,AC=BC=4 cm,点D是AB边的中点,以点C 为圆心,4 cm长为半径作圆,则点A,B,C,D四点中在圆内的有() A.1个B.2个C.3个D.4个3.⊙O的半径r=5 cm,圆心到直线l的距离OM=4 cm,在直线l上有一点P,且PM=3 cm,则点P()A.在⊙O内B.在⊙O上C.在⊙O外D.可能在⊙O上或在⊙O内二、填空题(每小题4分,共8分)4.锐角三角形的外心在________;直角三角形的外心在________;钝角三角形的外心在________.5.在Rt△ABC中,∠C=90°,AC=5 cm,BC=12 cm,则Rt△ABC其外接圆半径为________cm.三、解答题(共8分)6.通过文明城市的评选,人们增强了卫生意识,大街随地乱扔生活垃圾的人少了,人们自觉地将生活垃圾倒入垃圾桶中,如图J2421所示,A,B,C为市内的三个住宅小区,环保公司要建一垃圾回收站,为方便起见,要使得回收站建在三个小区都相等的某处,请问如果你是工程师,你将如何选址.图J2421时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.如图J2422,PA切⊙O于点A,PO交⊙O于点B,若PA=6,OP=8,则⊙O的半径是()A.4 B.2 7 C.5 D.102.如图J2423,PA,PB是⊙O的两条切线,切点是A,B.如果OP=4,OA =2,那么∠AOB=()A.90° B.100° C.110° D.120°图J2422 图J2423 图J2424 图J2425二、填空题(每小题4分,共12分)3.已知⊙O的直径为10 cm,圆心O到直线l的距离分别是:①3 cm;②5 cm;③7 cm.那么直线l和⊙O的位置关系是:①________;②________;③________.4.如图J2424,AB是⊙O的直径,点D在AB的延长线上,过点D作⊙O 的切线,切点为C,若∠A=25°,则∠D=________.5.如图J2425,⊙O是△ABC的内切圆,与AB,BC,CA分别切于点D,E,F,∠DOE=120°,∠EOF=110°,则∠A=______,∠B=______,∠C=______.三、解答题(共7分)6.如图J2426所示,EB,EC是⊙O的两条切线,B,C是切点,A,D是⊙O上两点,如果∠E=46°,∠DCF=32°,求∠A的度数.图J2426时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.一正多边形外角为90°,则它的边心距与半径之比为()A.1∶2 B.1∶2C.1∶ 3 D.1∶32.如图J2431,正六边形ABCDEF内接于⊙O,则∠ADB的度数是()图J2431A.60° B.45° C.30° D.22.5°二、填空题(每小题4分,共12分)3.正12边形的每个中心角等于________.4.正六边形的边长为10 cm,它的边心距等于________cm.5.从一个半径为10 cm的圆形纸片上裁出一个最大的正方形,则此正方形的边长为________ cm.三、解答题(共7分)6.如图J2432,要把一个边长为a的正三角形剪成一个最大的正六边形,要剪去怎样的三个三角形?剪成的正六边形的边长是多少?它的面积与原来三角形面积的比是多少?图J2432时间:10分钟 满分:25分一、选择题(每小题3分,共9分)1.在半径为12的⊙O 中,150°的圆心角所对的弧长等于( ) A .24π cm B .12π cm C .10π cm D .5π cm2.已知一条弧的半径为9,弧长为8π,那么这条弧所对的圆心角是为( ) A .200° B .160° C .120° D .80°3.已知扇形的圆心角为60°,半径为5,则扇形的周长为( ) A.53π B.53π+10 C.56π D.56π+10 二、填空题(每小题4分,共8分)4.如图J2441,已知正方形ABCD 的边长为12 cm ,E 为CD 边上一点,DE =5 cm.以点A 为中心,将△ADE 按顺时针方向旋转得△ABF ,则点E 所经过的路径长为________cm.图J2441 图J24425.如图J2442,在两个同心圆中,两圆半径分别为2,1,∠AOB =120°,则阴影部分面积是____________.三、解答题(共8分)6.如图J2443,在正方形ABCD 中,CD 边的长为1,点E 为AD 的中点,以E 为圆心、1为半径作圆,分别交AB ,CD 于M ,N 两点,与BC 切于点P ,求图中阴影部分的面积.图J2443时间:10分钟满分:25分一、选择题(每小题3分,共6分)1.已知一个扇形的半径为60 cm,圆心角为150°,若用它做成一个圆锥的侧面,则这个圆锥的底面半径为()A.12.5 cm B.25 cm C.50 cm D.75 cm2.如图J2444小红需要用扇形薄纸板制作成底面半径为9厘米,高为12厘米的圆锥形生日帽,则该扇形薄纸板的圆心角为()A.150° B.180° C.216° D.270°图J2444 图J2445 图J2446二、填空题(每小题4分,共12分)3.如图J2445,小刚制作了一个高12 cm,底面直径为10 cm的圆锥,这个圆锥的侧面积是________cm2.4.如图J2446,Rt△ABC分别绕直角边AB,BC旋转一周,旋转后得到的两个圆锥的母线长分别为____________.5.圆锥母线为8 cm,底面半径为5 cm,则其侧面展开图的圆心角大小为______.三、解答题(共7分)6.一个圆锥的高为3 3 cm,侧面展开图为半圆,求:(1)圆锥的母线与底面半径之比;(2)圆锥的全面积.基础知识反馈卡·24.1.1 1.D 2.C 3.C 4.无数 一 5.AB =CD 或»AB =»CD 6.BC =10 cm基础知识反馈卡·24.1.21.C 2.D 3.30° 4.相等5.(1)证明:由圆周角定理,得∠ABC =∠APC =60°.又AB =AC ,∴△ABC 是等边三角形.(2)解:∵∠ACB =60°, ∠ACB +∠APB =180°,∴∠APB =180°-60°=120°. 基础知识反馈卡·24.2.1 1.C 2.B 3.B 4.三角形内 斜边上 三角形外 5.6.5 6.解:图略.作法:连接AB ,AC ,分别作这两条线段的垂直平分线,两直线的交点为垃圾桶的位置. 基础知识反馈卡·24.2.21.B 2.D 3.相交 相切 相离 4.40° 5.50° 60° 70°6.解:∵EB ,EC 是⊙O 的两条切线,∴EB =EC .∴∠ECB =∠EBC . 又∠E =46°,而∠E +∠EBC +∠ECB =180°,∠ECB =67°. 又∠DCF +∠ECB +∠DCB =180°, ∴∠BCD =180°-67°-32°=81°. 又∠A +∠BCD =180°, ∴∠A =180°-81°=99°. 基础知识反馈卡·24.31.B 2.C 3.30° 4.5 3 5.10 26.解:三个小三角形是等边三角形且边长为13a ,正六边形的边长为13a ,正六边形的面积为36a 2,原正三角形的面积为34a 2,它们的面积比为2∶3.基础知识反馈卡·24.4.11.C 2.B 3.B 4.132π(也可写成6.5π) 5.2π6.解:在Rt △EAM 和Rt △EDN 中,∵AE =DE ,EM =EN , ∴Rt △EAM ≌Rt △EDN . ∴∠AEM =∠DEN .连接EP ,∵AE =12AD =12,CD =EP =EM =1,∴AE =12EM .∴∠AME =30°.∴∠AEM =60°,AM =1-14=32.∴∠MEN =180-2×60°=60°.∴S 阴影=60×12×π360=π6.基础知识反馈卡·24.4.2 1.B 2.C 3.65π 4.2,2 5.225°6解:(1)2πr =12×2πl ,∴l =2r ,l ∶r =2∶1.(2)∵l 2-r 2=h 2,∴3r 2=(3 3)2.∴r =3 cm ,l =6 cm.S 全=πrl +πr 2=27π(cm 2).。
新版新人教版九年级数学上册第24章、圆全章同步练习(word文档有答案)
