金属材料硬度测试实验

合集下载

金属材料的硬度实验报告

金属材料的硬度实验报告

金属材料的硬度实验报告一、实验目的。

本实验旨在通过对不同金属材料进行硬度测试,探究金属材料的硬度特性,并分析不同金属材料的硬度差异。

二、实验原理。

硬度是材料抵抗外力侵入的能力,通常用来衡量材料的抗划伤和抗压缩能力。

在实验中,我们将采用洛氏硬度计和布氏硬度计两种方法,分别对金属材料进行硬度测试。

洛氏硬度计通过在材料表面施加一定负荷下的压痕直径来计算硬度值,而布氏硬度计则是通过在材料表面施加一定负荷下的压痕面积来计算硬度值。

三、实验材料和设备。

1. 实验材料,铁、铝、铜、钛四种金属材料。

2. 实验设备,洛氏硬度计、布氏硬度计、显微镜、实验台、刻度尺、试验样品。

四、实验步骤。

1. 将铁、铝、铜、钛四种金属材料分别制成试验样品,保证其表面平整无瑕疵。

2. 分别使用洛氏硬度计和布氏硬度计对四种金属材料进行硬度测试,记录测试结果。

3. 使用显微镜观察每种金属材料在不同硬度下的压痕形貌,分析硬度测试结果。

五、实验结果与分析。

经过硬度测试,得到如下结果:1. 铁的硬度值为HB 200-300,HRB 60-80;2. 铝的硬度值为HB 15-25,HRB 45-50;3. 铜的硬度值为HB 30-50,HRB 50-70;4. 钛的硬度值为HB 300-400,HRB 80-100。

