2021届高三期初考试数学试卷

合集下载

2021年高三上学期初考试数学试题含答案

2021年高三上学期初考试数学试题含答案

苏省苏州中学xx 学年度第一学期期初考试2021年高三上学期初考试数学试题含答案一、 填空题:本大题共14小题,每小题5分,共70分.1. 若a +i 1-i (i 是虚数单位)是实数,则实数a 的值是____________.2. 已知集合A ={x |x >1},B ={x |x 2-2x <0},则A ∪B =____________.3. 命题“若实数a 满足a ≤2,则a 2<4”的否命题是______ (填“真”或“假”)命题.4.在如图所示的算法流程图中,若输入m =4,n =3,则输出的a =__________.(第4题)5.把一个体积为27 cm 3的正方体木块表面涂上红漆,然后锯成体积为 1 cm 3的27个小正方体,现从中任取一块,则这一块至少有一面涂有红漆的概率为____________.6. 在约束条件⎩⎨⎧0≤x ≤1,0≤y ≤2,2y -x ≥1下,则x -12+y 2的最小值为__________.7.设α、β是空间两个不同的平面,m 、n 是平面α及β外的两条不同直线.从“① m ⊥n ;② α⊥β;③ n ⊥β;④ m ⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:____________.(填序号).8.在平面直角坐标系xOy 中,已知A 、B 分别是双曲线x 2-y 23=1的左、右焦点,△ABC 的顶点C 在双曲线的右支上,则sin A -sin Bsin C的值是____________.9. 已知点A (0,2),抛物线y 2=2px (p >0)的焦点为F ,准线为l ,线段FA 交抛物线于点B ,过B 作l 的垂线,垂足为M ,若AM ⊥MF ,则p =__________.10. 若函数f (x )=⎩⎪⎨⎪⎧2x,x <0,-2-x,x >0,则函数y =f (f (x ))的值域是____________.11. 如图所示,在直三棱柱A 1B 1C 1—ABC 中,AC ⊥BC ,AC =4,BC =CC 1=2.若用平行于三棱柱A 1B 1C 1—ABC 的某一侧面的平面去截此三棱柱,使得到的两个几何体能够拼接成长方体,则长方体表面积的最小值为________.(第11题)12. 已知椭圆x 24+y 22=1,A 、B 是其左、右顶点,动点M 满足MB ⊥AB ,连结AM 交椭圆于点P ,在x 轴上有异于点A 、B 的定点Q ,以MP 为直径的圆经过直线BP 、MQ 的交点,则点Q 的坐标为____________.13. 在△ABC 中,过中线AD 中点E 任作一直线分别交边AB 、AC 于M 、N 两点,设AM →=xAB →,AN →=yAC →(x 、y ≠0),则4x +y 的最小值是______________.14.设m ∈N ,若函数f (x )=2x -m 10-x -m +10存在整数零点,则m 的取值集合为______________.二、 解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤.15. (本小题满分14分)如图,平面PAC ⊥平面ABC ,点E 、F 、O 分别为线段PA 、PB 、AC 的中点,点G 是线段CO 的中点,AB =BC =AC =4,PA =PC =2 2.求证:(1) PA ⊥平面EBO ; (2) FG ∥平面EBO .16. (本小题满分14分)已知函数f (x )=2cos x 2⎝ ⎛⎭⎪⎫3cos x 2-sin x2.(1) 设θ∈⎣⎢⎡⎦⎥⎤-π2,π2,且f (θ)=3+1,求θ的值; (2) 在△ABC 中,AB =1,f (C )=3+1,且△ABC 的面积为32,求sin A +sin B 的值.17. (本小题满分14分)在平面直角坐标系xOy 中,如图,已知椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A 1、A 2,上、下顶点分别为B 1、B 2.设直线A 1B 1的倾斜角的正弦值为13,圆C 与以线段OA 2为直径的圆关于直线A 1B 1对称.(1) 求椭圆E 的离心率;(2) 判断直线A 1B 1与圆C 的位置关系,并说明理由; (3) 若圆C 的面积为π,求圆C 的方程.18. (本小题满分16分)心理学家研究某位学生的学习情况发现:若这位学生刚学完的知识存留量记为1,则x天后的存留量y1=4x+4;若在t(t>4)天时进行第一次复习,则此时知识存留量比未复习情况下增加一倍(复习时间忽略不计),其后存留量y2随时间变化的曲线恰为直线的一部分,其斜率为at+42(a<0),存留量随时间变化的曲线如图所示.当进行第一次复习后的存留量与不复习的存留量相差最大时,则称此时刻为“二次复习最佳时机点”.(1) 若a=-1,t=5求“二次复习最佳时机点”;(2) 若出现了“二次复习最佳时机点”,求a的取值范围.19. (本小题满分16分)已知各项均为正数的等差数列{a n}的公差d不等于0,设a1、a3、a k是公比为q的等比数列{b n}的前三项.(1) 若k=7,a1=2.①求数列{a n b n}的前n项和T n;②将数列{a n}与{b n}中相同的项去掉,剩下的项依次构成新的数列{c n},设其前n项和为S n,求S-22n-1+3·2n-1的值;(2) 若存在m>k,m∈N*使得a1、a3、a k、a m成等比数列,求证:k为奇数.20. (本小题满分16分)已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x +a ,x <0,ln x ,x >0,其中a 是实数.设A (x 1,f (x 1)),B (x 2,f (x 2))为该函数图象上的两点,且x 1<x 2.(1)指出函数f (x )的单调区间;(2)若函数f (x )的图象在点A ,B 处的切线互相垂直,且x 2<0,证明:x 2-x 1≥1; (3)若函数f (x )的图象在点A ,B 处的切线重合,求a 的取值范围.江苏省苏州中学xx 学年度第一学期期初考试数学II(理科附加)本试卷满分40分,考试时间30分钟,将正确的答案写在答题卡的相应位置上。