第二十四章圆==本文档为word格式,下载后可随意编辑修改!==24.1 圆的有关性质一.选择题(共20小题)1.(安顺)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为()A.2cm B.4cm C.2cm或4cm D.2cm或4cm2.(张家界)如图,AB是⊙O的直径,弦CD⊥AB于点E,OC=5cm,CD=8cm,则AE=()A.8cm B.5cm C.3cm D.2cm3.(临安区)如图,⊙O的半径OA=6,以A为圆心,OA为半径的弧交⊙O于B、C点,则BC=()A.B.C.D.(2题图)(3题图)(4题图)(5题图)(6题图)4.(乐山)《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸5.(济宁)如图,点B,C,D在⊙O上,若∠BCD=130°,则∠BOD的度数是()A.50° B.60° C.80° D.100°6.(聊城)如图,⊙O中,弦BC与半径OA相交于点D,连接AB,OC.若∠A=60°,∠ADC=85°,则∠C 的度数是()A.25° B.27.5°C.30° D.35°7.(南充)如图,BC是⊙O的直径,A是⊙O上的一点,∠OAC=32°,则∠B的度数是()A.58° B.60° C.64° D.68°8.(铜仁市)如图,已知圆心角∠AOB=110°,则圆周角∠ACB=()A.55°B.110°C.120°D.125°(7题图)(8题图)(9题图)9.(菏泽)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64° B.58° C.32° D.26°10.(张家界)如图,在⊙O中,AB是直径,AC是弦,连接OC,若∠ACO=30°,则∠BOC的度数是()A.30° B.45° C.55° D.60°11.(哈尔滨)如图,⊙O中,弦AB、CD相交于点P,∠A=42°,∠APD=77°,则∠B的大小是()A.43° B.35° C.34° D.44°(10题图)(11题图)(13题图)12.(潍坊)点A、C为半径是3的圆周上两点,点B为的中点,以线段BA、BC为邻边作菱形ABCD,顶点D恰在该圆直径的三等分点上,则该菱形的边长为()A.或2B.或2C.或2D.或213.(黔西南州)如图,在⊙O中,半径OC与弦AB垂直于点D,且AB=8,OC=5,则CD的长是()A.3 B.2.5 C.2 D.114.(乐山)如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米B.2.5米C.2.4米D.2.1米15.(金华)如图,在半径为13cm的圆形铁片上切下一块高为8cm的弓形铁片,则弓形弦AB的长为()A.10cm B.16cm C.24cm D.26cm(14题图)(15题图)(16题图)16.(泸州)如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A.B.2 C.6 D.817.(黔南州)如图,AB是⊙O的直径,弦CD⊥AB于点E,∠CDB=30°,⊙O的半径为5cm,则圆心O到弦CD的距离为()A. cm B.3cm C.3cm D.6cm18.(牡丹江)如图,在半径为5的⊙O中,弦AB=6,OP⊥AB,垂足为点P,则OP的长为()A.3 B.2.5 C.4 D.3.5(17题图)(18题图)(19题图)19.(赤峰)如图,⊙O的半径为1,分别以⊙O的直径AB上的两个四等分点O1,O2为圆心,为半径作圆,则图中阴影部分的面积为()A.πB.π C.π D.2π20.(巴彦淖尔)如图,线段AB是⊙O的直径,弦CD⊥AB,∠CAB=40°,则∠ABD与∠AOD分别等于()A.40°,80°B.50°,100°C.50°,80°D.40°,100°(20题图)(22题图)二.填空题(共10小题)21.(孝感)已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB和CD 之间的距离是cm.22.(曲靖)如图:四边形ABCD内接于⊙O,E为BC延长线上一点,若∠A=n°,则∠DCE= °.23.(金华)如图1是小明制作的一副弓箭,点A,D分别是弓臂BAC与弓弦BC的中点,弓弦BC=60cm.沿AD方向拉动弓弦的过程中,假设弓臂BAC始终保持圆弧形,弓弦不伸长.如图2,当弓箭从自然状态的点D 拉到点D1时,有AD1=30cm,∠B1D1C1=120°.(1)图2中,弓臂两端B1,C1的距离为cm.(2)如图3,将弓箭继续拉到点D2,使弓臂B2AC2为半圆,则D1D2的长为cm.(23题图)(24题图)(25题图)24.(梧州)如图,已知在⊙O中,半径OA=,弦AB=2,∠BAD=18°,OD与AB交于点C,则∠ACO= 度.25.(烟台)如图,方格纸上每个小正方形的边长均为1个单位长度,点O,A,B,C在格点(两条网格线的交点叫格点)上,以点O为原点建立直角坐标系,则过A,B,C三点的圆的圆心坐标为.26.(雅安)⊙O的直径为10,弦AB=6,P是弦AB上一动点,则OP的取值范围是.27.(湘西州)如图所示,在⊙O中,直径CD⊥弦AB,垂足为E,已知AB=6,OE=4,则直径CD=28.(常州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为弧BD的中点,若∠DAB=40°,则∠ABC= .(27题图)(28题图)(29题图)(30题图)29.(湘潭)如图,在⊙O 中,已知∠AOB=120°,则∠ACB= .30.(安顺)如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE= .三.解答题(共5小题)31.(宜昌)如图,在△ABC中,AB=AC,以AB为直径的圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FB,FC.(1)求证:四边形ABFC是菱形;(2)若AD=7,BE=2,求半圆和菱形ABFC的面积.32.(牡丹江)如图,在⊙O中, =,CD⊥OA于D,CE⊥OB于E,求证:AD=BE.33.(济南)如图,AB是⊙O的直径,∠ACD=25°,求∠BAD的度数.34.(福州)如图,正方形ABCD内接于⊙O,M为中点,连接BM,CM.(1)求证:BM=CM;(2)当⊙O的半径为2时,求的长.35.(宁夏)已知△ABC,以AB为直径的⊙O分别交AC于D,BC于E,连接ED,若ED=EC.(1)求证:AB=AC;(2)若AB=4,BC=2,求CD的长.24.2 点和圆、直线和圆的位置关系一.选择题(共20小题)1.(哈尔滨)如图,点P为⊙O外一点,PA为⊙O的切线,A为切点,PO交⊙O于点B,∠P=30°,OB=3,则线段BP的长为()A.3 B.3 C.6 D.92.(眉山)如图所示,AB是⊙O的直径,PA切⊙O于点A,线段PO交⊙O于点C,连结BC,若∠P=36°,则∠B等于()A.27° B.32° C.36° D.54°3.(宜宾)在△ABC中,若O为BC边的中点,则必有:AB2+AC2=2AO2+2BO2成立.依据以上结论,解决如下问题:如图,在矩形DEFG中,已知DE=4,EF=3,点P在以DE为直径的半圆上运动,则PF2+PG2的最小值为()A. B.C.34 D.104.(重庆)如图,已知AB是⊙O的直径,点P在BA的延长线上,PD与⊙O相切于点D,过点B作PD的垂线交PD的延长线于点C,若⊙O的半径为4,BC=6,则PA的长为()A.4 B.2 C.3 D.2.55.(河北)如图,点I为△ABC的内心,AB=4,AC=3,BC=2,将∠ACB平移使其顶点与I重合,则图中阴影部分的周长为()A.4.5 B.4 C.3 D.26.(福建)如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD等于()A.40° B.50° C.60° D.80°7.(泸州)在平面直角坐标系内,以原点O为圆心,1为半径作圆,点P在直线y=上运动,过点P作该圆的一条切线,切点为A,则PA的最小值为()A.3 B.2 C.D.8.(重庆)如图,△ABC中,∠A=30°,点O是边AB上一点,以点O为圆心,以OB为半径作圆,⊙O恰好与AC相切于点D,连接BD.若BD平分∠ABC,AD=2,则线段CD的长是()A.2 B.C.D.9.(自贡)如图,若△ABC内接于半径为R的⊙O,且∠A=60°,连接OB、OC,则边BC的长为()A.B.C.D.10.(泰安)如图,⊙M的半径为2,圆心M的坐标为(3,4),点P是⊙M上的任意一点,PA⊥PB,且PA、PB与x轴分别交于A、B两点,若点A、点B关于原点O对称,则AB的最小值为()A.3 B.4 C.6 D.811.(内江)已知⊙O1的半径为3cm,⊙O2的半径为2cm,圆心距O1O2=4cm,则⊙O1与⊙O2的位置关系是()A.外离 B.外切 C.相交 D.内切12.(常州)如图,AB是⊙O的直径,MN是⊙O的切线,切点为N,如果∠MNB=52°,则∠NOA的度数为()A.76° B.56° C.54° D.52°13.(深圳)如图,一把直尺,60°的直角三角板和光盘如图摆放,A为60°角与直尺交点,AB=3,则光盘的直径是()A.3 B.C.6 D.14.(台湾)平面上有A、B、C三点,其中AB=3,BC=4,AC=5,若分别以A、B、C为圆心,半径长为2画圆,画出圆A,圆B,圆C,则下列叙述何者正确()A.圆A与圆C外切,圆B与圆C外切B.圆A与圆C外切,圆B与圆C外离C.圆A与圆C外离,圆B与圆C外切D.圆A与圆C外离,圆B与圆C外离15.(莱芜)如图,AB是⊙O的直径,直线DA与⊙O相切于点A,DO交⊙O于点C,连接BC,若∠ABC=21°,则∠ADC的度数为()A .46°B .47°C .48°D .49°16.(陕西)如图,△ABC 是⊙O 的内接三角形,∠C=30°,⊙O 的半径为5,若点P 是⊙O 上的一点,在△ABP 中,PB=AB ,则PA 的长为( )A .5B .C .5D .517.(济南)把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm ,则圆形螺母的外直径是( )A .12cmB .24cmC .6cmD .12cm18.(邵阳)如图所示,AB 是⊙O 的直径,点C 为⊙O 外一点,CA ,CD 是⊙O 的切线,A ,D 为切点,连接BD ,AD .若∠ACD=30°,则∠DBA 的大小是( )A .15°B .30°C .60°D .75°19.(衢州)如图,AB 是⊙O 的直径,C 是⊙O 上的点,过点C 作⊙O 的切线交AB 的延长线于点E ,若∠A=30°,则sin ∠E 的值为( )A.B.C.D.20.(襄阳)如图,I是△ABC的内心,AI的延长线和△ABC的外接圆相交于点D,连接BI、BD、DC.