通过显微镜观察压痕形貌,可以看出不同金属材料在不同硬度下的压痕形态各异。

铁材料在较高硬度下呈现出清晰的压痕,而铝材料在较低硬度下呈现出较为模糊的压痕。

六、结论。

通过本次实验,我们发现不同金属材料的硬度存在较大差异,铁和钛的硬度较高,铝和铜的硬度较低。

硬度测试结果对于金属材料的选用和加工具有重要的指导意义。

七、实验总结。

本次实验通过对不同金属材料的硬度测试,深入了解了金属材料的硬度特性,并对硬度测试方法有了更加清晰的认识。

在今后的工程实践中,我们将根据不同金属材料的硬度特性,合理选用材料并进行相应的加工处理,以确保工程质量和安全。

总之,本次实验取得了良好的实验结果,对于金属材料的硬度特性有了更深入的了解,对于今后的学习和工作具有一定的指导意义。

金属材料的硬度实验

金属材料的硬度实验

实验五金属材料的硬度实验一、实验目的1、熟悉掌握布氏、洛氏和维氏硬度测定的基本原理和硬度值表示方法;2、熟悉掌握布氏、洛氏和维氏硬度测定的应用范围;3、熟悉掌握布氏、洛氏和维氏硬度计的主要结构及操作方法;二、实验原理金属的硬度可以认为是金属材料表面在接触应力作用下抵抗塑性变形的一种能力,硬度测量能够给出金属材料软硬程度的数量概念;由于在金属表面以下不同深处材料所承受的应力和所发生的变形程度不同,因而硬度值可以综合反映压痕附近局部体积内金属的弹性、微量塑变抗力、塑变强化能力以及大量形变抗力;硬度值越高,表明金属抵抗塑性变形能力越高,材料产生塑性变形就越困难;另外,硬度与其它力学性能如强度指标σb塑性指标ψ和δ之间有一定的内在联系,所以从某种意义上说硬度的大小对于机械零件或工具的使用性能及寿命具有决定性意义;1、硬度的实验方法硬度的实验方法很多,主要有以下三大类:1 压入法该方法测出的硬度值主要反映金属表面抵抗另一物体压入引起塑性变形的能力;压入法又可分为布氏硬度HBW、洛氏硬度HR、维氏硬度HV、努氏硬度HK、显微硬度;在机械工业中广泛采用的测定硬度的方法是压入法;2 刻划法该方法测出的硬度表征金属抵抗破裂的能力;3 弹性回跳法该方法是将规定形状的金刚石冲头从固定的高度h0落在试样表面上,冲头被弹起一定高度h;金属越硬,回跳高度h数值越大,因而规定用h/h0K=HS;称为肖氏硬度,主要用于大型工件及表面曲面的曲率半径>32mm的工件;2、硬度测试的作用与特点1 金属的硬度测试可大概推知其对应的强度金属的硬度与强度指标之间存在如下的定量关系:σb≈式中σb–材料的抗拉强度;HBW–布氏硬度值;K–系数,与材质和处理状态有关,常用材料K值如下:碳素结构钢HBW>175 K=退火状态的碳钢K=~合金调质钢K=~非铁金属合金K=~2 硬度试验时应力状态最软即最大切应力远远大于最大正应力,因而不论是塑性材料还是脆性材料均能发生塑性变形;3 硬度值对材料的耐磨性、疲劳强度等性能也有定性的参考价值;通常硬度越高,这些性能也就越好;在机械零件设计图样上对力学性能的技术要求,往往只标注硬度值,其原因就在于此;4 硬度测定后由于仅在金属表面局部体内产生很小压痕,几乎不破坏被检验的零件,基本属于无损检测,因而适合于成品检验或半成品检验;5 设备简单,操作便捷,只需整理零件表面,不需要特殊制备试样;6 对极小、极大的零件均可测量;对极薄的金属层,如渗碳层、氮化层均可测试;四、洛氏硬度试验方法1、试验原理洛氏硬度试验法是用金刚石圆锥体压头或一定直径的钢球压头,在初始试验力F0和主试验力F1先后作用下压入试件表面,在总试验力F F0+F1的作用并保持一定时间后,卸除主试验力F1,保持初试验力F0时的残余压痕深度;洛氏硬度的大小是按压痕深度来测量的,可以由洛氏硬度计上的刻度盘指示出来,不需计算;每压入0.002mm为一个洛氏硬度单位;此种实验特点是硬度测试速度快,留下压痕小,被广泛用于检验试件的硬度;试验原理图如图5–2所示;为了避免压头与试样接触不良而影响测量压痕印深度的准确性,洛氏法规定一律先加初始试验力F0;图5–2洛氏硬度试验原理图1–在初始试验力F0下的压入深度;2–在总试验力F0+F1下的压入深度;3–去除主试验力F1后的弹性回复深度;4–残余压入深度h;5–试样表面;6–测量基准面;7–压头位置洛氏硬度试验压头有两种:一种是顶角120°的金刚石圆锥,另一种是直径为1.5875mm的淬火钢球或 3.175mm的淬火钢球;根据金属材料软硬程度不一,可选用不同的压头和载荷配合使用;具体选用范围见表5–4;表5–4 洛氏硬度的试验范围2、洛氏硬度测定的要求1 根据被测定金属材料硬度高低,按表5–4选定压头和载荷;2 试样在制备过程中,应尽量避免由于受热、冷加工等对试样表面硬度的影响;3 试样的试验面尽可能是平面,不应有氧化皮及其他污物;4 试样或试验层厚度应不小于e的十倍;试验后,试样背面不得有肉眼可见变形痕迹;5 试样的试验面、支承面、试验台表面和压头表面应清洁;试样应稳固地放置在试验台上,以保证在试验过程中不产生位移及变形;6 在任何情况下,不允许压头与试验台及支座触碰;试验支承面、支座、和试验台工作面上均不得有压痕;7 试验时,必须保证试验力方向与试样的试验面垂直;8 在试验过程中,试验装置不应受到冲击和振动;9 施加初始试验力时,指针或指示线不得超过硬度计规定范围,否则应卸除初始试验力,在试样另一位置试验;10 达到要求的保持时间后,在2s内平稳地卸除主试验力,保持初始试验力,从相应的标尺刻度上读出硬度值;11 两相邻压痕中心间距离至少应为压痕直径的4倍,但不得小于2mm;任一压痕中心距试样边缘距离至少应为压痕直径的倍,但不得小于1mm;12 在每个试样上的试验点数应不少于四点第一点不记;对大批量试样的检验,点数可适当减少; 3、表示方法1 洛氏硬度用符号HR表示;HR前面为硬度值,后面为使用的标尺;例如:50HRC表示用C标尺测定的洛氏硬度值为50;2 试验报告中给出的洛氏硬度值应精确至个洛氏硬度单位;4、洛氏硬度试验机的结构1 机体与工作台:试验机有坚固的铸铁机体,在机体前面安装有不同形状的工作台,通过手轮的转动,借助螺杆的上下移动,而使工作台上升或下降;2 加载机构:有加载杠杆横杆及挂重杆纵杆等组成,通过杠杆系统将载荷转至压头而压入试样;借扇形齿轮的转动可完成加载和卸载任务;3 千分表指示盘,通过指示盘指示各种不同的硬度值;5、洛氏硬度试验机的操作规程1 根据试样预期硬度按表5–3确定压头和载荷,并装入试验机;2 将符合要求的试样放置在试样台上,将手轮顺时针旋转,使升降丝杆上升,压头渐渐接触试样,刻度盘指针开始转动;此时小指针从黑点移到红点,与此同时,大指针转动三圈至零位±5HR分度处,即停止上升;此时即已予加载荷;3 微调刻度盘调零,HRA、HRC零点为0,HRB零点为30;4 揿按钮开关;5 指示照明灯从亮到熄,等保荷时间到第二次灯亮,指示灯停转,立即读出硬度测试值;HRA、HRC 读外圈黑刻度,HRB读内圈红刻度;6 逆时针旋转手轮,取出试样,测试完毕;。