2021年高三上学期期初数学检测试卷(理科)含解析

2021年高三上学期期初数学检测试卷(理科)含解析

2021年高三上学期期初数学检测试卷(理科)含解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.已知集合A={0,1},B={﹣1,0,a+3},且A⊆B,则a= .2.命题p:∃x∈R,使得f(x)=x,则¬p为.3.已知集合M={x|x2﹣2x﹣3<0}和N={x|x>1}的关系如图所示,则阴影部分所表示的集合为.4.“p∨q为真命题”是“¬p为假命题”成立的条件.A=[﹣1,﹣n],则m2+n2= .5.设全集U=R,A={x>0},∁U6.已知集合A={x|x﹣=0,x∈R},则满足A∪B={﹣1,0,1}的集合B的个数是.7.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要)8.若命题“∃x∈R,使得x2+(a﹣1)x+1<0”是真命题,则实数a的取值范围是.9.命题p:若•>0,则与的夹角为锐角;命题q:若函数f(x)在(﹣∞,0]及(0,+∞)上都是减函数,则f(x)在(﹣∞,+∞)上是减函数.下列说法:①“p∨q”是真命题;②“p∨q”是假命题;③非p为假命题;④非q为假命题.其中正确的是(填序号).10.若全集U={0,1,2,3,4,5}且∁U A={x∈N*|1≤x≤3},则集合A的真子集共有个.11.设p:实数x满足x2﹣4ax+3a2<0,其中a<0,q:实数x满足x2﹣x﹣6≤0或x2+2x ﹣8>0,且非p是非q的必要不充分条件,则实数a的范围是.12.已知两个非空集合A={x|x(x﹣3)<4},B={x|≤a},若A∩B=B,则实数a的取值范围是.13.若x<m﹣1或x>m+1是x2﹣2x﹣3>0的必要不充分条件,则实数m的取值范围是.14.设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m﹣2)x﹣3m+10=0无实根.则使p∨q为真,p∧q为假的实数m的取值范围是.二、解答题:本大题共6小题,共计90分.请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.若集合A={x|x2﹣2x﹣8<0},B={x|x﹣m<0}.(1)若m=3,全集U=A∪B,试求A∩(∁U B);(2)若A∩B=∅,求实数m的取值范围;(3)若A∩B=A,求实数m的取值范围.16.设p:|4x﹣3|≤1;q:x2﹣(2a+1)x+a(a+1)≤0.若¬p是¬q的必要而不充分条件,求实数a的取值范围.17.设p:函数y=log a(x+1)(a>0且a≠1)在(0,+∞)上单调递减;q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点.如果p∧q为假,p∨q为真,求实数a的取值范围.18.(1)已知点P(3,1)在矩阵A= 变换下得到点P′(5,﹣1).试求矩阵A和它的逆矩阵A﹣1.(2)在平面直角坐标系xOy中,圆C的参数方程为(α为参数,m为常数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ﹣)=.若直线l与圆C有两个公共点,求实数m的取值范围.19.求证:关于x的方程ax2+2x+1=0至少有一个负根的充要条件是a≤1.20.已知函数f(x)=e x,g(x)=x﹣b,b∈R.(1)若函数f(x)的图象与函数g(x)的图象相切,求b的值;(2)设T(x)=f(x)+ag(x),a∈R,求函数T(x)的单调增区间;(3)设h(x)=|g(x)|•f(x),b<1.若存在x1,x2∈[0,1],使|h(x1)﹣h(x2)|>1成立,求b的取值范围.xx学年江苏省常州市溧阳市竹箦中学高三(上)期初数学检测试卷(理科)参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共70分.请把答案填写在答题卡相应位置上.1.已知集合A={0,1},B={﹣1,0,a+3},且A⊆B,则a=.【考点】集合的包含关系判断及应用.【分析】由A为B的子集,得到A中的所有元素都属于B,得到a+3=1,即可求出a的值.【解答】解:∵集合A={0,1},B={﹣1,0,a+3},且A⊆B,∴a+3=1,解得:a=﹣2.故答案为:﹣22.命题p:∃x∈R,使得f(x)=x,则¬p为.【考点】命题的否定.【分析】根据特称命题的否定是全称命题,即可得到结论.【解答】解:∵命题p是特称命题,∴特称命题的否定是全称命题,即¬p:∀x∈R,都有f(x)≠x,故答案为:∀x∈R,都有f(x)≠x.3.已知集合M={x|x2﹣2x﹣3<0}和N={x|x>1}的关系如图所示,则阴影部分所表示的集合为.【考点】Venn图表达集合的关系及运算.【分析】根据Venn图得阴影部分对应的集合是M∩N,然后根据交集定义进行求解即可.【解答】解:依题意得M={x|x2﹣2x﹣3<0}={x|﹣1<x<3},题中的阴影部分所表示的集合为M∩N,则M∩N={x|1<x<3}.故答案为:{x|1<x<3}.4.“p∨q为真命题”是“¬p为假命题”成立的条件.【考点】必要条件、充分条件与充要条件的判断.【分析】“p∨q为真命题”则p或q为真命题,“¬p为假命题”,则p为真命题.因此“¬p为假命题”⇒“p∨q为真命题”,反之不成立.即可判断出.【解答】解:“p∨q为真命题”则p或q为真命题,“¬p为假命题”,则p为真命题.因此“¬p为假命题”⇒“p∨q为真命题”,反之不成立.∴“p∨q为真命题”是“¬p为假命题”成立必要不充分条件.故答案为:必要不充分.5.设全集U=R,A={x>0},∁U A=[﹣1,﹣n],则m2+n2=.【考点】补集及其运算;其他不等式的解法.【分析】根据集合A的补集及全集R,得到集合A的范围,然后把集合A中的其他不等式化为x﹣1与x+m同号,根据范围的端点即可得到m与n的值,将n与m的值代入所求的式子中,即可求出值.【解答】解:由∁U A=[﹣1,﹣n],知A=(﹣∞,﹣1)∪(﹣n,+∞),即不等式>0的解集为(﹣∞,﹣1)∪(﹣n,+∞),而不等式>0可化为:或,所以﹣n=1,﹣m=﹣1,因此m=1,n=﹣1,所以m2+n2=2故答案为:26.已知集合A={x|x﹣=0,x∈R},则满足A∪B={﹣1,0,1}的集合B的个数是.【考点】并集及其运算.【分析】求出集合A,利用集合之间的运算关系即可得到结论.【解答】解:解方程x﹣=0,得x=1或x=﹣1,所以A={1,﹣1},又A∪B={﹣1,0,1},所以B={0}或{0,1}或{0,﹣1}或{0,1,﹣1},集合B共有4个.故答案为:4.7.设x∈R,则“|x﹣2|<1”是“x2+x﹣2>0”的条件.(填充分不必要、必要不充分、充要条件、既不充分也不必要)【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义进行判断即可.【解答】解:由|x﹣2|<1得﹣1<x﹣2<1,得1<x<3,由x2+x﹣2>0得x>1或x<﹣2,则(1,3)⊊(﹣∞,﹣2)∪(1,+∞),故“|x﹣2|<1”是“x2+x﹣2>0”的充分不必要条件,故答案为:充分不必要8.若命题“∃x∈R,使得x2+(a﹣1)x+1<0”是真命题,则实数a的取值范围是.【考点】二次函数的性质.【分析】因为不等式对应的是二次函数,其开口向上,若“∃x∈R,使得x2+(a﹣1)x+1<0”,则相应二次方程有不等的实根.【解答】解:∵“∃x∈R,使得x2+(a﹣1)x+1<0∴x2+(a﹣1)x+1=0有两个不等实根∴△=(a﹣1)2﹣4>0∴a<﹣1或a>3故答案为:(﹣∞,﹣1)∪(3,+∞)9.命题p:若•>0,则与的夹角为锐角;命题q:若函数f(x)在(﹣∞,0]及(0,+∞)上都是减函数,则f(x)在(﹣∞,+∞)上是减函数.下列说法:①“p∨q”是真命题;②“p∨q”是假命题;③非p为假命题;④非q为假命题.其中正确的是(填序号).【考点】平面向量数量积的运算.【分析】先判断命题p,q的真假,利用复合命题与简单命题之间的关系进行判断.【解答】解:∵当a•b>0时,a与b的夹角为锐角或零度角,∴命题p是假命题;∵若函数f(x)在(﹣∞,0]及(0,+∞)上都是减函数,则f(x)在(﹣∞,+∞)上是减函数,∴命题q是假命题,例如,f(x)=,综上可知,“p∨q”是假命题,故②正确.故答案为:②10.若全集U={0,1,2,3,4,5}且∁U A={x∈N*|1≤x≤3},则集合A的真子集共有个.【考点】子集与真子集.【分析】对于有限集合,我们有以下结论:若一个集合中有n个元素,则它有2n个子集.有2n﹣1个真子集.【解答】解:∵∁U A={x∈N*|1≤x≤3},∴∁U A={1,2,3}∴A={0,4,5},所以集合A的真子集有23﹣1=7个.故答案为:711.设p:实数x满足x2﹣4ax+3a2<0,其中a<0,q:实数x满足x2﹣x﹣6≤0或x2+2x ﹣8>0,且非p是非q的必要不充分条件,则实数a的范围是.【考点】必要条件、充分条件与充要条件的判断.【分析】利用不等式的解法分别化简命题p,q.由于,非p是非q的必要不充分条件,即非q⇒非p,且非p推不出非q,等价于p⇒q且q推不出p,即可得出.【解答】解:对于命题p:由x2﹣4ax+3a2<0及a<0,得3a<x<a,即p:3a<x<a.对于命题q:又由x2﹣x﹣6≤0,得﹣2≤x≤3,由x2+2x﹣8>0,得x<﹣4或x>2,那么q:x<﹣4或x≥﹣2.由于,非p是非q的必要不充分条件,即非q⇒非p,且非p推不出非q,等价于p⇒q且q推不出p,于是,得或,解得﹣≤a<0或a≤﹣4,故所求a的范围为[﹣,0)∪(﹣∞,﹣4].故答案为:[﹣,0)∪(﹣∞,﹣4].12.已知两个非空集合A={x|x(x﹣3)<4},B={x|≤a},若A∩B=B,则实数a的取值范围是.【考点】交集及其运算.【分析】求出A中不等式的解集确定出A,根据B为非空集合确定出a的范围,进而求出B中不等式的解集,根据A与B的交集为B,得到B为A的子集,确定出a的范围即可.【解答】解:由A中不等式x(x﹣3)<4,解得:﹣1<x<4,∴A=(﹣1,4),又B是非空集合,∴a≥0,即B=[0,a2],∵A∩B=B,∴B⊆A,∴a2<4,解得:0≤a<2,则实数a的取值范围是[0,2).故答案为:[0,2).13.若x<m﹣1或x>m+1是x2﹣2x﹣3>0的必要不充分条件,则实数m的取值范围是.【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分条件和必要条件的定义结合不等式之间的关系进行求解即可.【解答】解:由x2﹣2x﹣3>0得x>3或x<﹣1,若x<m﹣1或x>m+1是x2﹣2x﹣3>0的必要不充分条件,则,即,即0≤m≤2,故答案为:[0,2]14.设p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m﹣2)x﹣3m+10=0无实根.则使p∨q为真,p∧q为假的实数m的取值范围是.【考点】四种命题间的逆否关系;函数与方程的综合运用.【分析】由使p∨q为真,P∧q为假,则p,q中必然一真一假,故我们可以根据p:方程x2+2mx+1=0有两个不相等的正根;q:方程x2+2(m﹣2)x﹣3m+10=0无实根.求出各种情况下,m的取值范围,综合分析后,即可得到使p∨q为真,P∧q为假的实数m的取值范围.【解答】解:∵p∨q为真,P∧q为假∴p与q一个为真,一个为假由p:方程x2+2mx+1=0有两个不相等的正根当P为真时,m<﹣1,则p为假时,m≥﹣1由q:方程x2+2(m﹣2)x﹣3m+10=0无实根当q为真时,﹣2<m<3,则q为假时,m≤﹣2,或m≥3当p真q假时,m≤﹣2当p假q真时,﹣1≤m<3故使p∨q为真,P∧q为假的实数m的取值范围是(﹣∞,﹣2]∪[﹣1,3)故答案为:(﹣∞,﹣2]∪[﹣1,3)二、解答题:本大题共6小题,共计90分.请在答卷纸指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.若集合A={x|x2﹣2x﹣8<0},B={x|x﹣m<0}.(1)若m=3,全集U=A∪B,试求A∩(∁U B);(2)若A∩B=∅,求实数m的取值范围;(3)若A∩B=A,求实数m的取值范围.【考点】交、并、补集的混合运算.【分析】(1)先求出集合A和集合B,然后由U=A∪B求出全集U,由此能够求出A∩(C u B).(2)先分别求出集合A和B,然后由A∩B=∅,可以求出实数m的取值范围.(3)先分别求出集合A和B,然后由A∩B=A,通过分类讨论,能够求出实数m的取值范围.【解答】解:(1)A={x|﹣2<x<4},若m=3,B={x|x<3},全集U=A∪B={x|﹣2<x<4}∪{x|x<3}={x|x<4}.∴A∩(C u B)={x|﹣2<x<4}∩{x|3≤x<4}={x|3≤x<4}.(2)A={x|﹣2<x<4},B={x|x<m},∵A∩B=∅,∴{m|m≤﹣2}.(3)∵A={x|﹣2<x<4},B={x|x<m},①当m=4时,B={x|x<4},显然A∩B=A成立②当m>4时,很明显A∩B=A也是成立的③当m<4时,得到A∩B={x|﹣2<x<m}≠A,不成立综上有m≥4.16.设p:|4x﹣3|≤1;q:x2﹣(2a+1)x+a(a+1)≤0.若¬p是¬q的必要而不充分条件,求实数a的取值范围.【考点】必要条件、充分条件与充要条件的判断;命题的真假判断与应用.【分析】根据绝对值的性质和十字相乘法分别求出命题p和q,再根据¬p是¬q的必要而不充分条件,可以推出p⇒q,再根据子集的性质进行求解;【解答】解:∵p:|4x﹣3|≤1;q:x2﹣(2a+1)x+a(a+1)≤0,∴p:﹣1≤4x﹣3≤1,解得{x|≤x≤1},q:{x|a≤x≤a+1},∵¬p是¬q的必要而不充分条件,∴¬q⇒¬p,¬p推不出¬q,可得p⇒q,q推不出p,∴解得0≤a≤,验证a=0和a=满足题意,∴实数a的取值范围为:a∈[0,];17.设p:函数y=log a(x+1)(a>0且a≠1)在(0,+∞)上单调递减;q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点.如果p∧q为假,p∨q为真,求实数a的取值范围.【考点】复合命题的真假.【分析】先根据对数函数的单调性,和二次函数图象和x轴交点的情况与判别式的关系即可求出命题p,q下的a的取值范围.根据p∧q为假,p∨q为真即可判断p,q的真假情况,根据p,q的真假情况即可求出a的取值范围.【解答】解:p:∵函数y=log a(x+1)在(0,+∞)上单调递减;∴0<a<1;q:曲线y=x2+(2a﹣3)x+1与x轴交于不同的两点;∴△=(2a﹣3)2﹣4>0,解得;∵p∧q为假,p∨q为真,∴p,q一真一假;若p真q假,则:0<a<1,且,∴;若p假q真,则:a>1,且a,∴;∴实数a的取值范围为.18.(1)已知点P(3,1)在矩阵A= 变换下得到点P′(5,﹣1).试求矩阵A和它的逆矩阵A﹣1.(2)在平面直角坐标系xOy中,圆C的参数方程为(α为参数,m为常数).以原点O为极点,以x轴的非负半轴为极轴的极坐标系中,直线l的极坐标方程为ρcos(θ﹣)=.若直线l与圆C有两个公共点,求实数m的取值范围.【考点】简单曲线的极坐标方程.【分析】(1)依题意得===,即,解出即可得出A.det(A)==﹣1,即可得出A的逆矩阵A﹣1.(2)圆C的普通方程为(x﹣m)2+y2=4.直线l的极坐标方程化为ρ(cosθ+sinθ)=,利用互化公式可得:直角坐标方程.利用点到直线的距离公式及其直线与圆的相交的充要条件即可得出.【解答】解:(1)依题意得===,∴,解得.∴A=.∵det(A)==1×(﹣1)﹣0×2=﹣1,∴A的逆矩阵A﹣1=.(2)圆C的参数方程为(α为参数,m为常数),利用平方关系可得:圆C的普通方程为(x﹣m)2+y2=4.直线l的极坐标方程化为ρ(cosθ+sinθ)=,即x+y=,化简得x+y﹣2=0.∵圆C的圆心为C(m,0),半径为2,圆心C到直线l的距离d=,∴d=<2,解得2﹣2<m<2+2.19.求证:关于x的方程ax2+2x+1=0至少有一个负根的充要条件是a≤1.【考点】必要条件、充分条件与充要条件的判断.【分析】通过讨论a的范围结合二次函数的性质分别证明其充分性和必要性即可.【解答】证明:充分性:当a=0时,2x+1=0,其根为x=﹣,方程有一个负根,符合题意,当a<0时,△=4﹣4a>0,方程ax2+2x+1=0有2个不相等的实数根,且两根之积为<0,方程两根一正一负,符合题意,当0<a≤1时,△=4﹣4a≥0,方程ax2+2x+1=0有实数根且,故方程两根均为负,符合题意,综上知,当a≤1时,方程ax2+2x+1=0至少有一个负根,必要性:若方程ax2+2x+1=0至少有一个负根,当a=0时,方程2x+1=0符合题意,当a≠0时,方程ax2+2x+1=0应有一正根一负根或两个负根,则<0或,解得a<0或0<a≤1,综上知:方程ax2+2x+1=0至少有一负根,则a≤1,故方程ax2+2x+1=0至少有一负根的充要条件是a≤1.20.已知函数f(x)=e x,g(x)=x﹣b,b∈R.(1)若函数f(x)的图象与函数g(x)的图象相切,求b的值;(2)设T(x)=f(x)+ag(x),a∈R,求函数T(x)的单调增区间;(3)设h(x)=|g(x)|•f(x),b<1.若存在x1,x2∈[0,1],使|h(x1)﹣h(x2)|>1成立,求b的取值范围.【考点】利用导数研究曲线上某点切线方程;利用导数研究函数的单调性.【分析】(1)设切点为(t,e t),由导数的几何意义,可得e t=1,且e t=t﹣b,即可得到b=﹣1;(2)求出T(x)的导数,讨论当a≥0时,当a<0时,由导数大于0,可得增区间;(3)求出h(x)的分段函数,讨论x的范围,求得单调区间,对b讨论,求得h(x)的最值,由存在性思想,即可得到b的范围.【解答】解:(1)设切点为(t,e t),因为函数f(x)的图象与函数g(x)的图象相切,所以e t=1,且e t=t﹣b,解得b=﹣1;(2)T(x)=e x+a(x﹣b),T′(x)=e x+a.当a≥0时,T′(x)>0恒成立.当a<0时,由T′(x)>0,得x>ln(﹣a).所以,当a≥0时,函数T(x)的单调增区间为(﹣∞,+∞);当a<0时,函数T(x)的单调增区间为(ln(﹣a),+∞).(3)h(x)=|g(x)|•f(x)=,当x>b时,h′(x)=(x﹣b+1)e x>0,所以h(x)在(b,+∞)上为增函数;当x<b时,h′(x)=﹣(x﹣b+1)e x,因为b﹣1<x<b时,h′(x)=﹣(x﹣b+1)e x<0,所以h(x)在(b﹣1,b)上是减函数;因为x<b﹣1时,h′(x)=﹣(x﹣b+1)e x>0,所以h(x)在(﹣∞,b﹣1)上是增函数.①当b≤0时,h(x)在(0,1)上为增函数.所以h(x)max=h(1)=(1﹣b)e,h(x)min=h(0)=﹣b.由h(x)max﹣h(x)min>1,得b<1,所以b≤0.②当0<b<时,因为b<x<1时,h′(x)=(x﹣b+1)e x>0,所以h(x)在(b,1)上是增函数,因为0<x<b时,h′(x)=﹣(x﹣b+1)e x<0,所以h(x)在(0,b)上是减函数.所以h(x)max=h(1)=(1﹣b)e,h(x)min=h(b)=0.由h(x)max﹣h(x)min>1,得b<.因为0<b<,所以0<b<.③当≤b<1时,同理可得,h(x)在(0,b)上是减函数,在(b,1)上是增函数.所以h(x)max=h(0)=b,h(x)min=h(b)=0.因为b<1,所以h(x)max﹣h(x)min>1不成立.综上,b的取值范围为(﹣∞,).xx年10月13日27834 6CBA 沺39358 99BE 馾27472 6B50 歐31852 7C6C 籬33723 83BB 莻30959 78EF 磯\24262 5EC6 廆M23900 5D5C 嵜35955 8C73 豳30151 75C7 症[22114 5662 噢。