下列说法中错误的一项是()A.线段DB绕点D顺时针旋转一定能与线段DC重合B.线段DB绕点D顺时针旋转一定能与线段DI重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合二.填空题(共8小题)21.(安徽)如图,菱形ABOC的边AB,AC分别与⊙O相切于点D,E.若点D是AB的中点,则∠DOE= °.22.(临沂)如图.在△ABC中,∠A=60°,BC=5cm.能够将△ABC完全覆盖的最小圆形纸片的直径是cm.23.(镇江)如图,AD为△ABC的外接圆⊙O的直径,若∠BAD=50°,则∠ACB= °.24.(泰州)如图,在平面直角坐标系xOy中,点A、B、P的坐标分别为(1,0),(2,5),(4,2).若点C在第一象限内,且横坐标、纵坐标均为整数,P是△ABC的外心,则点C的坐标为.25.(徐州)如图,AB与⊙O相切于点B,线段OA与弦BC垂直,垂足为D,AB=BC=2,则∠AOB= °.26.(上海)如图,已知Rt△ABC,∠C=90°,AC=3,BC=4.分别以点A、B为圆心画圆.如果点C在⊙A 内,点B在⊙A外,且⊙B与⊙A内切,那么⊙B的半径长r的取值范围是.27.(泸州)如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是.28.(徐州)如图,⊙O是△ABC的内切圆,若∠ABC=70°,∠ACB=40°,则∠BOC= °.三.解答题(共8小题)29.(黄冈)如图,AD是⊙O的直径,AB为⊙O的弦,OP⊥AD,OP与AB的延长线交于点P,过B点的切线交OP于点C.(1)求证:∠CBP=∠ADB.(2)若OA=2,AB=1,求线段BP的长.30.(北京)如图,AB是⊙O的直径,过⊙O外一点P作⊙O的两条切线PC,PD,切点分别为C,D,连接OP,CD.(1)求证:OP⊥CD;(2)连接AD,BC,若∠DAB=50°,∠CBA=70°,OA=2,求OP的长.31.(昆明)如图,AB是⊙O的直径,ED切⊙O于点C,AD交⊙O于点F,AC平分∠BAD,连接BF.(1)求证:AD⊥ED;(2)若CD=4,AF=2,求⊙O的半径.32.(资阳)如图,AB是半圆的直径,AC为弦,过点C作直线DE交AB的延长线于点E.若∠ACD=60°,∠E=30°.(1)求证:直线DE与半圆相切;(2)若BE=3,求CE的长.33.(南充)如图,在Rt△ACB中,∠ACB=90°,以AC为直径作⊙O交AB于点D,E为BC的中点,连接DE并延长交AC的延长线于点F.(1)求证:DE是⊙O的切线;(2)若CF=2,DF=4,求⊙O直径的长.34.(白银)如图,AN是⊙M的直径,NB∥x轴,AB交⊙M于点C.(1)若点A(0,6),N(0,2),∠ABN=30°,求点B的坐标;(2)若D为线段NB的中点,求证:直线CD是⊙M的切线.35.(黄石)如图,⊙O的直径为AB,点C在圆周上(异于A,B),AD⊥CD.(1)若BC=3,AB=5,求AC的值;(2)若AC是∠DAB的平分线,求证:直线CD是⊙O的切线.36.(凉山州)阅读下列材料并回答问题:材料1:如果一个三角形的三边长分别为a,b,c,记,那么三角形的面积为.①古希腊几何学家海伦(Heron,约公元50年),在数学史上以解决几何测量问题而闻名.他在《度量》一书中,给出了公式①和它的证明,这一公式称海伦公式.我国南宋数学家秦九韶(约1202﹣﹣约1261),曾提出利用三角形的三边求面积的秦九韶公式:.②下面我们对公式②进行变形:=====.这说明海伦公式与秦九韶公式实质上是同一公式,所以我们也称①为海伦﹣﹣秦九韶公式.问题:如图,在△ABC中,AB=13,BC=12,AC=7,⊙O内切于△ABC,切点分别是D、E、F.(1)求△ABC的面积;(2)求⊙O的半径.24.3 正多边形和圆一.选择题(共10小题)1.(株洲)下列圆的内接正多边形中,一条边所对的圆心角最大的图形是()A.正三角形 B.正方形C.正五边形 D.正六边形2.(2017•沈阳)正六边形ABCDEF内接于⊙O,正六边形的周长是12,则⊙O的半径是()A.B.2 C.2 D.23.(河北)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示,按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC边重合,完成第一次旋转;再绕点C顺时针旋转,使MN边与CD边重合,完成第二次旋转;…在这样连续6次旋转的过程中,点B,M间的距离可能是()A.1.4 B.1.1 C.0.8 D.0.54.(滨州)若正方形的外接圆半径为2,则其内切圆半径为()A.B.2 C.D.15.(达州)以半径为2的圆的内接正三角形、正方形、正六边形的边心距为三边作三角形,则该三角形的面积是()A.B.C.D.6.(日照)下列说法正确的是()A.圆内接正六边形的边长与该圆的半径相等B.在平面直角坐标系中,不同的坐标可以表示同一点C.一元二次方程ax2+bx+c=0(a≠0)一定有实数根D.将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等7.(南京)已知正六边形的边长为2,则它的内切圆的半径为()A.1 B.C.2 D.28.(莱芜)正多边形的内切圆与外接圆的周长之比为:2,则这个正多边形为()A.正十二边形B.正六边形 C.正四边形 D.正三角形9.(曲靖)如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有()A.2个B.4个C.6个D.8个10.(南平)若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.2 D.4二.填空题(共18小题)11.(陕西)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为.12.(玉林)如图,正六边形ABCDEF的边长是6+4,点O1,O2分别是△ABF,△CDE的内心,则O1O2= .13.(呼和浩特)同一个圆的内接正方形和正三角形的边心距的比为.14.(温州)小明发现相机快门打开过程中,光圈大小变化如图1所示,于是他绘制了如图2所示的图形.图2中六个形状大小都相同的四边形围成一个圆的内接正六边形和一个小正六边形,若PQ所在的直线经过点M,PB=5cm,小正六边形的面积为cm2,则该圆的半径为cm.15.(河北)如图1,作∠BPC平分线的反向延长线PA,现要分别以∠APB,∠APC,∠BPC为内角作正多边形,且边长均为1,将作出的三个正多边形填充不同花纹后成为一个图案.例如,若以∠BPC为内角,可作出一个边长为1的正方形,此时∠BPC=90°,而=45是360°(多边形外角和)的,这样就恰好可作出两个边长均为1的正八边形,填充花纹后得到一个符合要求的图案,如图2所示.图2中的图案外轮廓周长是;在所有符合要求的图案中选一个外轮廓周长最大的定为会标,则会标的外轮廓周长是.16.(贵阳)如图,点M、N分别是正五边形ABCDE的两边AB、BC上的点.且AM=BN,点O是正五边形的中心,则∠MON的度数是度.17.(上海)我们规定:一个正n边形(n为整数,n≥4)的最短对角线与最长对角线长度的比值叫做这个正n边形的“特征值”,记为λn,那么λ6= .18.(吉林)如图,分别以正五边形ABCDE的顶点A,D为圆心,以AB长为半径画,.若AB=1,则阴影部分图形的周长为(结果保留π).19.(宜宾)如图,⊙O的内接正五边形ABCDE的对角线AD与BE相交于点G,AE=2,则EG的长是.20.(台州)如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是.21.(毕节市)正六边形的边长为8cm,则它的面积为cm2.22.(济宁)如图,正六边形A1B1C1D1E1F1的边长为1,它的六条对角线又围成一个正六边形A2B2C2D2E2F2,如此继续下去,则正六边形A4B4C4D4E4F4的面积是.23.(贵阳)如图,正六边形ABCDEF内接于⊙O,⊙O的半径为6,则这个正六边形的边心距OM的长为.24.(绥化)半径为2的圆内接正三角形,正四边形,正六边形的边心距之比为.25.(玉林)如图,在边长为2的正八边形中,把其不相邻的四条边均向两边延长相交成一个四边形ABCD,则四边形ABCD的周长是.26.(威海)如图,正方形ABCD内接于⊙O,其边长为4,则⊙O的内接正三角形EFG的边长为.27.(盐城)如图,正六边形ABCDEF内接于半径为4的圆,则B、E两点间的距离为.28.(钦州)如图,∠MON=60°,作边长为1的正六边形A1B1C1D1E1F1,边A1B1、F1E1分别在射线OM、ON上,边C1D1所在的直线分别交OM、ON于点A2、F2,以A2F2为边作正六边形A2B2C2D2E2F2,边C2D2所在的直线分别交OM、ON于点A3、F3,再以A3F3为边作正六边形A3B3C3D3E3F3,…,依此规律,经第n次作图后,点B n到ON的距离是.24.4 弧长和扇形面积一.选择题(共20小题)1.(盘锦)如图,一段公路的转弯处是一段圆弧(),则的展直长度为()A.3πB.6πC.9πD.12π2.(黄石)如图,AB是⊙O的直径,点D为⊙O上一点,且∠ABD=30°,BO=4,则的长为()A.B.C.2πD.3.(广安)如图,已知⊙O的半径是2,点A、B、C在⊙O上,若四边形OABC为菱形,则图中阴影部分面积为()A.π﹣2B.π﹣C.π﹣2D.π﹣4.