硬度测试实验报告

硬度测试实验报告

硬度测试实验报告实验报告:硬度测试一、实验目的本实验旨在通过硬度测试,评估材料抵抗局部塑性变形的能力,从而为材料选择和应用提供依据。

二、实验原理硬度测试是通过在材料表面施加一定负荷,观察其表面压痕深度或形变程度,以评估材料硬度的一种方法。

本实验采用洛氏硬度测试法,其原理是将压头压入材料表面,记录压痕深度,并根据压痕深度计算硬度值。

硬度值与材料的弹性、塑性和韧性等物理性质有关,是材料性能的重要指标之一。

三、实验步骤1.准备样品:选取不同材质的金属材料,如低碳钢、中碳钢和不锈钢等,制备成标准尺寸的试样。

2.安装试样:将试样放置在硬度测试机上,调整位置使压头与试样表面垂直。

3.设置参数:设置加载压力、保载时间和压头类型等测试参数。

4.开始测试:启动硬度测试机,使压头压入试样表面,保载一定时间后卸载。

5.观察压痕:记录试样表面的压痕深度,并观察压痕形貌。

6.计算硬度值:根据压痕深度和压头类型,查表或使用公式计算洛氏硬度值。

7.重复测试:对同一样品进行多次测试,以获得更可靠的硬度值。

8.数据处理:整理测试数据,计算平均硬度值和标准偏差,并绘制硬度与材料类型的关系图。

四、实验结果及数据分析1.实验数据:下表为不同材质金属材料的洛氏硬度值。

(1)不同材质的金属材料具有不同的洛氏硬度值。

低碳钢的硬度值最低,而不锈钢的硬度值最高。

这说明金属材料的硬度与其成分和组织结构有关。

(2)对于同一种金属材料,加载压力和保载时间对洛氏硬度值没有明显影响。

这是因为在本实验条件下,加载压力和保载时间的变化不会改变材料的组织结构和化学成分。

(3)通过比较不同金属材料的洛氏硬度值,可以评估它们在相同条件下的耐磨性、耐腐蚀性和加工性能等方面的差异。

例如,低碳钢在耐磨性和加工性能方面可能不如中碳钢和不锈钢。

(4)本实验采用洛氏硬度测试法,具有操作简便、测量迅速和重复性好的优点。

但需要注意的是,洛氏硬度值是一个相对值,不同实验室和不同人员测试的结果可能存在误差。

金属材料的硬度试验实验报告

金属材料的硬度试验实验报告

金属材料的硬度试验实验报告金属材料的硬度试验实验报告一、实验目的本实验旨在通过不同的硬度测试方法,对金属材料进行硬度试验,以了解和评估金属材料的硬度特性,包括其硬度的范围、分布、变化规律等,以期为材料的使用、加工和设计提供依据和参考。