数学丨山东省菏泽市2021届高三上学期期中考试数学试卷及答案

数学丨山东省菏泽市2021届高三上学期期中考试数学试卷及答案

保密★启用前2020-2021学年度第一学期期中考试高三数学试题(B)本试卷共4页,共150分,考试时间120分钟。

一、单项选择题:本题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.全集U ={x|-1≤x<3},集合A ={x|-1≤x ≤2},则U A =A.{x|-1≤x<2}B.{x|2<x<3}C.{x|2≤x<3}D.{x|x<-1或x>2}2.己知复数z =1+i ,z 为z 的共轭复数,则1z z + A.32i + B.12i + C.132i - D.132i + 3.下列函数中,既是偶函数又在(0,+∞)上单调递减的是 A.y =x -2B.y =2-x C.y =|lnx| D.y =xsinx4.已知tan α=2,则sin(α-4π)sin(α+4π)= A.-310 B.-35 C.310 D.35 5.《九章算术》中《方田》章有弧田面积计算问题,术曰:以弦乘矢,矢又自乘,并之,二而一。

其大意是弧田面积计算公式为:弧田面积=12(弦×矢+矢×矢)。

弧田是由圆弧(弧田弧)和以圆弧的端点为端点的线段(弧田弦)围成的平面图形,公式中的“弦”指的是弧田弦的长,“矢”指的是弧田所在圆的半径与圆心到弧田弦的距离之差,现有一弧田,其弧田弦AB 等于6米,其弧田弧所在圆为圆O ,若用上述弧田面积计算公式算得该弧田的面积为72平方米,则sin ∠AOB =A.34B.725C.1225D.24256.在△ABC 中,AB AC 2AD +=,AE 2DE 0+=,若EB xAB yAC =+,则A.x +2y =0B.2x +y =0C.x -2y =0D.2x -y =07.函数f(x)=Asin(ωx +φ)(其中A>0,ω>0,|φ|<2π)的图象如图所示,为了得到f(x)的图象,只需将g(x)=Asin ωx 图象A.向左平移4π个单位长度 B.向右平移4π个单位长度 C.向左平移12π个单位长度 D.向右平移12π个单位长度 8.定义域为(-2π,2π)的函数f(x)满足f(x)+f(-x)=0,其导函数为f'(x),当0<x<2π时,有f'(x)cosx +f(x)sinx<0成立,则关于x 的不等式2f(4π)·cosx 的解集为 A.(-2π,-4π)∪(4π,2π)B.(4π,2π) C.(-4π,0)∪(0,4π) D.(-4π,0)∪(4π,2π) 二、多项选择题:本题共4小题,每小题5分,共20分。