(自贡)已知圆锥的侧面积是8πcm2,若圆锥底面半径为R(cm),母线长为l(cm),则R关于l的函数图象大致是()A.B.C.D.5.(德州)如图,从一块直径为2m的圆形铁皮上剪出一个圆心角为90°的扇形,则此扇形的面积为()A. 2B.C.πm2D.2πm26.(成都)如图,在▱ABCD中,∠B=60°,⊙C的半径为3,则图中阴影部分的面积是()A.πB.2πC.3πD.6π7.(绵阳)如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3m,圆锥高为2m的蒙古包,则需要毛毡的面积是()A.(30+5)π m2B.40π m2C.(30+5)π m2D.55π m28.(遵义)若要用一个底面直径为10,高为12的实心圆柱体,制作一个底面和高分别与圆柱底面半径和高相同的圆锥,则该圆锥的侧面积为()A.60π B.65π C.78π D.120π9.(山西)如图,正方形ABCD内接于⊙O,⊙O的半径为2,以点A为圆心,以AC长为半径画弧交AB的延长线于点E,交AD的延长线于点F,则图中阴影部分的面积为()A.4π﹣4 B.4π﹣8 C.8π﹣4 D.8π﹣810.(沈阳)如图,正方形ABCD内接于⊙O,AB=2,则的长是()A.πB.π C.2πD.π11.(广西)如图,分别以等边三角形ABC的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为()A.B.C.2D.212.(丽水)如图,点C是以AB为直径的半圆O的三等分点,AC=2,则图中阴影部分的面积是()A.B.﹣2C.D.﹣13.(重庆)如图,在矩形ABCD中,AB=4,AD=2,分别以点A、C为圆心,AD、CB为半径画弧,交AB于点E,交CD于点F,则图中阴影部分的面积是()A.4﹣2πB.8﹣C.8﹣2πD.8﹣4π14.(衢州)运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD、EF是⊙O的弦,且AB∥CD ∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.πB.10π C.24+4πD.24+5π15.(宁夏)圆锥的底面半径r=3,高h=4,则圆锥的侧面积是()A.12π B.15π C.24π D.30π16.(绵阳)“赶陀螺”是一项深受人们喜爱的运动,如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8cm,圆柱体部分的高BC=6cm,圆锥体部分的高CD=3cm,则这个陀螺的表面积是()A.68πcm2B.74πcm2C.84πcm2D.100πcm217.(阿坝州)如图,在5×5的正方形网格中,每个小正方形的边长都为1,若将△AOB绕点O顺时针旋转90°得到△A′OB′,则A点运动的路径的长为()A.πB.2πC.4πD.8π18.(乌鲁木齐)将圆心角为90°,面积为4πcm2的扇形围成一个圆锥的侧面,则所围成的圆锥的底面半径为()A.1cm B.2cm C.3cm D.4cm19.(包头)120°的圆心角对的弧长是6π,则此弧所在圆的半径是()A.3 B.4 C.9 D.1820.(朝阳)如图,分别以五边形ABCDE的顶点为圆心,以1为半径作五个圆,则图中阴影部分的面积之和为()A.B.3πC.D.2π二.填空题(共10小题)21.(安顺)如图,C为半圆内一点,O为圆心,直径AB长为2cm,∠BOC=60°,∠BCO=90°,将△BOC绕圆心O逆时针旋转至△B′OC′,点C′在OA上,则边BC扫过区域(图中阴影部分)的面积为cm2.(结果保留π)22.(连云港)一个扇形的圆心角是120°.它的半径是3cm.则扇形的弧长为cm.23.(郴州)如图,圆锥的母线长为10cm,高为8cm,则该圆锥的侧面展开图(扇形)的弧长为cm.(结果用π表示)24.(荆门)如图,在平行四边形ABCD中,AB<AD,∠D=30°,CD=4,以AB为直径的⊙O交BC于点E,则阴影部分的面积为.25.(乐山)如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为.26.(济南)如图,扇形纸叠扇完全打开后,扇形ABC的面积为300πcm2,∠BAC=120°,BD=2AD,则BD 的长度为cm.27.(盘锦)如图,在△ABC中,∠B=30°,∠C=45°,AD是BC边上的高,AB=4cm,分别以B、C为圆心,以BD、CD为半径画弧,交边AB、AC于点E、F,则图中阴影部分的面积是cm2.28.(呼伦贝尔)小杨用一个半径为36cm、面积为324πcm2的扇形纸板制作一个圆锥形的玩具帽(接缝的重合部分忽略不计),则帽子的底面半径为cm.29.(泰州)如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD=,则图中阴影部分的面积为.30.(邵阳)如图所示,在3×3的方格纸中,每个小方格都是边长为1的正方形,点O,A,B均为格点,则扇形OAB的面积大小是.三.解答题(共5小题)31.(湖州)如图,已知AB是⊙O的直径,C,D是⊙O上的点,OC∥BD,交AD于点E,连结BC.(1)求证:AE=ED;(2)若AB=10,∠CBD=36°,求的长.32.(贵阳)如图,C、D是半圆O上的三等分点,直径AB=4,连接AD、AC,DE⊥AB,垂足为E,DE交AC 于点F.(1)求∠AFE的度数;(2)求阴影部分的面积(结果保留π和根号).33.(张家界)已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(﹣1,2)、B(﹣2,1)、C(1,1)(正方形网格中每个小正方形的边长是1个单位长度).(1)△A1B1C1是△ABC绕点逆时针旋转度得到的,B1的坐标是;(2)求出线段AC旋转过程中所扫过的面积(结果保留π).34.(攀枝花)如图,在矩形ABCD中,点F在边BC上,且AF=AD,过点D作DE⊥AF,垂足为点E(1)求证:DE=AB;(2)以A为圆心,AB长为半径作圆弧交AF于点G,若BF=FC=1,求扇形ABG的面积.(结果保留π)35.(新疆)如图,在⊙O中,半径OA⊥OB,过点OA的中点C作FD∥OB交⊙O于D、F两点,且CD=,以O为圆心,OC为半径作,交OB于E点.(1)求⊙O的半径OA的长;(2)计算阴影部分的面积.24.1 圆的有关性质参考答案一.选择题(共20小题)1.C.2.A.3.A.4.C.5.D.6.D.7.A.8.D.9.D.10.D.11.B.12.D.13.C.14.B.15.C.16.B.17.A.18.C.19.B.20.B.二.填空题(共10小题)21.2或14.22.n23.30,10﹣10,24.81.25.(﹣1,﹣2),26.4≤OP≤5.27.10.28.70°.29.60°30.4﹣.三.解答题(共5小题)31.(1)证明:∵AB是直径,∴∠AEB=90°,∴AE⊥BC,∵AB=AC,∴BE=CE,∵AE=EF,∴四边形ABFC是平行四边形,∵AC=AB,∴四边形ABFC是菱形.(2)设CD=x.连接BD.∵AB是直径,∴∠ADB=∠BDC=90°,∴AB2﹣AD2=CB2﹣CD2,∴(7+x)2﹣72=42﹣x2,解得x=1或﹣8(舍弃)∴AC=8,BD==,∴S菱形ABFC=8.∴S半圆=•π•42=8π.32.证明:连接OC,∵=,∴∠AOC=∠BOC.∵CD⊥OA于D,CE⊥OB于E,∴∠CDO=∠CEO=90°在△COD与△COE中,∵,∴△COD≌△COE(AAS),∴OD=OE,∵AO=BO,∴AD=BE.33.解:∵AB为⊙O直径∴∠ADB=90°∵相同的弧所对应的圆周角相等,且∠ACD=25°∴∠B=25°∴∠BAD=90°﹣∠B=65°.34.(1)证明:∵四边形ABCD是正方形,∴AB=CD,∴=,∵M为中点,∴=,∴+=+,即=,∴BM=CM;(2)解:∵⊙O的半径为2,∴⊙O的周长为4π,∵===,∴=+=,∴的长=××4π=×4π=π.35.(1)证明:∵ED=EC,∴∠EDC=∠C,∵∠EDC=∠B,(∵∠EDC+∠ADE=180°,∠B+∠ADE=180°,∴∠EDC=∠B)∴∠B=∠C,∴AB=AC;(2)方法一:解:连接AE,∵AB为直径,∴AE⊥BC,由(1)知AB=AC,∴BE=CE=BC=,∵△CDE∽△CBA,∴,∴CE•CB=CD•CA,AC=AB=4,∴•2=4CD,∴CD=.方法二:解:连接BD,∵AB为直径,∴BD⊥AC,设CD=a,由(1)知AC=AB=4,则AD=4﹣a,在Rt△ABD中,由勾股定理可得:BD2=AB2﹣AD2=42﹣(4﹣a)2在Rt△CBD中,由勾股定理可得:BD2=BC2﹣CD2=(2)2﹣a2∴42﹣(4﹣a)2=(2)2﹣a2整理得:a=,即:CD=.24.2 点和圆、直线和圆的位置关系参考答案一.选择题(共20小题)1.A.2.A.3.D.4.A.5.B.6.D.7.D.8.B.9.D.10.C.11.C.12.A.13.D.14.C.15.C.16.D.17.D.18.D.19.A.20.D.二.填空题(共8小题)21.60.22..23.40.24.(7,4)或(6,5)或(1,4).25.60.26.8<r<10.27.6.28.125.三.解答题(共8小题)29.