二、实验原理硬度是金属材料的重要力学性能之一,它能反映金属材料抵抗局部变形的能力。

硬度的测试方法有很多,如布氏硬度、洛氏硬度、维氏硬度、努氏硬度等。

本实验将采用布氏硬度、洛氏硬度和维氏硬度三种方法对金属材料进行硬度试验。

1.布氏硬度:采用硬质合金球或钢球作为压头,在一定的载荷作用下,对金属材料进行压入,以测量压痕的直径,并通过查表获得硬度值。

布氏硬度的优点是测量准确,重复性好,适用于测量较大和较软的金属材料。

2.洛氏硬度:采用金刚石或碳化硅的压头,在一定的载荷作用下,对金属材料进行压入,以测量压痕的深度,并通过查表获得硬度值。

洛氏硬度的优点是操作简便快捷,适用于测量较薄或较硬的金属材料。

3.维氏硬度:采用金刚石或碳化硅的压头,在一定的载荷作用下,对金属材料进行压入,以测量压痕的面积,并通过查表获得硬度值。

维氏硬度的优点是测量准确,适用于测量较小或较软的金属材料。

三、实验步骤1.样品准备:选取一定数量的金属材料样品,对其进行打磨、抛光和清洁处理,确保其表面无氧化物、锈迹等杂质。

2.布氏硬度试验:选择合适的硬质合金球或钢球作为压头,在一定的载荷作用下,对金属材料进行压入,测量压痕的直径,并查表获得硬度值。

每个样品至少测量三个点,以取得平均值。

3.洛氏硬度试验:选择合适的金刚石或碳化硅的压头,在一定的载荷作用下,对金属材料进行压入,测量压痕的深度,并查表获得硬度值。

每个样品至少测量三个点,以取得平均值。

4.维氏硬度试验:选择合适的金刚石或碳化硅的压头,在一定的载荷作用下,对金属材料进行压入,测量压痕的面积,并查表获得硬度值。

每个样品至少测量三个点,以取得平均值。

5.数据处理与分析:将实验数据整理成表格和图表,分析金属材料的硬度特性,包括其硬度的范围、分布、变化规律等。

金属材料硬度实验测定实验报告_实验报告_

金属材料硬度实验测定实验报告_实验报告_

金属材料硬度实验测定实验报告金属材料硬度实验测定实验一、实验目的(1)了解硬度测定的基本原理及常用硬度试验法的应用范围。

(2)学会正确使用硬度计。

二、实验设备(1)布氏硬度计(2)读数放大镜(3)洛氏硬度计(4)硬度试块若干(5)铁碳合金退火试样若干(ф20×10mm的工业纯铁,20,45,60,T8,T12等)。

(6)ф20×10mm的20,45,60,T8,T12钢退火态,正火态,淬火及回火态的试样。

三、实验内容1、概述硬度是指材料抵抗另一较硬的物体压入表面抵抗塑性变形的一种能力,是重要的力学性能指标之一。

与其它力学性能相比,硬度实验简单易行,又无损于工件,因此在工业生产中被广泛应用。

常用的硬度试验方法有:布氏硬度试验――主要用于黑色、有色金属原材料检验,也可用于退火、正火钢铁零件的硬度测定。

洛氏硬度试验——主要用于金属材料热处理后产品性能检验。

维氏硬度试验——用于薄板材或金属表层的硬度测定,以及较精确的硬度测定。

显微硬度试验——主要用于测定金属材料的显微组织组分或相组分的硬度。

2、实验内容及方法指导(1)布氏硬度试验测定。

(2)洛氏硬度试验测定。

(3)试验方法指导。

3、实验注意事项(1)试样两端要平行,表面要平整,若有油污或氧化皮,可用砂纸打磨,以免影响测定。

(2)圆柱形试样应放在带有“V”形槽的工作台上操作,以防试样滚动。

(3)加载时应细心操作,以免损坏压头。

(4)测完硬度值,卸掉载荷后,必须使压头完全离开试样后再取下试样。

(5)金刚钻压头系贵重物品,资硬而脆,使用时要小心谨慎,严禁与试样或其它物件碰撞。

(6)应根据硬度实验机的使用范围,按规定合理选用不同的载荷和压头,超过使用范围,将不能获得准确的硬度值。

四、实验步骤1、布氏硬度试验布氏硬度试验是用载荷P把直径为D的淬火钢球压人试件表面,并保持一定时间,而后卸除载荷,测量钢球在试样表面上所压出的压痕直径d,从而计算出压痕球面积A,然后再计算出单位面积所受的力(P/A值),用此数字表示试件的硬度值,即为布氏硬度,用符号HB 表示。

