石墨烯结构
多层石墨烯的结构

多层石墨烯是由两层或两层以上的石墨烯片层构成的材料。
它具有与单层石墨烯类似的二维晶体结构,但由多个石墨烯片层堆叠而成。
每一层石墨烯内部,碳原子以六元环的形式周期性排列于石墨烯平面内,形成稳定的二维网格结构。
层与层之间通过较弱的范德华力相互作用,使得多层石墨烯在保持单层石墨烯优异性能的同时,还具有一些独特的性质。
多层石墨烯的片层间距离较小,通常只有几个纳米,因此层间相互作用对其整体性能具有重要影响。
与单层石墨烯相比,多层石墨烯的电子结构、光学性质和机械性能等都会发生变化。
例如,随着层数的增加,多层石墨烯的带隙会逐渐减小,从半金属转变为金属性材料。
多层石墨烯的制备方法多种多样,包括机械剥离法、化学气相沉积法、液相剥离法等。
这些方法的选择取决于所需的多层石墨烯层数、尺寸和性能等因素。
在实际应用中,多层石墨烯因其优异的导电性、高机械强度和良好的柔韧性等特点而被广泛用于电子器件、传感器、储能材料等领域。
石墨烯基础知识简介

For personal use only in study and research; not for commercial use1.石墨烯(Graphene)的结构石墨烯是一种由碳原子以sp²杂化轨道组成六角型呈蜂巢状晶格的平面薄膜,是一种只有一个原子层厚度的二维材料。
如图1.1所示,石墨烯的原胞由晶格矢量a1和a2定义每个原胞内有两个原子,分别位于A和B的晶格上。
C原子外层3个电子通过sp²杂化形成强σ键(蓝),相邻两个键之间的夹角120°,第4个电子为公共,形成弱π键(紫)。
石墨烯的碳-碳键长约为0.142nm,每个晶格内有三个σ键,所有碳原子的p轨道均与sp²杂化平面垂直,且以肩并肩的方式形成一个离域π键,其贯穿整个石墨烯。
如图1.2所示,石墨烯是富勒烯(0维)、碳纳米管(1维)、石墨(3维)的基本组成单元,可以被视为无限大的芳香族分子。
形象来说,石墨烯是由单层碳原子紧密堆积成的二维蜂巢状的晶格结构,看上去就像由六边形网格构成的平面。
每个碳原子通过sp²杂化与周围碳原子构成正六边形,每一个六边形单元实际上类似一个苯环,每一个碳原子都贡献一个未成键的电子,单层石墨烯的厚度仅为0.335nm,约为头发丝直径的二十万分之一。
图 1.1(a)石墨烯中碳原子的成键形式(b)石墨烯的晶体结构。
图1.2石墨烯原子结构图及它形成富勒烯、碳纳米管和石墨示意图石墨烯按照层数划分,大致可分为单层、双层和少数层石墨烯。
前两类具有相似的电子谱,均为零带隙结构半导体(价带和导带相较于一点的半金属),具有空穴和电子两种形式的载流子。
双层石墨烯又可分为对称双层和不对称双层石墨烯,前者的价带和导带微接触,并没有改变其零带隙结构;而对于后者,其两片石墨烯之间会产生明显的带隙,但是通过设计双栅结构,能使其晶体管呈示出明显的关态。
单层石墨烯(Graphene):指由一层以苯环结构(即六角形蜂巢结构)周期性紧密堆积的碳原子构成的一种二维碳材料。
石墨烯导电原理

石墨烯导电原理
石墨烯是由碳原子构成的二维晶格结构,具有很特殊的导电性质。
其导电原理可以归结为以下几个方面:
1. π电子结构:石墨烯中的碳原子通过sp²杂化形成了连续的π键网络结构。
这种结构使得石墨烯中的电荷载流子可以沿着二维平面自由移动,形成高度导电的π电子带。
2. 微观特性:石墨烯的二维结构使得其具有了较长的电子平均自由时间和较高的载流子迁移率。
这意味着在石墨烯中,电荷载流子可以以很高的速度自由移动,从而实现高度导电。
3. 零带隙特性:与许多其他材料不同,石墨烯的能带结构呈现出零带隙(或极小的带隙)的特点。
这意味着在零温度下,电荷载流子可以在石墨烯中的任意点上具有连续的能量分布,从而形成了高度导电的能带。
4. Klein隧穿效应:由于石墨烯的零带隙特性,当电荷载流子
遇到能级势垒时,会发生Klein隧穿效应。
在这种效应下,电
子可以以近乎光速的速度穿过势垒,从而实现无阻碍的导电。
综上所述,石墨烯的导电原理可以归结为其特殊的π电子结构、微观特性、零带隙特性和Klein隧穿效应等因素的综合作用。
这些特点使得石墨烯成为一种非常优异的导电材料,在电子学和纳米科技领域具有广泛的应用前景。
石墨烯中的共价键