(1)证明:连接OB,如图,∵AD是⊙O的直径,∴∠ABD=90°,∴∠A+∠ADB=90°,∵BC为切线,∴OB⊥BC,∴∠OBC=90°,∴∠OBA+∠CBP=90°,而OA=OB,∴∠A=∠OBA,∴∠CBP=∠ADB;(2)解:∵OP⊥AD,∴∠POA=90°,∴∠P+∠A=90°,∴∠P=∠D,∴△AOP∽△ABD,∴=,即=,∴BP=7.30.解:(1)连接OC,OD,∴OC=OD,∵PD,PC是⊙O的切线,∵∠ODP=∠OCP=90°,在Rt△ODP和Rt△OCP中,,∴Rt△ODP≌Rt△OCP,∴∠DOP=∠COP,∵OD=OC,∴OP⊥CD;(2)如图,连接OD,OC,∴OA=OD=OC=OB=2,∴∠ADO=∠DAO=50°,∠BCO=∠CBO=70°,∴∠AOD=80°,∠BOC=40°,∴∠COD=60°,∵OD=OC,∴△COD是等边三角形,由(1)知,∠DOP=∠COP=30°,在Rt△ODP中,OP==.31.(1)证明:连接OC,如图,∵AC平分∠BAD,∴∠1=∠2,∵OA=OC,∴∠1=∠3,∴∠2=∠3,∴OC∥AD,∵ED切⊙O于点C,∴OC⊥DE,∴AD⊥ED;(2)解:OC交BF于H,如图,∵AB为直径,∴∠AFB=90°,易得四边形CDFH为矩形,∴FH=CD=4,∠CHF=90°,∴OH⊥BF,∴BH=FH=4,∴BF=8,在Rt△ABF中,AB===2,∴⊙O的半径为.32.证明:(1)连接OC,∵∠ACD=60°,∠E=30°,∴∠A=30°,∵OA=OC,∴∠OCA=∠A=30°,∴∠OCD=∠OCA+∠ACD=90°,∴直线DE与半圆相切;(2)在Rt△OCE中,∠E=30°,∴OE=2OC=OB+BE,∵OC=OB,∴OB=BE,∴OE=2BE=6,∴CE=OE•cosE=.33.解:(1)如图,连接OD、CD,∵AC为⊙O的直径,∴△BCD是直角三角形,∵E为BC的中点,∴BE=CE=DE,∴∠CDE=∠DCE,∵OD=OC,∴∠ODC=∠OCD,∵∠ACB=90°,∴∠OCD+∠DCE=90°,∴∠ODC+∠CDE=90°,即OD⊥DE,∴DE是⊙O的切线;(2)设⊙O的半径为r,∵∠ODF=90°,∴OD2+DF2=OF2,即r2+42=(r+2)2,解得:r=3,∴⊙O的直径为6.34.解:(1)∵A的坐标为(0,6),N(0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB==,∴B(,2).(2)连接MC,NC ∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.35.(1)解:∵AB是⊙O直径,C在⊙O上,∴∠ACB=90°,又∵BC=3,AB=5,∴由勾股定理得AC=4;(2)证明:连接OC∵AC是∠DAB的角平分线,∴∠DAC=∠BAC,又∵AD⊥DC,∴∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴∠DCA=∠CBA,又∵OA=OC,∴∠OAC=∠OCA,∵∠OAC+∠OBC=90°,∴∠OCA+∠ACD=∠OCD=90°,∴DC是⊙O的切线.36.解:(1)∵AB=13,BC=12,AC=7,∴p==16,∴==24;(2)∵△ABC的周长l=AB+BC+AC=32,∴S=lr=24,∴r==.24.3 正多边形和圆参考答案一.选择题(共10小题)1.A.2.B.3.C.4.A.5.A.6.A.7.B.8.B.9.C.10.A.二.填空题(共18小题)11.72°.12.12+4.13.:1.14.815.14,21.16.72.17..18.π+1.19.﹣1.20.≤a≤3﹣.21.96cm2.22..23.3.24.1::.25.8+8.26.2.27.8.28.3n﹣1•.24.4 弧长和扇形面积参考答案一.选择题(共20小题)1.B.2.D.3.C.4.A.5.A.6.C.7.A.8.B.9.A.10.A.11.D.12.A.13.C.14.A.15.B.16.C.17.B.18.A.19.C.20.C.二.填空题(共10小题)21.π.22.2π23.12π.24.﹣.25..26.20.27.(2+2﹣π).28.9.29.π.30..三.解答题(共5小题)31.证明:(1)∵AB是⊙O的直径,∴∠ADB=90°,∵OC∥BD,∴∠AEO=∠ADB=90°,即OC⊥AD,∴AE=ED;(2)∵OC⊥AD,∴,∴∠ABC=∠CBD=36°,∴∠AOC=2∠ABC=2×36°=72°,∴.32.解:(1)连接OD,OC,∵C、D是半圆O上的三等分点,∴==,∴∠AOD=∠DOC=∠COB=60°,∴∠CAB=30°,∵DE⊥AB,∴∠AEF=90°,∴∠AFE=90°﹣30°=60°;(2)由(1)知,∠AOD=60°,∵OA=OD,AB=4,∴△AOD是等边三角形,OA=2,∵DE⊥AO,∴DE=,∴S阴影=S扇形AOD﹣S△AOD=﹣×=π﹣.33.解:(1)△A1B1C1是△ABC绕点C逆时针旋转90度得到的,B1的坐标是:(1,﹣2),故答案为:C,90,(1,﹣2);(2)线段AC旋转过程中所扫过的面积为以点C为圆心,AC为半径的扇形的面积.∵AC==,∴面积为: =,即线段AC旋转过程中所扫过的面积为.34.(1)证明:∵四边形ABCD是矩形,∴∠B=90°,AD=BC,AD∥BC,∴∠DAE=∠AFB,∵DE⊥AF,∴∠AED=90°=∠B,在△ABF和△DEA中,∴△ABF≌△DEA(AAS),∴DE=AB;(2)解:∵BC=AD,AD=AF,∴BC=AF,∵BF=1,∠ABF=90°,∴由勾股定理得:AB==,∴∠BAF=30°,∴扇形ABG的面积==.35.解;(1)连接OD,∵OA⊥OB,∴∠AOB=90°,∵CD∥OB,∴∠OCD=90°,在RT△OCD中,∵C是AO中点,CD=,∴OD=2CO,设OC=x,∴x2+()2=(2x)2,∴x=1,∴OD=2,∴⊙O的半径为2.(2)∵sin∠CDO==,∴∠CDO=30°,∵FD∥OB,∴∠DOB=∠ODC=30°,∴S阴=S△CDO+S扇形OBD﹣S扇形OCE=×+﹣=+.。
人教版九年级数学上册第二十四章圆测试题(含答案)(含知识点)
数学第二十四章圆测试题附参考答案时间:45分钟分数:100分一、选择题(每小题3分,共33分)1.(2005·资阳)若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为()A.2ba+B.2ba-C.22baba-+或D.baba-+或2.(2005·浙江)如图24—A—1,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,则弦AB的长是()A.4 B.6 C.7 D.83.已知点O为△ABC的外心,若∠A=80°,则∠BOC的度数为()A.40°B.80°C.160°D.120°4.如图24—A—2,△ABC内接于⊙O,若∠A=40°,则∠OBC的度数为()A.20°B.40°C.50°D.70°5.如图24—A—3,小明同学设计了一个测量圆直径的工具,标有刻度的尺子OA、OB在O点钉在一起,并使它们保持垂直,在测直径时,把O点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.1个单位D.15个单位6.如图24—A—4,AB为⊙O的直径,点C在⊙O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°7.如图24—A—5,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5 B.7 C.8 D.108.若粮仓顶部是圆锥形,且这个圆锥的底面直径为4m,母线长为3m,为防雨需图24—A—5图24—A—1 图24—A—2 图24—A—3 图24—A—4在粮仓顶部铺上油毡,则这块油毡的面积是( )A .26m B .26m π C .212m D .212m π 9.如图24—A —6,两个同心圆,大圆的弦AB 与小圆相切于点P ,大圆的弦CD 经过点P ,且CD=13,PC=4,则两圆组成的圆环的面积是( )A .16πB .36πC .52πD .81π10.已知在△ABC 中,AB=AC=13,BC=10,那么△ABC 的内切圆的半径为( ) A .310 B .512 C .2 D .3 11.如图24—A—7,两个半径都是4cm 的圆外切于点C ,一只蚂蚁由点A 开始依A 、B 、C 、D 、E 、F 、C 、G 、A 的顺序沿着圆周上的8段长度相等的路径绕行,蚂蚁在这8段路径上不断爬行,直到行走2006πcm 后才停下来,则蚂蚁停的那一个点为( ) A .D 点 B .E 点 C .F 点 D .G 点 二、填空题(每小题3分,共30分) 12.如图24—A —8,在⊙O 中,弦AB 等于⊙O 的半径,OC ⊥AB 交⊙O 于点C ,则∠AOC= 。
人教版九年级上册数学《第24章圆》练习题(含答案) .docx
24・1.1 圖01 基础题知识点1圆的有关概念1. 下列条件中,能确定唯一一个圆的是(C)A. 以点O 为圆心B. 以2 cm 长为半径C. 以点O 为圆心,5 cm 长为半径D. 经过点A2. 下列命题中正确的有(A)①弦是圆上任意两点之间的部分;②半径是弦:③直径是最长的弦:④弧是半圆,半圆是弧.A ・1个B ・2个 C. 3个 D ・4个3. 过圆上一点可以作出圆的最长眩的条数为(A)A ・1条B ・2条 C. 3条 D.无数条的半径K 为5・知识点2圆中的半径相等6. 如图,MN 为0O 的弦,ZN = 52%则ZMON 的度数为(C)A. 38°D. 104°4. 如图,在<30中,弦有AC, AB.直径是优弧rj ABC, CAB,劣弧有员阮 5.如图,在0O 中,点B 在OO±, 四边形AOCB 是矩形,对角线AC 的氏为5,则OOB. 52°C. 76°7. (朔州月考)如图,在AABC 中,ZACB = 90°, ZA=40°,以C 为圆心,CB 为半径的圆 交 AB T 点 D,连接 CD,则ZACD = (A)A. 10°C. 20°=40°. = ZC.求证:CE=BF.证明:TOB, OC 是。