金属材料的硬度试验-实验报告

金属材料的硬度试验-实验报告

金属材料的硬度试验-实验报告实验目的:1、学习金属硬度的测试方法和技巧;2、了解硬度的概念和含义;3、掌握用硬度试验仪测定金属材料硬度的方法。

实验原理:硬度是衡量材料抗压强度和耐磨性的指标之一。

硬度越大,表示材料越难被磨损,也就越难被切割。

目前常用的硬度测试方法有:压痕法、洛氏硬度法、维氏硬度法以及布氏硬度法等。

本实验主要采用布氏硬度测试法,这种测试方法被广泛应用于金属材料的硬度测试中。

测试时,使用钻石圆锥或球形硬度试验头,以某一标准的冲击能量冲击被测材料表面,用机械装置测出被击穿的深度,据此计算出材料的硬度值。

实验步骤:1、选用不同材料的试样进行测试,将试样放置在硬度试验机台座上。

2、选择合适的硬度试验头,安装到硬度试验机的测试臂上。

3、将试验头缓慢地压到试样表面,不要突然下压,待试验头稳定后开始测试。

4、当测试头完全接触到试样表面时,开始施加一定的试验力,并且记录测试时间。

5、根据被击穿的深度,精确计算出材料的硬度值。

6、重复以上实验步骤多次,计算出平均值并记录。

实验结果:测试试样:铜板、铝板、钢材、黄铜。

数据记录如下表:测试样品 | 试验次数 | 平均值(HB)--------| --------| ----------铜板 | 3 | 60.5铝板 | 3 | 45.6钢材 | 3 | 119.2黄铜 | 3 | 77.3本次实验我们选择不同材料进行了试验,测试结果表明,钢材的布氏硬度值最大,而铝板的硬度值最小。

从硬度值的大小可以看出,钢材的抗压强度最高,较难被切割和磨损;而铝板相对来说比较容易受到磨损和切割。

在实验过程中,我们发现在选用试验头时需要选择符合试样硬度的测试头,否则容易导致测试结果不准确。

并且在实验中还需要注意硬度测试头的正常使用和维护,做好硬度测试仪器的保养和日常维护工作,以确保测试结果的准确性和精度。

金属材料硬度测试实验

金属材料硬度测试实验

金属材料硬度测试实验D(D V D 2 d 2)HBW 呼0.204F 实验报告同组实验者: 一、实验目的1. 了解不同类型硬度测试的基本原理。

2. 了解不同类型硬度测试设备的特点及应用范围。

3. 掌握各类硬度计的操作方法。

二、实验原理金属的硬度可以认为是金属材料表面在压应力作用下抵抗塑性变形的一种 能力。

硬度测试能够给出金属材料软硬度的定量概念,即:硬度示值是表示材料软硬程度的数量指标。

由于在金属表面以下不同深度处材料所承受的应力和所发 生的变形程度不同,因而硬度值可以综合地反映压痕附近局部体积内金属的弹 性、微量应变抗力、应变强化能力以及大量形变抗力。

硬度值越高,表明金属抵 抗塑性变形的能力越大,材料产生塑性变形就越困难。

硬度的大小对于机械零件 或工具的使用寿命具有重要的影响。

硬度测试方法有很多,大体可以分为弹性回跳法(如肖氏硬度)、压入法(如 布氏硬度、洛氏硬度、维氏硬度)和划痕法(如莫氏硬度)等三类。

硬度是表征金属材料软硬程度的一种性能,其物理意义随着试验方法的不同 而表示不同的意义。

其中弹性回跳法主要表征金属弹性变形功的能力; 压入法主要表征金属塑性变形抗力及应变硬化能力;而划痕法主要表征金属切断能力。

下面介绍三种最常用的硬度测试方法:1、布氏硬度(1)布氏硬度试验原理用一定直径D ( mm 的硬质合金球作为压头,用一定的试验力 F (N ),将其 压入试样表面,经过规定的保持时间 t (s )之后卸载试验力,观察试样表面, 会发现有残留压痕(如图1)。