石墨烯中的共价键
石墨烯是一种由碳原子构成的二维晶体材料,其结构类似于蜂窝状的六角形网格。
石墨烯中的碳原子通过共价键相互连接,形成了一个极薄的单层平面结构。
1. 碳-碳共价键
石墨烯中,每个碳原子通过三个σ键与相邻的碳原子形成强共价键。
这些σ键是由碳原子的2s轨道和2p轨道的杂化而形成的sp2杂化轨道所贡献的电子构成。
剩余的一个2p轨道则形成了π键,使碳原子之间存在着离域π电子云。
2. 离域π键
碳原子之间的π键是由相邻碳原子2p轨道上未参与σ键形成的电子构成的。
这些π电子在整个石墨烯平面上离域,形成了一个连续的π电子云。
离域π电子赋予了石墨烯优异的电子传输性能,是石墨烯具有金属性导电特征的主要原因。
3. 共价键的强度
石墨烯中碳-碳共价键的键能非常高,约为619 kJ/mol。
这使得石墨烯具有极高的机械强度、热稳定性和化学稳定性。
同时,离域π键也赋予了石墨烯一定的化学活性,使其能够与其他分子或原子发生化学反应,从而实现功能化修饰。
石墨烯中的共价键赋予了它独特的结构、电子性质和力学性能,是石
墨烯作为新型二维纳米材料备受关注的重要原因之一。
对石墨烯中共价键的深入研究有助于我们更好地理解和利用这种新型碳材料的性质。
石墨烯基本结构范文

石墨烯基本结构范文石墨烯是由碳原子构成的二维材料,是一种具有特殊结构和性质的结晶态碳材料。
石墨烯的基本结构是由单层的六角形网格构成,每个碳原子以sp2杂化形式与其相邻的三个碳原子成键,形成六边形的碳环。
这种单层结构使得石墨烯具有许多独特的性质和潜在应用。
在石墨烯的结构中,每个碳原子都有一个未成键的π电子,这些电子在平面上自由移动,形成了共价键上的π轨道。
因此,石墨烯具有高度的电子运动性,是一种具有良好导电性和热导性的材料。
同时,石墨烯的单层结构使得其具有极高的比表面积,达到2630平方米每克,这使得石墨烯在许多应用领域具有广阔的应用前景。
除了特殊的结构特点,石墨烯还具有其他独特的物理和化学性质。
由于其单层结构,石墨烯的机械性能非常强大,具有超强的拉伸强度和弹性模量。
石墨烯单层的厚度只有0.34纳米,是由碳原子堆积而成的三维石墨的一百万分之一,因此也被称为二维材料。
此外,石墨烯还具有优异的光学性质。
由于其导电性和包含未配对的π电子,石墨烯可以吸收和发射可见光和近红外光。
这使得石墨烯成为用于光学传感器和光电器件的理想材料。
由于石墨烯的特殊结构和性质,它在许多领域具有广泛的应用潜力。
例如,石墨烯可以用于电子器件,如晶体管和传感器,因为它具有良好的导电性能和高度的灵敏度。
此外,石墨烯还可以用于能量存储和转换领域,例如锂离子电池和太阳能电池,因为其极高的比表面积可以提供更多的电极表面积和更高的能量密度。
此外,石墨烯还具有出色的化学稳定性,可以抵御氧化和腐蚀。
这使得石墨烯可以用于防腐涂料和防污材料,以保护金属表面免受腐蚀和污垢的侵害。
总之,石墨烯作为一种具有特殊结构和性质的结晶态碳材料,具有广泛的应用潜力。
随着对石墨烯的研究和应用的不断推进,相信它将在许多领域带来革命性的变革和创新。
石墨烯原理