O 的半径,・・・OB=OC.又・・・ZB=ZC, ZBOE=ZCOF, /. AEOB^AFOC(ASA).・・・OE=OF.・・・OE+OC=OF+OB,即 CE=BF.10. 如图,CE 是。
O 的直径,AD 的延长线与CE 的延长线交于点B,若BD = OD, ZAOC = 114。
,求ZAOD 的度数.B. 15° D. 25°8.如图,AB 为00的直径,点C,9.如图,AB, AC 为。
O 的弦,分别交弦AB, AC 于点E, F, ZB则 ZAOD解:设ZB = x.VBD=OD,:、ZDOB = ZB=x.・•・ ZADO= ZDOB+ ZB = 2x.VOA = OD,/. ZA= ZAD0=2x.VZAOC=ZA+ZB,・・・2x+x=114。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆24.1-24.3练习卷(文末有答案)一、选择题(本大题共10小题,共30.0分)1.下列图形中既是轴对称图形,又是中心对称图形的是()A. B. C. D.2.如图,△ABC⊙O,⊙O,AC是⊙O的直径,∠ACB=52°,点D是AC⏜上一点,则∠D度数是()A. 52∘B. 38∘C. 19∘D. 26∘3.如图,在⊙O中,点C在优弧AB⏜上,将弧BC⏜沿BC折叠后刚好经过AB的中点D.若⊙O的半径为√5,AB=4,则BC的长是()A. 2√3B. 3√2C. 5√32D. √6524.⊙O中,OD⊥AB于C,AE过点O,连接EC,若AB=8,CD=2,则EC长度为()A. 2√5B. 8C. 2√10D. 2√135.如图,在矩形ABCD中,AB<BC,E为CD边的中点,将△ADE绕点E顺时针旋转180°,点D的对应点为C,点A的对应点为F,过点E作ME⊥AF交BC于点M,连接AM、BD交于点N,现有下列结论:①AM=AD+MC;②AM=DE+BM;③DE2=AD•CM;④点N为△ABM的外心.其中正确的个数为()A. 1个B. 2个C. 3个D. 4个6.如图,圆O的直径AB为4,点C在圆O上,∠ACB的平分线交圆O于点D,连接AD、BD,则AD的长等于()A. 2B. 3C. 2√2D. 2√37.如图,在半径为6的⊙O内有两条互相垂直的弦AB和CD,AB=8,CD=6,垂足为E.则tan∠OEA的值是()A. 34B. √63C. √156D. 2√1598.如图,A,B,C是⊙O上三个点,∠AOB=2∠BOC,则下列说法中正确的是()A. ∠OBA=∠OCAB. 四边形OABC内接于⊙OC. AB=2BCD. ∠OBA+∠BOC=90∘9.如图所示,图中共有相似三角形()A. 2对B. 3对C. 4对D. 5对10.如图,在Rt△ABC中,AB=AC,D,E是斜边上BC上两点,且∠DAE=45°,将△ADC绕点A顺时针旋转90°后,得到△AFB,连接EF,下列结论:①BF⊥BC;②△AED≌△AEF;③BE+DC=DE;④BE2+DC2=DE2其中正确的个数是()A. 1B. 2C. 3D. 4二、填空题(本大题共4小题,共12.0分)11.如图,在△ABC中,∠ACB=120°,将它绕着点C旋转30°后得到△DEC,则∠ACE=______.12.如图,A、B、C、D均在⊙O上,E为BC延长线上的一点,若∠A=102°,则∠DCE=______.13.如图,AB为⊙O的直径,C、D为⊙O上的点,AD⏜=CD⏜.若∠CAB=40°,则∠CAD=_____.14.如图,AB是⊙O的直径,C,D是⊙O上的点,且OC∥BD,AD分别与BC,OC相交于点E,F,则下列结论:①AD⊥BD;②∠AOC=∠AEC;③CB平分∠ABD;④AF=DF;⑤BD=2OF;⑥△CEF≌△BED,其中一定成立的______(把你认为正确结论的序号都填上)三、计算题(本大题共1小题,共6.0分)15.如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的位置如图所示(顶点是网格线的交点)(1)请画出△ABC向右平移2单位再向下平移3个单位的格点△A1B1C1;(2)画出△ABC绕点O逆时针方向旋转90°得到的△A2B2C2并求出旋转过程中点B到B2所经过的路径长.四、解答题(本大题共8小题,共64.0分)16.如图,等腰Rt△ABC中,BA=BC,∠ABC=90°,点D在AC上,将△ABD绕点B沿顺时针方向旋转90°后,得到△CBE.(1)求∠DCE的度数;(2)若AB=4,CD=3AD,求DE的长.17.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.如图,CD为⊙O的直径,弦AB交CD于点E,连接BD、OB.(1)求证:△AEC∽△DEB;(2)若CD⊥AB,AB=8,DE=2,求⊙O的半径.18. 如图,已知⊙O 的半径为2,弦BC 的长为2√3,点A 为弦BC 所对优弧上任意一点(B ,C 两点除外).(1)求∠BAC 的度数;(2)求△ABC 面积的最大值.(参考数据:sin60°=√32,cos30°=√32,tan30°=√33.)19. 如图在⊙O 中,BC =2,AB =AC ,点D 为AC 上的动点,且cos B =√1010. (1)求AB 的长度;(2)求AD •AE 的值;(3)过A 点作AH ⊥BD ,求证:BH =CD +DH .20.如图,AB是⊙O的直径,弦CD⊥AB于点E,点P在⊙O上,∠1=∠BCD.(1)求证:CB∥PD;(2)若BC=3,sin∠BPD=3,求⊙O的直径.521.如图,已知AD是△ABC的角平分线,⊙O经过A、B、D三点.过点B作BE∥AD,交⊙O于点E,连接ED(1)求证:ED∥AC;(2)若BD=2CD,设△EBD的面积为S1,△ADC的面积为S2,且S12-16S2+4=0,求△ABC的面积.22.已知AB是半径为1的圆O直径,C是圆上一点,D是BC延长线上一点,过点D的直线交AC于E点,且△AEF为等边三角形.(1)求证:△DFB是等腰三角形;(2)若DA=√7AF,求证:CF⊥AB.答案和解析1.【答案】B【解析】【分析】此题主要考查了中心对称图形与轴对称图形的概念有关知识,根据轴对称图形与中心对称图形的概念求解.【解答】解:A.是轴对称图形,不是中心对称图形,故此选项错误;B.是轴对称图形,又是中心对称图形,故此选项正确;C.不是轴对称图形,是中心对称图形,故此选项错误;D.是轴对称图形,不是中心对称图形,故此选项错误;故选B.2.【答案】B【解析】解:∵AC是⊙O的直径,∴∠ABC=90°,∵∠ACB=52°,∴∠A=90°-∠ACB=38°,∴∠D=∠A=38°.故选:B.由AC是⊙O的直径,根据直径所对的圆周角是直角,即可求得∠ACB的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠D的度数.此题考查了圆周角定理与直角三角形的性质.此题比较简单,注意掌握直径所对的圆周角是直角与在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用是解此题的关键.3.【答案】B【解析】解:连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,∵D为AB的中点,∴OD⊥AB,∴AD=BD=AB=2,在Rt△OBD中,OD==1,∵将弧沿BC折叠后刚好经过AB的中点D.∴弧AC和弧CD所在的圆为等圆,∴=,∴AC=DC,∴AE=DE=1,易得四边形ODEF为正方形,∴OF=EF=1,在Rt△OCF中,CF==2,∴CE=CF+EF=2+1=3,而BE=BD+DE=2+1=3,∴BC=3.故选:B.连接OD、AC、DC、OB、OC,作CE⊥AB于E,OF⊥CE于F,如图,利用垂径定理得到OD⊥AB,则AD=BD=AB=2,于是根据勾股定理可计算出OD=1,再利用折叠的性质可判断弧AC和弧CD所在的圆为等圆,则根据圆周角定理得到=,所以AC=DC,利用等腰三角形的性质得AE=DE=1,接着证明四边形ODEF为正方形得到OF=EF=1,然后计算出CF后得到CE=BE=3,于是得到BC=3.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.也考查了圆周角定理和垂径定理.4.【答案】D【解析】解:连接BE,设OA=R,∵OD⊥AB,∴AC=BC=×8=4,∵AO=OE,∴BE=2OC,∵AE是直径,∴∠B=90°,在Rt△ACO中,由勾股定理得:OA2=AC2+OC2,R2=(R-2)2+42,解得:R=5,OC=5-2=3,∴BE=6,在Rt△CBE中,由勾股定理得:CE===2,故选D.根据垂径定理求出BC和AC,根据勾股定理求出半径,求出BC的长,根据勾股定理求出CE即可.本题考查了垂径定理,勾股定理,三角形的中位线的应用,解此题的关键是构造直角三角形,并求出BE和OC的长,题目比较好,难度适中.5.