测残留压痕的平均直径d (mm ,然后求出压痕球 形面积A ( mm )。

布氏硬度值(HBW 就是试验力F 除以压痕表面积A 所得的商, F 以N 作为单位时,其计算公式为课程名称: 材料性能研究技术 成绩: 实验名称: 金属材料硬度测试实验批阅人:实验时间:实验地点:X5406报告完成时间:2 姓名:学号:班级:指导教师:注:布氏硬度值不标出单位布氏硬度试验用的压头球直径有 10mm 5mm 2.5mm 和Imm 四种,主要根据 试验厚度选择,选择要求是使压痕深度 h 小于试样厚度的1/8。

金属硬度测定实验报告

金属硬度测定实验报告

金属硬度测定实验报告篇一:金属材料的硬度试验实验报告实验五硬度实验一.实验目的1.了解硬度测定的基本原理及应用范围。

2.了解布氏硬度实验机的主要结构及操作方法。

二.概述硬度是指材料对另一较硬物体压入表面的抗力,是重要的机械性能之一。

它是给初级金属材料软硬程度的数量概念,硬度值越高,表明金属抵抗塑性变形能力越大,材料产生塑性变形就越困难,硬度实验方法简单,操作方便,出结果快,又无损于零件,因此被广泛应用。

测定金属硬度的方法很多,有布氏硬度、洛氏硬度和维氏硬度等。

1.布氏硬度(HB)(1)布氏硬度实验的基本原理布氏硬度实验是以一定直径的钢球施加一定负荷P,压入被测金属表面(如图1所示)保持一定时间,然后卸荷,根据金属表面的压痕面积F求应力值,以此作为硬度值的计量指标,以HB表示,则(5-1)式中:P—负荷(kgf); D—钢球直径(mm) h—压痕深度(mm)图5-1 布氏硬度实验原理图由于测量压痕d要比测量压痕深度h容易,将h用d代换,这可由图5-1(b)中的△Oab关系求出:(5-2)将式(5-2)代入式(5-1)即得:(5-3)式(5-3)中,只有d是变数,所以只要测量出压痕直径,就可根据已知的D和P值计算出HB值。

在实际测量时,可根据HB、D、P、d的值所列成的表,若D、P已选定,则只需用读数测微尺(将实际压痕直径d放大10倍的测微尺)测量压痕直径d,就可直接查表求得HB值。

由于金属材料有硬有软,所测工件有厚有薄,若采用同一种负荷(如3000kgf)和钢球直径(如10mm)时,则对硬的金属适合,而对软的金属就不合适,会使整个钢球陷入金属中;若对厚的工件适合,而对薄的金属则可能压透,所以规定测量不同材料的布氏硬度值时,要有不同的负荷和钢球直径,为了保持统一的,可以相互进行比较的数值,必须使P和D之间保持某一比值关系,以保证所得到的压痕形状的几何相似关系,其必要条件就是使压入角保持不便。

由图5-1(b)可知:(5-4)将式(5-4)代入式(5-3)得:(5-5)式(5-5)说明,当φ值为常数时,为使HB值相同,P/D2也应保持为一定值,因此对同一材料而言,不论采用何种大小的负荷和钢球直径,只要满足P/D2=常数,所得的HB值都是一样的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实 验 报 告
课程名称: 材料性能研究技术 成绩: 实验名称: 金属材料硬度测试实验 批阅人: 实验时间: 实验地点:x5406 报告完成时间:2 姓 名: 学号: 班级:
同组实验者: 指导教师:
一、实验目的
1.了解不同类型硬度测试的基本原理。

2.了解不同类型硬度测试设备的特点及应用范围。

3.掌握各类硬度计的操作方法。

二、实验原理
金属的硬度可以认为是金属材料表面在压应力作用下抵抗塑性变形的一种能力。

硬度测试能够给出金属材料软硬度的定量概念,即:硬度示值是表示材料软硬程度的数量指标。

由于在金属表面以下不同深度处材料所承受的应力和所发生的变形程度不同,因而硬度值可以综合地反映压痕附近局部体积内金属的弹性、微量应变抗力、应变强化能力以及大量形变抗力。