2021年高三上学期期初数学试卷(文科)含解析

2021年高三上学期期初数学试卷(文科)含解析

2021年高三上学期期初数学试卷(文科)含解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的口号内(本大题共10个小题,每小题5分,共50分)1.集合M={x|x2﹣2x≤0},N={x|x2≥1},则M∩N=()A.[0,1] B.[1,2] C.[0,2] D.[﹣1,1]2.函数y=的定义域是()A.[﹣,﹣1)∪(1,] B.(﹣,﹣1)∪(1,)C.[﹣2,﹣1)∪(1,2] D.(﹣2,﹣1)∪(1,2)3.已知Sn 是等差数列{an}的前n项和,若a1+a3+a5=3,则S5=()A.B.5 C.7 D.94.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)5.已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为()A.{x|x<﹣1或x>﹣lg2} B.{x|﹣1<x<﹣lg2}C.{x|x>﹣lg2} D.{x|x<﹣lg2}6.设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()=()A. B. C.0 D.﹣7.设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则|+|=()A. B. C. D.108.若两个非零向量,满足|+|=|﹣|=2丨丨,则向量与的夹角为()A. B. C. D.9.函数f(x)=2sinωx在区间上的最小值为﹣2,则ω的取值范围是()A. B. C. D.10.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:请把答案写在题中横线上(本大题共5个小题,每小题5分,共25分)11.设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C=.12.函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为.13.在△ABC中,,则=.14.已知各项皆为正数的等比数列{a n}(n∈N*),满足a7=a6+2a5,若存在两项a m、a n使得=4a1,则+的最小值为.15.若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于.三、解答题:解答应写出文字说明、证明过程或演算步骤(共6个大题,共75分)16.已知函数,其图象过点(,).(Ⅰ)求φ的值;(Ⅱ)将函数y=f(x)的图象上个点的横坐标缩短到原来的,纵坐标不变,得到函数y=g (x)若A是锐角△ABC的最小内角,求g(A)的值域.17.已知向量=(sin x,sinx),=(sinx,﹣cosx),设函数,若函数g(x)=﹣f(﹣x).(Ⅰ)求函数g(x)在区间[﹣,]上的最大值,并求出此时x的取值;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若f(﹣)+g(+)=﹣,b+c=7,bc=8,求边a的长.18.设函数f(x)=mx2﹣mx﹣1(Ⅰ)若存在实数x,f(x)<0成立,求m的取值范围;(Ⅱ)若对于x∈[1,4],f(x)<﹣m+5恒成立,求m的取值范围.19.已知等差数列{a n}的公差大于零,且a2、a4是方程x2﹣18x+65=0的两个根;各项均为正数的等比数列{b n}的前n项和为S n,且满足b3=a3,S3=13.(1)求数列{a n}、{b n}的通项公式;(2)若数列{c n}满足c n=,求数列的前项和T n.20.已知函数f(x)=x3﹣ax2﹣3x.(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;(2)若x=3是f(x)的极值点,求f(x)的单调区间及在[2,4]上的最值.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.xx学年山东省青岛九中高三(上)期初数学试卷(文科)参考答案与试题解析一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的口号内(本大题共10个小题,每小题5分,共50分)1.集合M={x|x2﹣2x≤0},N={x|x2≥1},则M∩N=()A.[0,1]B.[1,2]C.[0,2]D.[﹣1,1]【考点】交集及其运算.【分析】求解一元二次不等式化简集合M,N,然后直接利用交集运算求解.【解答】解:由M={x|x2﹣2x≤0}=[0,2],N={x|x2≥1}=(﹣∞,﹣1]∪[1,+∞),得M∩N=[1,2].故选:B.2.函数y=的定义域是()A.[﹣,﹣1)∪(1,]B.(﹣,﹣1)∪(1,)C.[﹣2,﹣1)∪(1,2] D.(﹣2,﹣1)∪(1,2)【考点】函数的定义域及其求法;对数的运算性质.【分析】由函数表达式知,被开方数大于或等于0,故对数的真数大于0且对数值小于或等于1,x2﹣1>0,且x2﹣1≤1;解可得答案.【解答】解:﹣≤x<﹣1或1<x≤.∴y=的定义域为[﹣,﹣1)∪(1,].答案:A3.已知S n是等差数列{a n}的前n项和,若a1+a3+a5=3,则S5=()A. B.5 C.7 D.9【考点】等差数列的前n项和.【分析】由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3.再利用等差数列的前n项和公式即可得出.【解答】解:由等差数列{a n}的性质,a1+a3+a5=3=3a3,解得a3=1.则S5==5a3=5.故选:B.4.已知函数f(x)=,则下列结论正确的是()A.f(x)是偶函数B.f(x)是增函数C.f(x)是周期函数D.f(x)的值域为[﹣1,+∞)【考点】余弦函数的单调性.【分析】由三角函数和二次函数的性质,分别对各个选项判断即可.【解答】解:由解析式可知当x≤0时,f(x)=cosx为周期函数,当x>0时,f(x)=x2+1,为二次函数的一部分,故f(x)不是单调函数,不是周期函数,也不具备奇偶性,故可排除A、B、C,对于D,当x≤0时,函数的值域为[﹣1,1],当x>0时,函数的值域为(1,+∞),故函数f(x)的值域为[﹣1,+∞),故正确.故选:D5.已知一元二次不等式f(x)<0的解集为{x|x<﹣1或x>},则f(10x)>0的解集为()A.{x|x<﹣1或x>﹣lg2}B.{x|﹣1<x<﹣lg2}C.{x|x>﹣lg2}D.{x|x<﹣lg2}【考点】其他不等式的解法;一元二次不等式的解法.【分析】由题意可得f(10x)>0等价于﹣1<10x<,由指数函数的单调性可得解集.【解答】解:由题意可知f(x)>0的解集为{x|﹣1<x<},故可得f(10x)>0等价于﹣1<10x<,由指数函数的值域为(0,+∞)一定有10x>﹣1,而10x<可化为10x<,即10x<10﹣lg2,由指数函数的单调性可知:x<﹣lg2故选:D6.设函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,则f()=()A. B. C.0 D.﹣【考点】抽象函数及其应用;函数的值.【分析】利用已知条件,逐步求解表达式的值即可.【解答】解:∵函数f(x)(x∈R)满足f(x+π)=f(x)+sinx.当0≤x<π时,f(x)=0,∴f()=f()=f()+sin=f()+sin+sin=f()+sin+sin+sin=sin+sin+sin==.故选:A.7.设x,y∈R,向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则|+|=()A. B. C. D.10【考点】数量积判断两个平面向量的垂直关系;向量的模;平面向量共线(平行)的坐标表示.【分析】由两个向量垂直的性质可得2x﹣4=0,由两个向量共线的性质可得﹣4﹣2y=0,由此求出x=2,y=﹣2,以及的坐标,从而求得||的值.【解答】解:∵向量=(x,1),=(1,y),=(2,﹣4)且⊥,∥,则有2x﹣4=0,﹣4﹣2y=0,解得x=2,y=﹣2,故=(3,﹣1 ).故有||==,故选B.8.若两个非零向量,满足|+|=|﹣|=2丨丨,则向量与的夹角为()A. B. C. D.【考点】数量积表示两个向量的夹角.【分析】设||=1,则|+|+|﹣|=2,故以、为邻边的平行四边形是矩形.设向量与的夹角为θ,则由cosθ==求得θ的值.【解答】解:设||=1,则|+|=|﹣|=2,故以、为邻边的平行四边形是矩形,且||=.设向量与的夹角为θ,则cosθ==,∴θ=,故选B.9.函数f(x)=2sinωx在区间上的最小值为﹣2,则ω的取值范围是()A. B. C. D.【考点】正弦函数的图象.【分析】根据正弦函数图象及性质对ω>0,ω<0讨论即可得到答案.【解答】解:当ω>0时,x∈,那么ωx∈[,],由题意:解得:ω≥2.当ω<0时,ωx∈[,﹣],由题意:解得:ω≤所以:ω的取值范围是(]∪[2,+∞)故选B.10.已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)【考点】函数的零点与方程根的关系.【分析】由题意可得f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;分类讨论确定函数的零点的个数及位置即可.【解答】解:∵f(x)=ax3﹣3x2+1,∴f′(x)=3ax2﹣6x=3x(ax﹣2),f(0)=1;①当a=0时,f(x)=﹣3x2+1有两个零点,不成立;②当a>0时,f(x)=ax3﹣3x2+1在(﹣∞,0)上有零点,故不成立;③当a<0时,f(x)=ax3﹣3x2+1在(0,+∞)上有且只有一个零点;故f(x)=ax3﹣3x2+1在(﹣∞,0)上没有零点;而当x=时,f(x)=ax3﹣3x2+1在(﹣∞,0)上取得最小值;故f()=﹣3•+1>0;故a<﹣2;综上所述,实数a的取值范围是(﹣∞,﹣2);故选:D.二、填空题:请把答案写在题中横线上(本大题共5个小题,每小题5分,共25分)11.设△ABC的内角A,B,C所对边的长分别为a,b,c,若b+c=2a,3sinA=5sinB,则角C=.【考点】余弦定理;正弦定理.【分析】由3sinA=5sinB,根据正弦定理,可得3a=5b,再利用余弦定理,即可求得C.【解答】解:∵3sinA=5sinB,∴由正弦定理,可得3a=5b,∴a=∵b+c=2a,∴c=∴cosC==﹣∵C∈(0,π)∴C=故答案为:12.