【答案】B【解析】解:∵E为CD边的中点,∴DE=CE,又∵∠D=∠ECF=90°,∠AED=∠FEC,∴△ADE≌△FCE,∴AD=CF,AE=FE,又∵ME⊥AF,∴ME垂直平分AF,∴AM=MF=MC+CF,∴AM=MC+AD,故①正确;如图,延长CB至G,使得∠BAG=∠DAE,由AM=MF,AD∥BF,可得∠DAE=∠F=∠EAM,可设∠BAG=∠DAE=∠EAM=α,∠BAM=β,则∠AED=∠EAB=∠GAM=α+β,由∠BAG=∠DAE,∠ABG=∠ADE=90°,可得△ABG∽△ADE,∴∠G=∠AED=α+β,∴∠G=∠GAM,∴AM=GM=BG+BM,由△ABG∽△ADE,可得=,而AB<BC=AD,∴BG<DE,∴BG+BM<DE+BM,即AM<DE+BM,∴AM=DE+BM不成立,故②错误;∵ME⊥FF,EC⊥MF,∴EC2=CM×CF,又∵EC=DE,AD=CF,∴DE2=AD•CM,故③正确;∵∠ABM=90°,∴AM是△ABM的外接圆的直径,∵BM<AD,∴当BM∥AD时,=<1,∴N不是AM的中点,∴点N不是△ABM的外心,故④错误.综上所述,正确的结论有2个,故选:B.根据全等三角形的性质以及线段垂直平分线的性质,即可得出AM=MC+AD;根据△ABG∽△ADE,且AB<BC,即可得出BG<DE,再根据AM=GM=BG+BM,即可得出AM=DE+BM不成立;根据ME⊥FF,EC⊥MF,运用射影定理即可得出EC2=CM×CF,据此可得DE2=AD•CM成立;根据N不是AM的中点,可得点N不是△ABM的外心.本题主要考查了相似三角形的判定与性质,全等三角形的判定与性质,矩形的性质以及旋转的性质的综合应用,解决问题的关键是运用全等三角形的对应边相等以及相似三角形的对应边成比例进行推导,解题时注意:三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心,故外心到三角形三个顶点的距离相等.6.【答案】C【解析】解:连接OD.∴∠ACB=∠ADB=90°,∵∠ACB的平分线交⊙O于D,∴D点为半圆AB的中点,∴△ABD为等腰直角三角形,∴AD=AB÷=2cm.故选 C.连接OD.利用直径所对的圆周角是直角及勾股定理求出AB的长,再根据角平分线的性质求出∠ACD=45°;然后根据同弧所对的圆周角是圆心角的一半求得∠AOD=90°;最后根据在等腰直角三角形AOD中利用勾股定理求AD的长度本题考查了圆周角定理、等腰直角三角形的判定与性质.解答该题时,通过作辅助线OD构造等腰直角三角形AOD,利用其性质求得AD的长度的.7.【答案】D【解析】解:作OM⊥AB于M,ON⊥CD于N,连接OB,OD,由垂径定理得:BM=AM=AB=4,DN=CN=CD=3,由勾股定理得:OM==2,ON==3,∵弦AB、CD互相垂直,OM⊥AB,ON⊥CD,∴∠MEN=∠OME=∠ONE=90°,∴四边形MONE是矩形,∴ME=ON=3,∴tan∠OEA===,故选D.作OM⊥AB于M,ON⊥CD于N,连接OB,OD,根据垂径定理得出BM=AM=4,DN=CN=CD=3,根据勾股定理求出OM和ON,求出ME,解直角三角形求出即可.本题考查了垂径定理、勾股定理和解直角三角形等知识点,能灵活运用垂径定理进行推理是解此题的关键.8.【答案】D【解析】解:过O作OD⊥AB于D交⊙O于E,则=,∴AE=BE,∠AOE=∠BOE=AOB,∵∠AOB=2∠BOC,∴∠AOE=∠BOE=∠BOC,∴==,∴AE=BE=BC,∴2BC>AB,故C错误;∵OA=OB=OC,∴∠OBA=(180°-∠AOB)=90°-∠BOC,∠OCA=(180°-∠AOC)=90°-∠BOC,∴∠OBA≠∠OCA,故A错误;∵点A,B,C在⊙O上,而点O在圆心,∴四边形OABC不内接于⊙O,故B错误;∵∠BOE=∠BOC=AOB,∵∠BOE+∠OBA=90°,∴∠OBA+∠BOC=90°,故D正确;故选:D.过O作OD⊥AB于D交⊙O于E,由垂径定理得到=,于是得到= =,推出AE=BE=BC,根据三角形的三边关系得到2BC>AB,故C错误;根据三角形内角和得到∠OBA=(180°-∠AOB)=90°-∠BOC,∠OCA=(180°-∠AOC)=90°-∠BOC,推出∠OBA≠∠OCA,故A错误;由点A,B,C在⊙O上,而点O在圆心,得到四边形OABC不内接于⊙O,故B错误;根据余角的性质得到∠OBA+∠BOC=90°,故D正确;本题考查了圆心角,弧,弦的关系,垂径定理,三角形的三边关系,正确的作出辅助线是解题的关键.9.【答案】C【解析】解:共四对,分别是△PAC∽△PBD、△AOC∽△DOB、△AOB∽△COD、△PAD∽△PCB.故选C.可以运用相似三角形的判定方法进行验证.主要考查相似三角形的判定方法的掌握情况.10.【答案】C【解析】【分析】本题考查了旋转的性质:旋转前后两图形全等,对应点到旋转中心的距离相等,对应点与旋转中心的连线段所夹的角等于旋转角.也考查了三角形全等的判定与性质以及勾股定理.①根据旋转的性质得BF=DC、∠FBA=∠C、∠BAF=∠CAD,由∠ABC+∠C=90°知∠ABC+∠FBA=90°,即可判断①;②由∠BAC=90°、∠DAE=45°知∠BAE+∠CAD=∠DAE=45°,继而可得∠EAF=∠EAD,可判断②;③由BF=DC、EF=DE,根据BE+BF>EF可判断③;④根据BE2+BF2=EF2可判断④.【解答】解:∵△ADC绕点A顺时针旋转90°后,得到△AFB,∴△ADC≌△AFB,∴BF=DC,∠FBA=∠C,∠BAF=∠CAD,又∵∠ABC+∠C=90°,∴∠ABC+∠FBA=90°,即∠FBC=90°,∴BF⊥BC,故①正确;∵∠BAC=90°,∠DAE=45°,∴∠BAE+∠CAD=∠DAE=45°,∴∠BAE+∠BAF=∠DAE=45°,即∠EAF=∠EAD,在△AED和△AEF中,∵,∴△AED≌△AEF,故②正确;∵BF=DC,∴BE+DC=BE+BF,∵△AED≌△AEF,∴EF=DE,在△BEF中,∵BE+BF>EF,∴BE+DC>DE,故③错误,∵∠FBC=90°,∴BE2+BF2=EF2,∵BF=DC、EF=DE,∴BE2+DC2=DE2,故④正确;故选C.11.【答案】150°【解析】解:∵△ABC绕点C按顺时针方向旋转后得到△DEC,∴∠DCE=∠ACB=120°,∠BCE=∠ACD=30°,∴∠ACE=∠ACB+∠BCE=150°;故答案为:150°.由旋转的性质得出∠DCE=∠ACB=120°,∠BCE=∠ACD=30°,即可得出结果.本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.12.【答案】102°【解析】解:连接OB,OD,∵∠DOB与∠A都对,∠DOB(大于平角的角)与∠BCD都对,∴∠DOB=2∠A,∠DOB(大于平角的角)=2∠BCD,∵∠DOB+∠DOB(大于平角的角)=360°,∴∠A+∠BCD=180°,∵∠DCE+∠BCD=180°,∴∠DCE=∠A=102°,故答案为:102°连接OB,OD,利用圆周角定理得到∠DOB=2∠A,∠DOB(大于平角的角)=2∠BCD,再由周角定义及等式的性质得到∠A与∠BCD互补,利用邻补角性质及同角的补角相等即可求出所求角的度数.此题考查了圆内接四边形的性质,以及圆周角定理,熟练掌握圆周角定理是解本题的关键.13.【答案】25°【解析】解:如图,连接BC,BD,∵AB为⊙O的直径,∴∠ACB=90°,∵∠CAB=40°,∴∠ABC=50°,∵=,∴∠ABD=∠CBD=∠ABC=25°,∴∠CAD=∠CBD=25°.故答案为:25°.先求出∠ABC=50°,进而判断出∠ABD=∠CBD=25°,最后用同弧所对的圆周角相等即可得出结论.本题考查的是圆周角定理,直径所对的圆周角是直角,直角三角形的性质,解本题的关键是作出辅助线.14.【答案】①③④⑤【解析】解:①∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,故①正确;②∵∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角,∴∠AOC≠∠AEC,故②不正确;③∵OC∥BD,∴∠OCB=∠DBC,∵OC=OB,∴∠OCB=∠OBC,∴∠OBC=∠DBC,∴BC平分∠ABD,故③正确;④∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BD,∵OC∥BD,∴∠AFO=90°,∵点O为圆心,∴AF=DF,故④正确;⑤由④有,AF=DF,∵点O为AB中点,∴OF是△ABD的中位线,∴BD=2OF,故⑤正确;⑥∵△CEF和△BED中,没有相等的边,∴△CEF与△BED不全等,故⑥不正确;综上可知:其中一定成立的有①③④⑤,故答案为:①③④⑤.①由直径所对圆周角是直角,②由于∠AOC是⊙O的圆心角,∠AEC是⊙O的圆内部的角,③由平行线得到∠OCB=∠DBC,再由同圆的半径相等得到结论判断出∠OBC=∠DBC;④用半径垂直于不是直径的弦,必平分弦;⑤用三角形的中位线得到结论;⑥得不到△CEF和△BED中对应相等的边,所以不一定全等.本题主要考查圆周角定理及圆的有关性质、平行线的性质,掌握圆中有关的线段、角相等的定理是解题的关键,特别注意垂径定理的应用.15.【答案】解:(1)如图;(2)如图;旋转过程中,点B 到B 2所经过的路径长为以OB 为半径,90°为圆心角的弧长,BB ⏜2=14×2π×3=32π. 