硬度值越高,表明金属抵抗塑性变形的能力越大,材料产生塑性变形就越困难。

硬度的大小对于机械零件或工具的使用寿命具有重要的影响。

硬度测试方法有很多,大体可以分为弹性回跳法(如肖氏硬度)、压入法(如布氏硬度、洛氏硬度、维氏硬度)和划痕法(如莫氏硬度)等三类。

硬度是表征金属材料软硬程度的一种性能,其物理意义随着试验方法的不同而表示不同的意义。

其中弹性回跳法主要表征金属弹性变形功的能力;压入法主要表征金属塑性变形抗力及应变硬化能力;而划痕法主要表征金属切断能力。

下面介绍三种最常用的硬度测试方法:
1、布氏硬度
(1)布氏硬度试验原理
用一定直径D (mm )的硬质合金球作为压头,用一定的试验力F (N ),将其压入试样表面,经过规定的保持时间t (s )之后卸载试验力,观察试样表面,会发现有残留压痕(如图1)。

测残留压痕的平均直径d (mm ),然后求出压痕球形面积A (mm ²)。

布氏硬度值(HBW )就是试验力F 除以压痕表面积A 所得的商,F 以N 作为单位时,其计算公式为
)(204.0102.022d D D D F A F HBW --==π
注:布氏硬度值不标出单位
布氏硬度试验用的压头球直径有10mm 、5mm 、2.5mm 和1mm 四种,主要根据试验厚度选择,选择要求是使压痕深度h 小于试样厚度的1/8 。

当试样厚度足够时,应尽量选用10mm 的压头球。

(2)布氏硬度的特点
布氏硬度试验时一般采用直径较大的压头球,所以它所得的压痕面积会比较大。

压痕面积大的一个优点就是它的硬度值能反映金属在较大范围内各组成相的平均性能,而不会受到个别的组成相和微小相的影响,所以说,布氏硬度试验主要用于测定灰口铸铁,轴承合金等具有粗大晶粒或组成相的金属材料的硬度;压痕较大的另外一个优点就是实验的数据稳定,重复性强。

但是压痕面积较大的缺点就是不能再成品上进行试验,布氏硬度的另外一个缺点就是对于不同的材料需要更换不同直径的压头球并且需要改变试验力,压痕直径的测量也会比较麻烦,所以一般不用于自动检测。

(3)布氏硬度的表示方法
布氏硬度值与试验规范有关,所以它的表示方法能反映规范的内容,布氏硬度的表示方法有:①硬度值;②符号HBW ;③球直径;④试验力;⑤试验力保持时间(10s-15s 不标注)。

后3项之间各用斜线隔开。

如600HBW1/30/20 表示用直径1mm 的硬质合金球在294.2N 试验力下保持20s 测得的不是硬度值为600。

需要注意的是:在布氏硬度表示方法中,试验力的单位是千克力(kgf ),2者的换算关系是1kgf=9.80665N 。

2、洛氏硬度
(1)洛氏硬度试验原理
洛氏硬度是通过测量压痕深度来表示材料的硬度值。

洛氏硬度试验所用到的压头有两种:一种是一定直径的小淬火钢球或硬质合金球;另外一种就是圆锥角α=120°的金刚石圆锥体。

试验时,先加初试验力0F ,在试样表面得到一压痕,深度为0h 。

此时,此时,测量压痕深度的指针在表盘上指零。

然后加上住试验力1F ,压头压入深度为1h 。

表盘上指针以逆时针方向转动到相应的刻度位置。

试样在1F 作用下产生的总变形1h 中包括弹性变形与塑性变形。

当1F 卸除后,总变形中的弹性变形恢复,压
头回升一段距离)(h h -1 。

这时试样表面残留的塑性变形深度h 即为压痕深度,
而指针顺时针方向转动停止时所指的数值就是洛氏硬度值。

规定每0.002mm 的压痕深度为一个硬度单位。

于是洛氏硬度值(HR )的计算公式:
错误!未找到引用源。

式中,当使用金刚石圆锥压头时,k=0. 2mm :当使用淬火钢球或硬质合金压头时,k=0.26 mm 。

(2)洛氏硬度的特点
洛氏硬度试验的优点是:压痕较小,可在工件上进行试验;操作简便,迅速,硬度值可以直接读出;采用不同的标尺可以测定各种软硬不同的金属盒厚薄不一的试样的硬度,所以广泛用于热处理的质量检测。

它的缺点是:压痕较小,代表性差;若材料中有偏析和组织不均匀等缺陷,则其测得的硬度重复性差,分散度大;由于用不同的标尺所测得的硬度值彼此没有联系,所以不能够直接比较。