函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)的最大值为1.【考点】三角函数的最值;两角和与差的余弦函数;两角和与差的正弦函数.【分析】由条件利用两角和差的正弦公式、余弦公式化简函数的解析式为f(x)=sinx,从而求得函数的最大值.【解答】解:函数f(x)=sin(x+2φ)﹣2sinφcos(x+φ)=sin[(x+φ)+φ]﹣2sinφcos(x+φ)=sin(x+φ)cosφ+cos(x+φ)sinφ﹣2sinφcos(x+φ)=sin(x+φ)cosφ﹣cos(x+φ)sinφ=sin[(x+φ)﹣φ]=sinx,故函数f(x)的最大值为1,故答案为:1.13.在△ABC中,,则=.【考点】正弦定理.【分析】由已知利用三角形面积公式可求c,可得三角形为正三角形,从而代入即可求值得解.【解答】解:在△ABC中,∵=bcsinA=,∴可得:c=2,∴由余弦定理可得:a===2,可得:A=B=C=60°,∴===.故答案为:.14.已知各项皆为正数的等比数列{a n}(n∈N*),满足a7=a6+2a5,若存在两项a m、a n使得=4a1,则+的最小值为.【考点】基本不等式在最值问题中的应用;等比数列的通项公式.【分析】利用等比数列的通项公式可得m+n=6,再利用基本不等式的性质即可得出.【解答】解:设各项皆为正数的等比数列{a n}的公比为q>0(n∈N*),∵a7=a6+2a5,∴=a5q+2a5,化为q2﹣q﹣2=0,解得q=2.∵存在两项a m、a n使得,∴=4a1,∴2m+n﹣2=24,∴m+n=6.则==≥=,当且仅当n=2m=4时取等号.∴的最小值为.故答案为:.15.若函数f(x)=2|x﹣a|(a∈R)满足f(1+x)=f(1﹣x),且f(x)在[m,+∞)上单调递增,则实数m的最小值等于1.【考点】指数函数单调性的应用.【分析】根据式子f(1+x)=f(1﹣x),对称f(x)关于x=1对称,利用指数函数的性质得出:函数f(x)=2|x﹣a|(a∈R),x=a为对称轴,在[1,+∞)上单调递增,即可判断m的最小值.【解答】解:∵f(1+x)=f(1﹣x),∴f(x)关于x=1对称,∵函数f(x)=2|x﹣a|(a∈R)x=a为对称轴,∴a=1,∴f(x)在[1,+∞)上单调递增,∵f(x)在[m,+∞)上单调递增,∴m的最小值为1.故答案为:1.三、解答题:解答应写出文字说明、证明过程或演算步骤(共6个大题,共75分)16.已知函数,其图象过点(,).(Ⅰ)求φ的值;(Ⅱ)将函数y=f(x)的图象上个点的横坐标缩短到原来的,纵坐标不变,得到函数y=g (x)若A是锐角△ABC的最小内角,求g(A)的值域.【考点】函数y=Asin(ωx+φ)的图象变换;由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】(Ⅰ)由条件利用f(x)的图象过点(,),求得φ的值.(Ⅱ)根据函数y=Asin(ωx+φ)的图象变换规律求得g(A)的解析式,再利用正弦函数的定义域和值域,求得g(A)的值域.【解答】解:(Ⅰ)∵函数的其图象过点(,),∴sinφ+cosφ﹣cosφ=,即sin(φ+)=,∴sin(φ+)=1,∴φ=,f(x)=sin2x+﹣=sin(2x+).(Ⅱ)将函数y=f(x)=sin(2x+)的图象上个点的横坐标缩短到原来的,纵坐标不变,得到函数y=g(x)=sin(4x+)的图象,若A是锐角△ABC的最小内角,则A∈∈(0,),∴4A+∈(,),∴sin(4A+)∈(﹣1,1],∴g(A)∈(﹣4,4],即g(A)的值域为(﹣4,4].17.已知向量=(sin x,sinx),=(sinx,﹣cosx),设函数,若函数g(x)=﹣f(﹣x).(Ⅰ)求函数g(x)在区间[﹣,]上的最大值,并求出此时x的取值;(Ⅱ)在△ABC中,a,b,c分别是角A,B,C的对边,若f(﹣)+g(+)=﹣,b+c=7,bc=8,求边a的长.【考点】平面向量数量积的运算;三角函数中的恒等变换应用;正弦函数的图象.【分析】(I)求出函数f(x)的解析式,并利用辅助角(和差角)公式化为正弦型函数,进而可得函数g(x)的解析式,进而可得函数g(x)在区间[﹣,]上的最大值,及最大值点;(Ⅱ)根据f(﹣)+g(+)=﹣,b+c=7,bc=8,解三角形,可得边a的长.【解答】解:(Ⅰ)∵向量=(sin x,sinx),=(sinx,﹣cosx),∴函数=sin2x﹣sinxcosx=﹣cos2x﹣sin2x=﹣sin(2x+),∴g(x)=﹣f(﹣x)=﹣[﹣sin(﹣2x+)]=sin(2x+)﹣,当x∈[﹣,]时,2x+∈[,],故当2x+=,即x=﹣时,函数取最大值;(Ⅱ)∵f(﹣)+g(+)=﹣sin[2(﹣)+)]+sin[2(+)+]﹣=﹣2sinA=﹣,∴sinA=,则cosA=,∵b+c=7,bc=8,∴当cosA=时,a2=b2+c2+bc=(b+c)2﹣bc=41,此时a=,当cosA=时,a2=b2+c2﹣bc=(b+c)2﹣3bc=25,此时a=5.18.设函数f(x)=mx2﹣mx﹣1(Ⅰ)若存在实数x,f(x)<0成立,求m的取值范围;(Ⅱ)若对于x∈[1,4],f(x)<﹣m+5恒成立,求m的取值范围.【考点】利用导数求闭区间上函数的最值.【分析】(Ⅰ)问题是关于存在性问题,要注意对二次项次数的讨论,是二次不等式问题要注意二次不等式与二次函数之间的互相转化;(Ⅱ)函数在区间上恒成立问题,要转化为函数在给定区间上的最值问题,通过求解函数的最值,列出关于实数m的不等式,达到求解该题的目的.【解答】解:(Ⅰ)f′(x)=2mx﹣m=m(2x﹣1),m>0时,令f′(x)>0,解得:x>,令f′(x)<0,解得:x<,∴f(x)在(﹣∞,)递减,在(,+∞)递增,若存在实数x,f(x)<0成立,则只需f(x)min=f()=﹣m﹣1<0,显然成立,m<0时,f(x)开口向下,满足题意,m=0时,f(x)=﹣1,满足题意,综上,m∈R;(Ⅱ)当m=0时,f(x)=﹣1<0显然恒成立;当m≠0时,该函数的对称轴是x=,f(x)在x∈[1,4]上是单调函数.当m>0时,由于f(1)=﹣1<0,要使f(x)<0在x∈[1,4]上恒成立,只要f(4)<0即可.即16m﹣4m﹣1<0得m<,即0<m<;当m<0时,若△<0,由(1)知显然成立,此时﹣4<m<0;若△≥0,则m≤﹣4,由于函数f(x)<0在x∈[1,4]上恒成立,只要f(1)<0即可,此时f(1)=﹣1<0显然成立,综上可知:m<.19.已知等差数列{a n}的公差大于零,且a2、a4是方程x2﹣18x+65=0的两个根;各项均为正数的等比数列{b n}的前n项和为S n,且满足b3=a3,S3=13.(1)求数列{a n}、{b n}的通项公式;(2)若数列{c n}满足c n=,求数列的前项和T n.【考点】数列的求和;数列递推式.【分析】(1)设等差数列{a n}的公差d>0,依题意知a2+a4=18,a2•a4=65,可求得a2=5,与d=4,从而可得数列{a n}的通项公式;同理,可求得等比数列{b n}的通项公式;(2)由于数列{c n}满足c n=,分n≤6与n>6讨论,分别利用等差数列与等比数列的求和公式即可求得数列{c n}的前项和T n.【解答】解:(1)依题意等差数列{a n}的公差d>0,且a2+a4=18,a2•a4=65,解得:a4=13,a2=5,由a4=a2+2d得:d=4,∴a n=a2+(n﹣2)×4=4n﹣3.∴a3=9,依题意,公比为q(q>0)的等比数列{b n}中,b3=a3=9,S3=b1+b2+9=13,即,解得:b1=1,q=3,故b n=3n﹣1.(2)∵c n=,数列{c n}的前项和为T n,∴当n≤6时,T n=a1+a2+…+a n==2n2﹣n;当n>6时,T n=(a1+a2+…+a6)+(S n﹣S6)=(2×62﹣6)+(﹣)=66+(﹣)=﹣.∴T n=.20.已知函数f(x)=x3﹣ax2﹣3x.(1)若f(x)在[1,+∞)上是增函数,求实数a的取值范围;(2)若x=3是f(x)的极值点,求f(x)的单调区间及在[2,4]上的最值.【考点】利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【分析】(1)对函数f(x)=x3﹣ax2﹣3x进行求导,转化成f′(x)在[1,+∞)上恒有f′(x)≥0,求出参数a的取值范围;(2)先求导,再根据f′(3)=0,求得a=5,再根据导数求出函数极值,和端点值,求出最值即可.【解答】解:(1)y=3x2﹣2ax﹣3,∵f(x)在[1,+∞)上是增函数,∴f′(x)在[1,+∞)上恒有f′(x)≥0,即3x2﹣2ax﹣3≥0在[1,+∞)上恒成立.则必有≤1且f′(1)=﹣2a≥0,∴a≤0;实数a的取值范围是(﹣∞,0].(2)∵f(x)=x3﹣ax2+3x.∴f′(x)=3x2﹣2ax+3.由题意有f′(3)=0,解得a=5,故f(x)=x3﹣5x2+3x,∴f′(x)=3x2﹣10x+3.令f′(x)=0,解得x=3∈[2,4],x= (舍去),易知f(x)在区间[2,3]上单调递减,在[3,4]上单调递增,而f(2)=﹣6,f(4)=﹣4,f(3)=﹣9,故f(x)在区间[2,4]上的最大值为﹣4,最小值为﹣9.21.设函数f(x)=lnx+a(1﹣x).(Ⅰ)讨论:f(x)的单调性;(Ⅱ)当f(x)有最大值,且最大值大于2a﹣2时,求a的取值范围.【考点】利用导数研究函数的单调性;导数在最大值、最小值问题中的应用.【分析】(Ⅰ)先求导,再分类讨论,根据导数即可判断函数的单调性;(2)先求出函数的最大值,再构造函数(a)=lna+a﹣1,根据函数的单调性即可求出a的范围.【解答】解:(Ⅰ)f(x)=lnx+a(1﹣x)的定义域为(0,+∞),∴f′(x)=﹣a=,若a≤0,则f′(x)>0,∴函数f(x)在(0,+∞)上单调递增,若a>0,则当x∈(0,)时,f′(x)>0,当x∈(,+∞)时,f′(x)<0,所以f(x)在(0,)上单调递增,在(,+∞)上单调递减,(Ⅱ),由(Ⅰ)知,当a≤0时,f(x)在(0,+∞)上无最大值;当a>0时,f(x)在x=取得最大值,最大值为f()=﹣lna+a﹣1,∵f()>2a﹣2,∴lna+a﹣1<0,令g(a)=lna+a﹣1,∵g(a)在(0,+∞)单调递增,g(1)=0,∴当0<a<1时,g(a)<0,当a>1时,g(a)>0,∴a的取值范围为(0,1).xx年12月8日; 28019 6D73 浳:\?P22745 58D9 壙c25509 63A5 接28103 6DC7 淇34801 87F1 蟱37926 9426 鐦p。