【解析】(1)先画出三角形各顶点平移后的位置,再用线段依次连接各顶点,得到平移后的三角形;(2)先画出三角形各顶点绕着点O 逆时针旋转90°后的位置,再用线段依次连接各顶点,得到旋转后的三角形;最后根据弧长计算公式进行计算,求得旋转过程中点B 到B 2所经过的路径长.本题主要考查了图形基本变换中的平移和旋转以及弧长的计算,解决问题的关键是先找准对应点,并依次连接对应点.需要注意的是,平移不改变图形的大小和形状,但图形上的每个点都沿同一方向进行了移动;旋转也不改变图形的大小和形状,但对应点到旋转中心的距离相等.16.【答案】解:(1)∵△ABC 为等腰直角三角形,∴∠BAD =∠BCD =45°.由旋转的性质可知∠BAD =∠BCE =45°.∴∠DCE =∠BCE +∠BCA =45°+45°=90°.(2)∵BA =BC ,∠ABC =90°,∴AC =√AB 2+BC 2=4√2.∵CD =3AD ,∴AD =√2,DC =3√2.由旋转的性质可知:AD =EC =√2.∴DE =√CE 2+DC 2=2√5.【解析】(1)首先由等腰直角三角形的性质求得∠BAD 、∠BCD 的度数,然后由旋转的性质可求得∠BCE 的度数,故此可求得∠DCE 的度数;(2)由(1)可知△DCE 是直角三角形,先由勾股定理求得AC 的长,然后依据比例关系可得到CE 和DC 的长,最后依据勾股定理求解即可.本题主要考查的是旋转的性质、勾股定理的应用、等腰直角三角形的性质,求得∠DCE=90°是解题的关键. 17.【答案】解:过点O 作OC ⊥AB 于D ,交⊙O 于C ,连接OB ,∵OC ⊥AB ,∴BD =12AB =12×16=8cm , 由题意可知,CD =4cm ,∴设半径为xcm ,则OD =(x -4)cm ,在Rt △BOD 中,由勾股定理得:OD 2+BD 2=OB 2,即(x -4)2+82=x 2,解得:x =10,答:这个圆形截面的半径为10cm .【解析】 先过点O 作OC ⊥AB 于D ,交⊙O 于C ,连接OB ,得出BD=AB ,再设半径为xcm ,则OD=(x-4)cm ,根据OD 2+BD 2=OB 2,得出(x-4)2+82=x 2,再求出x 的值即可.此题考查了垂径定理的应用,关键是做出辅助线,构造直角三角形,用到的知识点是垂径定理、勾股定理,要能把实际问题转化成数学问题.18.【答案】(1)证明:∵∠AEC =∠DEB ,∠ACE =∠DBE ,∴△AEC ∽△DEB .(2)解:设⊙O 的半径为r ,则CE =2r -2.∵CD ⊥AB ,AB =8,∴AE =BE =12AB =4.∵△AEC ∽△DEB ,∴AE DE =CE BE ,即42=2r−24, 解得:r =5.【解析】(1)由同弧的圆周角相等即可得出∠ACE=∠DBE,结合∠AEC=∠DEB,即可证出△AEC∽△DEB;(2)设⊙O的半径为r,则CE=2r-2,根据垂径定理以及三角形相似的性质即可得出关于r的一元一次方程,解方程即可得出r值,此题得解.本题考查了垂径定理以及相似三角形的判定与性质,根据相似三角形的性质找出方程是解题的关键.19.【答案】解:(1)解法一:连接OB,OC,过O作OE⊥BC于点E.∵OE⊥BC,BC=2√3,∴BE=EC=√3.在Rt△OBE中,OB=2,∵sin∠BOE=BEOB =√32,∴∠BOE=60°,∴∠BOC=120°,∴∠BAC=12∠BOC=60°.解法二:连接BO并延长,交⊙O于点D,连接CD.∵BD是直径,∴BD=4,∠DCB=90°.在Rt△DBC中,sin∠BDC=BCBD =2√34=√32,∴∠BDC=60°,∴∠BAC=∠BDC=60°.(2)解:因为△ABC的边BC的长不变,所以当BC边上的高最大时,△ABC的面积最大,此时点A落在优弧BC的中点处.过O作OE⊥BC于E,延长EO交⊙O于点A,则A为优弧BC的中点.连接AB,AC,则AB=AC,∠BAE=12∠BAC=30°.在Rt△ABE中,∵BE=√3,∠BAE=30°,∴AE=BEtan30∘=√3√33=3,∴S△ABC=12×2√3×3=3√3.答:△ABC面积的最大值是3√3.【解析】(1)连接OB、OC,作OE⊥BC于点E,由垂径定理可得出BE=EC=,在Rt△OBE 中利用锐角三角函数的定义及特殊角的三角函数值可求出∠BOE的度数,再由圆周角定理即可求解;(2)因为△ABC的边BC的长不变,所以当BC边上的高最大时,△ABC的面积最大,此时点A应落在优弧BC的中点处,过OE⊥BC于点E,延长EO交⊙O于点A,则A为优弧BC的中点,连接AB,AC,则AB=AC,由圆周角定理可求出∠BAE 的度数,在Rt△ABE中,利用锐角三角函数的定义及特殊角的三角函数值可求出AE的长,由三角形的面积公式即可解答.本题考查的是垂径定理、圆周角定理及解直角三角形,能根据题意作出辅助线是解答此题的关键.20.【答案】解:(1)作AM⊥BC,∵AB=AC,AM⊥BC,BC=2BM,∴CM=12BC=1,∵cos B=BMAB =√10 10,在Rt△AMB中,BM=1,∴AB=BMcosB=√10;(2)连接DC,∵AB=AC,∴∠ACB=∠ABC,∵四边形ABCD内接于圆O,∴∠ADC+∠ABC=180°,∵∠ACE+∠ACB=180°,∴∠ADC=∠ACE,∵∠CAE公共角,∴△EAC∽△CAD,∴AC AD =AE AC,∴AD•AE=AC2=10;(3)在BD上取一点N,使得BN=CD,在△ABN和△ACD中{AB=AC ∠3=∠1 BN=CD,∴△ABN≌△ACD(SAS),∴AN=AD,∵AN=AD,AH⊥BD,∴NH=HD,∵BN=CD,NH=HD,∴BN+NH=CD+HD=BH.【解析】(1)作AM垂直于BC,由AB=AC,利用三线合一得到CM等于BC的一半,求出CM的长,再由cosB的值,利用锐角三角函数定义求出AB的长即可;(2)连接DC,由等边对等角得到一对角相等,再由圆内接四边形的性质得到一对角相等,根据一对公共角,得到三角形EAC与三角形CAD相似,由相似得比例求出所求即可;(3)在BD上取一点N,使得BN=CD,利用SAS得到三角形ACD与三角形ABN 全等,由全等三角形对应边相等及等量代换即可得证.此题属于圆的综合题,涉及的知识有:圆周角定理,圆内接四边形的性质,全等三角形的判定与性质,以及相似三角形的判定与性质,熟练掌握各自的性质是解本题的关键.21.【答案】(1)证明:∵∠D=∠1,∠1=∠BCD,∴∠D=∠BCD,∴CB∥PD;(2)解:连接AC,∵AB是⊙O的直径,∴∠ACB=90°,∵CD⊥AB,∴B^D=B^C,∴∠BPD=∠CAB,∴sin∠CAB=sin∠BPD=35,即BCAB =3 5,∵BC=3,∴AB=5,即⊙O的直径是5.【解析】(1)根据圆周角定理和已知求出∠D=∠BCD,根据平行线的判定推出即可;(2)根据垂径定理求出弧BC=弧BD,推出∠A=∠P,解直角三角形求出即可.本题考查了圆周角定理,解直角三角形,垂径定理,平行线的判定的应用,主要考查学生的推理能力.22.【答案】(1)证明:∵AD是△ABC的角平分线,∴∠BAD=∠DAC,∵∠E=∠BAD,∴∠E=∠DAC,∵BE∥AD,∴∠E=∠EDA,∴∠EDA=∠DAC,∴ED∥AC;(2)解:∵BE∥AD,∴∠EBD=∠ADC,∵∠E=∠DAC,∴△EBD∽△ADC,且相似比k=BDDC=2,∴S1S2=k2=4,即s1=4s2,∵s12-16S2+4=0,∴16S22-16S2+4=0,即(4S2−2)2=0,∴S2=12,∵S△ABCS2=BCCD=BD+CDCD=3CDCD=3,∴S△ABC=32.【解析】(1)由AD是△ABC的角平分线,得到∠BAD=∠DAC,由于∠E=∠BAD,等量代换得到∠E=∠DAC,根据平行线的性质和判定即可得到结果;(2)由BE∥AD,得到∠EBD=∠ADC,由于∠E=∠DAC,得到△EBD∽△ADC,根据相似三角形的性质相似三角形面积的比等于相似比的平方即可得到结果.本题考查了相似三角形的判定和性质,角平分线的性质,平行线的性质,记住相似三角形面积的比等于相似比的平方是解题的关键.23.【答案】解:(1)证明:∵AB是⊙O直径,∴∠ACB=90°,∵△AEF为等边三角形,∴∠CAB=∠EFA=60°∴∠B=30°,∵∠EFA=∠B+∠FDB,∴∠B=∠FDB=30°,∴△DFB是等腰三角形;(2)过点A作AM⊥DF于点M,设AF=2a,∵△AEF是等边三角形,∴FM=EM=a,AM=√3a,在Rt△DAM中,AD=√7AF=2√7a,AM=√3a,∴DM=5a,∴DF=BF=6a,∴AB=AF+BF=8a,在Rt△ABC中,∠B=30°,∠ACB=90°,∴AC=4a,∵AE=EF=AF=2a,∴CE=AC-AE=2a,∴∠ECF=∠EFC,∵∠AEF=∠ECF+∠EFC=60°,∴∠CFE=30°,∴∠AFC=∠AFE+∠EFC=60°+30°=90°,∴CF⊥AB.【解析】(1)由AB是⊙O直径,得到∠ACB=90°,由于△AEF为等边三角形,得到∠CAB=∠EFA=60°,根据三角形的外角的性质即可得到结论;(2)过点A作AM⊥DF于点M,设AF=2a,根据等边三角形的性质得到FM=EM=a,AM=,在根据已知条件得到AB=AF+BF=8a,根据直角三角形的性质得到AE=EF=AF=CE=2a,推出∠ECF=∠EFC,根据三角形的内角和即可得到结论.本题考查了圆周角定理,等边三角形的性质,等腰三角形的判定和性质,含30°角的直角三角形,勾股定理,正确的作出辅助线是解题的关键.感谢您的阅读,祝您生活愉快。