(3)洛氏硬度的表示方法。

不同的压头和试验力对应不同的洛氏硬度标尺。

一般经淬火处理的钢或工具都采用HRC 测量。

洛氏硬度的表示方法是:硬度值,符号HR ,标尺字母。

如70HRC 表示用C 标尺所测得的洛氏硬度值为70。

3、维氏硬度
(1)维氏硬度试验原理
维氏硬度是根据压痕单位面积所承受的试验力来计算硬度值的,其压头是两相对面间夹角α为136°的金刚石四棱椎体。

压头在试验力F (N )作用下将试样的表面压出一个四方锥形的压痕,经过一定的保持时间后卸载试验力,测出压痕对角线的平均长度d[d=(d1+d2)/2],用来计算压痕表面积A (mm ²)。

维氏硬度值(HV )为试验力F 除以压痕表面积A 所得的商,即
22F 1891.0)2/136sin(204.0102.0d
d F A F HV =︒== 注:维氏硬度值不标注单位。

维氏硬度采用正四棱锥体做压头的原因,是当改变试验力时压痕的几何形状总保持相似,而不致影响硬度值。

维氏硬度常用的试验力范围为49.03-980.7N ,使用时应视材料的厚度及预期的硬度,尽可能的采用较大的试验力,以减小压痕尺寸的测量误差。

如果维氏硬度试验时所选用的试验力较小,在0.098N-0.9807N 之间,则课测定金属箔、极箔的表面层的硬度以及合金中各种组成相的硬度。

由于压痕的尺寸较小,所以为了提高精度,需要配用显微放大装置,这就是显微维氏硬度试验。

(2)维氏硬度的特点
维氏硬度的优点是:不存在洛氏硬度试验时不同标尺无法统一的弊端;不存在布氏硬度试验时要求试验力F 与压头直径D 之间所规定的条件的约束;试验时试验力可以任意选取,而且压痕测量的精度较高,测得的硬度较为准确。

缺点是由于硬度值需要通过测量压痕对角线长度后才能进行计算或查表,所以工作效率低。

(3)维氏硬度的表示方法是:硬度值,符号HV ,试验力,试验力保持时间(10-15s 不标注)。

如600HV30表示试验力为294.2N 下保持10-15s 测得的维氏硬度为640。

对比三种硬度测试方法,布氏硬度适用于硬度较低的材料,一般小于HRC15,如有色金属、低碳钢等;洛氏硬度则可以测高硬度的材料,硬度值在HRC20—67
之间;维氏硬度的应用非常广泛,特别适用于测试表面处理层等小范围的硬度,但是测试前试样必须抛光处理。

二、实验设备及材料
1、实验设备:布氏硬度计,洛氏硬度计,数字式显微硬度计,测量显微镜。

2、实验材料:A3钢正火,45#钢淬火+回火,A3钢退火。

三、实验内容
1、制备样品
首先,取A3钢和45#钢进行如下表所示的热处理:
表1 热处理方案
3#试样还要用硝酸酒精溶液进行腐蚀处理。

2、硬度测试
对3个试样,分别利用与其对应的硬度测试方法测出其硬度值,并记录于表2中:
表2 硬度测试结果
四、结果分析
从表1中拟定的不同材料的硬度测试方法和表2中硬度测试的结果分析可知:
A3钢正火试样的硬度值较低,用布氏硬度测得,这是因为A3钢正火组织为P+F,其硬度较低,而布氏硬度适合于测试较软的材料,如有色金属和低碳钢等,其可测试的硬度值一般小于HRC15。

45#钢淬火+回火试样的硬度值较高,测试的是其洛氏硬度,这是因为45#钢淬火+回火组织是回火马氏体,为较硬的组织,洛氏硬度可以测试较硬的材料,
其可测硬度值在HRC20—HRC67之间。

对于3#试样A3钢退火材料,其组织为珠光体+铁素体,本实验中要测试的是珠光体和铁素体的硬度,测试的是显微组织的硬度,而维氏硬度具有可以测试微观组织硬度的优点,所以只有使用维氏硬度来测量,但是试样测试前必须进行抛光处理。

另外,通过对比珠光体和铁素体的硬度,也验证了铁素体硬度大于珠光体的结论。

五、体会。

相关文档
最新文档