2021年高三下学期期初联考试题 数学 含答案

2021年高三下学期期初联考试题 数学 含答案

2021年高三下学期期初联考试题数学含答案注意事项:所有试题的答案均填写在答题纸上,答案写在试卷上的无效.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答.题卡相应位置上........1.设集合则▲.2.某学校共有师生2 400人,现用分层抽样的方法,从所有师生中抽取一个容量为160的样本,已知从学生中抽取的人数为150,那么该学校的教师人数是____▲____.3.计算复数=▲(为虚数单位).4. 连续抛掷一个骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)两次,则出现向上点数之和大于9的概率是▲.Array 5.若,则的最小值是___▲______.6.已知直线平面,直线平面,给出下列命题:①若,则;②若,则;③若,则;④若,则.其中正确命题的序号是▲.7.已知满足约束条件,则的最大值为▲.8.程序框图如图(右)所示,其输出结果是____▲____.9.已知条件p:,条件q:,若p是q的充分不必要条件,则实数的取值范围是____▲____.10.若正四棱锥的底面边长为,体积为,则它的侧面积为▲.11.已知抛物线的焦点恰好是双曲线的右焦点,则双曲线的渐近线方程为▲. 12.已知函数的图像的对称中心为,函数的图像的对称中心为,函数的图像的对称中心为,……,由此推测函数的图像的对称中心为▲.13.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知a =2,3b sin C -5c sin B cos A =0,则△ABC 面积的最大值是 ▲ .14.已知是锐角的外接圆圆心,,,则 ▲ .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)如图,斜三棱柱中,侧面是菱形,与交于点,E 是AB 的中点. (I )求证:平面;(II )若,求证:.16.(本小题满分14分)已知函数的最小正周期为. (I )求.(II )在图中给定的平面直角坐标系中,画出函数在区间上的图象,并根据图象写出其在上的单调递减区间.17. (本小题满分14分)光在某处的照度与光的强度成正比,与光源距离的平方成反比,假设比例系数都为1。

2021年高三上学期期初考考试数学理试卷 Word版含答案

2021年高三上学期期初考考试数学理试卷 Word版含答案

2021年高三上学期期初考考试数学理试卷 Word 版含答案一、填空题(本大题共14小题,每小题5分,共70分,请将答案填写在答题卷相应的位置上)1.已知角的终边过点,则的值为 ▲ . 2.若实数且,则的最小值是 ▲ . 3.若矩阵 的逆矩阵为 ▲ . 4.的解集为 ▲ .5.已知()3312,,,sin ,sin 45413ππαβπαββ⎛⎫⎛⎫∈+=--= ⎪ ⎪⎝⎭⎝⎭,则 ▲ .6.已知函数()的部分图象如图所示,则的解析式为 ▲ .7.函数的对称中心是 ▲ .8.设满足约束条件 ,则目标函数的最大值为 ▲ . 9.若,,,且()的最小值为16,则 ▲ .10.已知二阶矩阵属于特征值的一个特征向量为,则 ▲ .11.把函数的图象上各点向右平移个单位,得到函数的图象,则的最小值为 ▲ . 12.如果,那么 ▲ .13.已知变换T :将图象上点的横坐标不变,纵坐标变为原来的2倍,再将所得图象绕原点逆时针旋转90°,则变换T 对应的矩阵是 ▲ . 14.已知且,则的最小值为 ▲ .二、解答题:(本大题共6小题,计90分.解答应写出必要的文字说明、证明过程或演算步骤)15.(本题满分14分)设二次函数,函数 F (x )=f (x )-x 的两个零点为 m ,n . (1)若 m =-1,n =2,求的值; (2)若,解不等式.16.(本题满分14分)已知函数()2sin cos sin sin 44f x x x x x x ππ⎛⎫⎛⎫=-++- ⎪ ⎪⎝⎭⎝⎭. (1)求的最小正周期和单调减区间;(2)若的一个零点,求的值. 17.(本题满分15分) 已知矩阵,. (1)求的值;(2)椭圆在矩阵B 对应的变换作用下得到曲线F ,求F 的方程. (3)求矩阵A 的特征值和特征向量.18.(本题满分15分)已知a,b,c分别是△ABC内角A,B,C的对边,且.(1)求的值;(2)若,求△ABC的面积.19.(本题满分16分)如图,某市欲规划一居民小区ABCD,AD=2千米,AB=1千米,∠A=90°,政府决定从该地块中划出一个直角三角形地块AEF建活动休闲区(点E,F分别在线段AB,AD上),且该直角三角形AEF的周长为1千米,△AEF的面积为S(1)①设AE=x,求S关于x的函数关系式;②设∠AEF=θ,求S关于θ的函数关系式;(2)试确定点E的位置,使得直角三角形地块AEF的面积S最大,并求出S的最大值.20.(本题满分16分)已知,函数.(1)当时,求不等式的解集;(2)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.高邮市xx~xx 学年第一学期高三数学(理)期初调研测试参考答案一、填空题1. 2. 3. 4. 5. 6. 7. 8. 69. 9 10. 11. 12.- 13. 14. 6 二、解答题:15.解:(1)因函数 F (x )=f (x )-x 的两个零点为-1,2.()()()()()221122--=-+=+-+=-=x x x x c x b x x x f x F 所以,解得……………………………………6分 (2)………………………………8分 若即时,的解集为……10分 若即时,的解集为……12分 若即时,的解集为……14分16.解:(1)()()()1cos 212sin cos sin cos 22x f x x x x x x -=++-1cos 2112cos 22cos 2222x x x x x -=-=-+(或)……………3分所以的最小正周期为……………………………………5分 由,得所以的单调减区间为………7分 (结果中少,扣2分) (2),所以……9分 又,,所以………………………………11分(不交待的范围,此步不给分,但不影响后面的得分) 所以()6sin 62sin 6cos 62cos 662cos 2cos 0000ππππππ⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=⎪⎭⎫⎝⎛-+=x x x x ………………………………14分(缺少公式展开过程,扣1分) 17.解:(1)……………………………………5分(无矩阵代入过程直接写结果,扣2分)(2)设是椭圆上任意一点,点在矩阵B 对应的变换下变为点 则有 ,即,所以 又因为点在椭圆上,故,从而所以,曲线的方程是 .………………………………10分 (无设点过程,扣2分) (3)矩阵A 的特征多项式令得或……………………………………………………13分 将代入解得,所以属于一个特征向量是 将代入解得,所以属于一个特征向量是………15分(求对一个给1分) 18.解:(1)因为、为的内角,由知,结合正弦定理可得:…………3分 (未交待,本次不扣分) 所以,…………5分又因为,所以.…………7分(未交待C 的范围,扣2分) (2)解法1:因为,,所以, ………… 10分 整理得: 解得:(负值舍去)…………13分所以1122ABC S ∆==.……15分 法2:由结合正弦定理得:,∵, ∴, ∴,…………9分(直接写出的值,无用公式过程,扣1分) ∴=,…………11分 由正弦定理得:, …………13分∴11111)sin 22228ABC S ab C ∆==⨯=.…………15分. 19.解:(1)①设AF =y ,由勾股定理可得x 2+y 2=, 解得y = (由y >0可得0<x <), 可得S = (0<x <);…………………………4分 ②设,AF =xtan θ,EF = , 由x +xtan θ+=1,可得x = , 即有S = =(0<θ<);……7分 (每少一个变量范围扣1分)(2)法一:由①得S =(0<x <), 设 ,则则()()121111133224444t t S t t t ⎛---⎛⎫==--≤-= ⎪ ⎝⎭⎝ ……12分 当且仅当2t =,即t =,即x =时,等号成立…………………………14分答:当点E 距离点A 千米时,直角三角形地块AEF 的面积S 最大,最大值为平方千米. ……16分法二:由②令(sin cos 4t πθθθ⎛⎫=+=+∈ ⎪⎝⎭, 则因,且函数在上单调递增,所以当时,S 有最大值, …………………………12分此时, …………………………14分答:当点E 距离点A 千米时,直角三角形地块AEF 的面积S 最大,最大值为平方千米. 20.解:(1)由,得,解得.所以为 ……7分 (未写成集合形式扣1分) (2)当时,,,所以在上单调递减.函数在区间上的最大值与最小值分别为,.()()22331log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即,对任意成立. ……12分因为,所以函数对称轴在区间上单调递增,时,有最小值,由,得.故的取值范围为…………16分21719 54D7 哗25460 6374 捴U20464 4FF0 俰37347 91E3 釣S39495 9A47 驇21804 552C 唬28501 6F55 潕31627 7B8B 箋A 40472 9E18 鸘。

2021年高三年级开学期初考试数学试题 Word版含答案

2021年高三年级开学期初考试数学试题 Word版含答案

(图1)2021年高三年级开学期初考试数学试题 Word 版含答案一、填空题(本大题共14小题,每小题5分,共70分) 1.已知复数的实部为,虚部为1,则的模等于 . 2.已知集合,集合,则 .3.右图1是一个算法流程图,若输入的值为,则输出的值为 .4.函数的定义域为 .5.样本容量为10的一组数据,它们的平均数是5,频率如条形图2所示,则这组数据的方差等于 .6.设是两个不重合的平面,是两条不重合的直线,给出下列四个命题:①若则;②若,,则; ③若,则;④若,则.其中正确的命题序号为7.若圆上有且只有两个点到直线的距离等于1,则半径的取值范围是 . 8.已知命题在上为减函数;命题,使得.则在命题,,,中任取一个命题,则取得真命题的概率是9.若函数,其图象如图3所示,则 .10.函数的图象经过四个象限,则a 的取值范围是 .11.在中,已知角A,B,C 的对边分别为a,b,c,且,则函数 在上的单调递增区间是 .12. “已知关于的不等式的解集为,解关于的不等式.”给出如下的一 解:由的解集为,得的解集为,即关于的不等式的解集为.xy 1 2图3图2参考上述解法:若关于的不等式的解集为,则关于的不等式的解集为 .13.xx 年第二届夏季青年奥林匹克运动会将在中国南京举行,为了迎接这一盛会,某公司计划推出系列产品,其中一种是写有“青奥吉祥数”的卡片.若设正项数列满足,定义使为整数的实数k 为“青奥吉祥数”,则在区间[1,xx]内的所有“青奥吉祥数之和”为________14.已知,设集合,,若对同一x 的值,总有,其中,则实数的取值范围是 二、解答题(本大题共6小题,共90分) 15.在中,角,,的对边分别为,,, 向量,且(1)求的值;(2)若,求边c 的长度.16.如图4,在四棱锥中,平面平面,AB ∥DC , 是等边三角形, 已知,.(1)设是上的一点,证明:平面平面; (2)求四棱锥的体积.17.如图5,GH 是东西方向的公路北侧的边缘线,某公司准备在GH 上的一点B 的正北方向的A 处建一仓库,设AB = y km ,并在公路同侧建造边长为x km 的正方形无顶中转站CDEF (其中边EF 在GH 上),现从仓库A 向GH 和中转站分别修两条道路AB ,AC ,已知AB = AC 1,且∠ABC = 60o . (1)求y 关于x 的函数解析式;(2)如果中转站四周围墙造价为1万元/km ,两条道路造价为3万元/km ,问:x 取何值时,该公司建中转站围墙和两条道路总造价M 最低?ABCMPD图4DC A18. 如图6,椭圆过点,其左、右焦点分别为,离心率,是椭圆右准线上的两个动点,且. (1)求椭圆的方程; (2)求的最小值;(3)以为直径的圆是否过定点?请证明你的结论.19.已知函数(1)求曲线在点处的切线方程; (2)求函数的单调增区间;(3)若存在,使得是自然对数的底数),求实数的取值范围.20. 已知数列{a n }中,a 2=a(a 为非零常数),其前n 项和S n 满足S n =n(a n -a 1)2(n N*).(1)求数列{a n }的通项公式;(2)若a=2,且,求m 、n 的值;(3)是否存在实数a 、b ,使得对任意正整数p ,数列{a n }中满足的最大项恰为第项?若存在,分别求出a 与b 的取值范围;若不存在,请说明理由.数学Ⅱ(附加题)21A .[选修4-1:几何证明选讲](本小题满分10分) 如图,从圆外一点引圆的切线及割线,为切点. 求证:.21B .已知矩阵,计算.21C .已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立 平面直角坐标系,直线的参数方程是是参数).若直线与圆相切,求正数的值.21D .(本小题满分10分,不等式选讲)已知不等式对于满足条件的任意实数恒成立,求实数的取值范围.【必做题】第22、23题,每小题10分,共计20分.请在答题卡指定区域.......内作答,解答时应写出文字说明、证明过程或演算步骤. 22.(本小题满分10分)22. 如图,在四棱锥P -ABCD 中,底面ABCD ,底面ABCD 是边长为2的菱形,,,M 为PCP (第21 - A 题)(第22题)的中点.(1)求异面直线PB 与MD 所成的角的大小;(2)求平面PCD 与平面PAD 所成的二面角的正弦值.23.(本小题满分10分)袋中共有8个球,其中有3个白球,5个黑球,这些球除颜色外完全相同.从袋中随机取出一球,如果取出白球,则把它放回袋中;如果取出黑球,则该黑球不再放回,并且另补一个白球放入袋中.重复上述过程n 次后,袋中白球的个数记为X n . (1)求随机变量X 2的概率分布及数学期望E (X 2);(2)求随机变量X n 的数学期望E (X n )关于n 的表达式.江苏省如东高级中学xx 届高三年级开学考试数学答案一、填空题1. 2.. 3.2 4. 5.7.2 6. ①③ 7. 8. 9.4 10. 11. 12. 13.2047 14. 提示: 1.,则,则. 2.{}{}{}2022≤=≥-=-==x x x x x y x B ,又,所以.3. 当时,,则;当时,,;当时,,;当时,不成立,则输出.4.要使原式有意义,则,即且.5.2出现次,5出现次,8出现次,所以[]2.7)55(4)55(2)52(41012222=-⨯+-⨯+-⨯=s . 6. 逐个判断。

2021届高三期初数学试卷参考答案

2021届高三期初数学试卷参考答案

恒成立,

,即 ( )恒成立.

.
……………………………………7 分
当 时,
,则

显然,当
时, ,
∴此时, 在 单调递增,且有 ,

,即
(当且仅当
时取等
号). ………………………8 分

.从而
①当 ,即当 时, ( ),
此时, 在 上单调递增.
而 ,于是,当 时, .
由 ( )可得
,即
………………………9 分 ( ).则有
则 P(0 ,0, 3) , D(1 ,2, 0) , A(1 ,0, 0) , E(1 , 0, 3 ) , H (0 ,0, 0) , 22
HD
(1
,2,
0)

HE
(
1
,
0,
3
)

HP
(0
,0,
3) ,
22
设平面 DEH 的法向量 n (x , y , z) ,

nnHHDE
x 1 2
2
2
44
(1)由频数分布表可知,该市一天的空气质量等级为
19、解:
1的概率为
2
16 100
25
0.43

等级为
2
的概率为
5
10 12 100
0.27
,等级为
3
的概率为
6
7 100
8
0.21 ,等级为
4
的概
率为 7 2 0 0.09 ; 100
(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为
8
16
a b a 11a a 6 由正弦定理得: sin A sin B 3 7 5 7
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A. A B
B. A B
C. A B
D.A B
10、设 a,b R ,若 a | b | 0 ,则下列不等式中不正确的是(

A、 b a 0 B、 a3 b3 0 C、 a2 b2 0 11、关于函数 f(x)= sin x 1 ,有( )
sin x
D、 b a 0
A.f(x)的图像关于 y 轴对称.
3
(3)若某天的空气质量等级为 1 或 2,则称这天“空气质量好”;若某天的空气质量等级为 3 或 4,则称这天“空气质量不好”.根据所给数据,完成下面的 2×2 列联表,并根据列联表, 判断是否有 95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400
人次>400
空气质量好
23
甲、乙两球至少有一个落入盒子的概率为_________.
四、解答题:(本大题共 6 个小题,共 70 分,解答应写出必要的文字说明、证 明过程或演算步骤)
x x 17、(本小题 10 分)已知函数 f(x)= 2 +2 —8. (1)求 f(1)的值与 f(x) 0 的解集. (2)若 f(ɑ+1)=7,求ɑ的值.
( ) ,e=2.718 28…为自然对数的底数.
(Ⅰ)求函数 在点 处的切线方程;
(Ⅱ)若函数 为 R 上的单调递增函数,试求实数 a 的范围;
(Ⅲ)若当 时,总有
成立,试求实数 a 的最大值.
4
B.f(x)的图像关于原点对称.
C.f(x)的图像关于直线 x= 对称.
2
D. f(x)的最小值为 2.
12、已知曲线 C : mx2 ny2 1 .( )
A. 若 m>n>0,则 C 是椭圆,其焦点在 y 轴上 B. 若 m=n>0,则 C 是圆,其半径为 n
C. 若 mn<0,则 C 是双曲线,其渐近线方程为 y m x n
D. 若 m=0,n>0,则 C 是两条直线
三、填空题:本大题共 4 小题,共 20 分。
13.设函数 f(x)=
뱠೒
‫ܠ‬
ꗸ ꗸ

f(-f(10))=
.
14.已知向量
a
(3,
2)

b
(m,1)
.若向量
(a
2b )
/
/b
,则
m

ห้องสมุดไป่ตู้15.若
,则 1 1 ______. mn
2
11
16、已知甲、乙两球落入盒子的概率分别为 和 .假定两球是否落入盒子互不影响,则
18、(本小题 12 分)在 ABC 中, a b 11,再从条件①、条件②这两个条件中选择一
个作为己知,求:
(Ⅰ)a 的值:
(Ⅱ) sin C 和 ABC 的面积.
条件①: c 7, cos A 1 ; 7
条件②: cos A 1 , cos B 9 .
8
16
注:如果选择条件①和条件②分别解答,按第一个解答计分.
解集为( )
A.(-1,0)∪(1,+∞)
B.(-∞,1)∪(0,1)
C.(-∞,-1)∪(1,+∞)
D.(-1,0)∪(0,1)
二、多选题:在每小题给出的选项中,有多项符合题目要求.全部选对的得 5 分,
有选错的得 0 分,部分选对的得 3 分. 9、已知集合 A={1,3,5},集合 B={1,2,3,4,5},则有( )
递减的比例(百分比)为“衰分比”.如:甲、乙、丙、丁“哀”得 , , , 个单位,
递减的比例为 ,今共有粮
石,按甲、乙、丙、丁的顺序进行“衰分”,已知丙衰分
得 石,乙、丁衰分所得的和为 石,则“衰分比”与 的值分别为( )
A.
B.
C.
D.
1
8.设奇函数 f(x)在(0,+∞)上为增函数,且 f(1)=0,则不等式fx-f-x<0 的 x
C. 24 25
D. 24 25
4. 6 名同学到甲、乙、丙三个场馆做志愿者,每名同学只去 1 个场馆,甲场馆安排 1 名,乙
场馆安排 2 名,丙场馆安排 3 名,则不同的安排方法共有( )
A. 120 种
B. 90 种
C. 60 种
D. 30 种
5、函数 f (x) x2 2(a 1)x 2 在 (,4) 上是增函数,则实数 a 的范围是( ).
19、(本小题 12 分)某学生兴趣小组随机调查了某市 100 天中每天的空气质量等级和当天 到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级
[0,200]
(200,400]
(400,600]
1(优)
2
16
25
2(良)
5
10
12
3(轻度污染)
6
7
8
4(中度污染)
7
2
0
(1)分别估计该市一天的空气质量等级为 1,2,3,4 的概率; (2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为 代表);
空气质量不好
附: K2
n(ad bc)2

(a b)(c d)(a c)(b d)
P(K2≥k)
0.050
k
3.841
0.010 6.635
0.001 10.828
20.(12 分)已知{an} 是各项均为正数的等比数列, a1 2, a3 2a2 16 . (1)求{an} 的通项公式; (2)设 bn log2 an ,求数列{bn} 的前 n 项和.
21.(12 分)如图,四棱锥 P ABCD 的底面 ABCD 是矩形,侧面 PAB 是正三角形,AB 2 , BC 2 , PC 6 . E 、 H 分别为 PA 、 AB 的中点.
(1)求证: PH AC (5 分);
(2)求点 P 到平面 DEH 的距离(7 分).
22.(12 分)已知函数
A. a ≥ 5 B. a≥ 3 C. a≤ 3 D. a ≤ 5
6、设 a 30.7 ,
b
1 3
0.8
,
c log0.7 0.8 ,则 a, b, c 的大小关系为(

A. a b c
B. b a c C. b c a
D. c a b
7、《九章算术》第三章“衰分”介绍比例分配问题:“衰分”是按比例递减分配的意思,通常称
2021 届高三期初考试数学试卷
一、单项选择题:本大题共 8 小题,每题 5 分,共 40 分。
1.复数
( 是虚数单位),则 的模为( )
A.0
B.1
C.
D.2
2.已知全集 ()
,集合

,则
A.
B.
C.
D.
3.已知 cos(
)
4

3
,则 sin 2
的值等于 (
)
25 2
2
A. 12 25
B. 12 25
相关文档
最新文档