石墨烯原理
石墨烯是一种由碳原子构成的二维晶体结构,具有许多独特的物理和化学性质,因此被广泛应用于各种领域。
石墨烯的原理主要在于其结构和碳原子之间的化学键以及电子结构的特殊性质。
石墨烯的结构非常特殊,由一个层层叠加的碳原子构成,形成了一个类似于蜂窝状的结构。
这种结构使得石墨烯具有非常高的强度和柔韧性,同时也具有良好的导电性和热传导性。
这使得石墨烯在材料科学领域具有广泛的应用前景,可以用于制备高强度的复合材料,以及用于导电和散热的材料。
石墨烯的碳原子之间的化学键也非常特殊,采用sp2杂化轨道形成共价键,使得石墨烯具有非常好的电子传输性能。
这种特殊的化学键结构使得石墨烯成为一种理想的导电材料,可以用于制备高性能的电子器件,例如场效应晶体管和光电探测器等。
石墨烯的电子结构也具有许多独特的性质,例如具有零能隙的能带结构和线性色散关系。
这些特殊的电子性质使得石墨烯成为一种理想的二维材料,具有许多奇特的电子输运性质,例如量子霍尔效应和半导体-金属相变等。
总的来说,石墨烯的原理主要在于其独特的结构、化学键和电子结构的特殊性质,使得其具有许多优越的物理和化学性质,被广泛应用于各种领域。
未来随着石墨烯技术的不断发展和完善,相信石墨
烯将会在材料科学、电子器件、能源领域等方面发挥越来越重要的作用,为人类社会带来更多的科技创新和发展。
2024石墨烯技术PPT课件
contents •石墨烯概述•石墨烯制备方法•石墨烯表征技术•石墨烯应用领域•石墨烯产业发展现状与趋势•总结与展望目录石墨烯定义与结构定义结构石墨烯的每个碳原子与周围三个碳原子通过共价键连接,形成稳定的六边形结构。
这种结构使得石墨烯具有出色的力学、电学和热学性能。
石墨烯性质与特点力学性质石墨烯是已知强度最高的材料之一,同时还具有很好的韧性,可以弯曲成各种形状而不断裂。
电学性质石墨烯具有优异的导电性能,电子在其中的移动速度极快,使得石墨烯成为理想的电极材料。
热学性质石墨烯具有极高的热导率,可以快速地将热量从一个区域传递到另一个区域,这使得石墨烯在散热领域具有广阔的应用前景。
光学性质石墨烯对光的吸收率很低,且透光性极好,这使得石墨烯在透明导电薄膜等领域具有潜在的应用价值。
石墨烯发现历程及意义发现历程石墨烯最初是由英国曼彻斯特大学的两位科学家通过机械剥离法从石墨中分离出来的。
这一发现引起了科学界的广泛关注,并开启了石墨烯研究的新篇章。
意义石墨烯的发现不仅打破了二维晶体无法稳定存在的传统认知,而且为材料科学、凝聚态物理以及电子器件等领域的发展带来了新的机遇。
石墨烯的优异性能使得它在能源、环保、医疗、航空航天等领域具有广阔的应用前景,有望引领新一轮的技术革命和产业变革。
机械剥离法01020304原理优点缺点应用领域化学气相沉积法在高温下,碳源气体在催化剂表面分解并沉积形成石墨烯。
可控制备大面积、高质量的石墨烯;与现有半导体工艺兼容。
设备成本高,制备过程中可能产生有毒气体。
透明导电薄膜、电子器件、传感器等。
原理优点缺点应用领域原理优点缺点应用领域氧化还原法利用溶剂将石墨剥离成单层或少层石墨烯,适用于大规模生产。
液相剥离法碳化硅外延法电弧放电法激光诱导法通过高温处理碳化硅晶体,使其表面外延生长出石墨烯,适用于制备高质量石墨烯。
利用电弧放电产生的高温高压条件,将石墨转化为石墨烯,但产量较低。
利用激光束照射石墨表面,诱导出石墨烯,但设备成本较高。
石墨烯结构
石墨烯结构
石墨烯结构是由碳六元环组成的两维周期蜂窝状点阵结构,它可以翘曲成零维的富勒烯,卷成一维的碳纳米管或者堆垛成三维的石墨,因此石墨烯是构成其他石墨材料的基本单元,石墨烯的基本结构单元为有机材料中最稳定的苯六元环,目前最理想的二维纳米材料。
石墨烯的内容
石墨烯是一种以sp杂化连接的碳原子紧密堆积成单层二维蜂窝状晶格结构的新材料,石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收百分之2点3的光,导热系数高达5300W,高于碳纳米管和金刚石,常温下其电子迁移率超过15000,又比纳米碳管或硅晶体高。
因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄,导电速度更快的新一代电子元件或晶体管,由于石墨烯实质上是一种透明,良好的导体。
石墨烯简单介绍
,是室温
构造与性能
热学性能
① 单层石墨烯旳
,
比碳纳米管旳而传
导率3000-3500Wm·k还要高,相比之下,工业界中被广泛使用旳散
热 材料金属铜旳热传导率只有400Wm·k
② 伴随石墨烯层数旳增长,其热传导率逐渐下降;当石墨烯从2层增 至4层时,其热导率从2800Wmk降低至1300Wmk;当层数到达5-8 层,减小到石墨旳热导率
2004英国曼彻斯特大学Andre Geim和他旳徒弟 Konstantin Novoselov在试验室用一种非常简朴旳措 施得到越来越薄旳石墨薄片。他们从石墨中剥离 出石墨片,然后将薄片旳两面粘在一种特殊旳胶 带上,撕开胶带,就能把石墨片一分为二。不断 地这么操作,于是薄片越来越薄,最终,他们得 到了仅由一层碳原子构成旳薄片,这就是石墨烯 。所以两人共同取得2023年诺贝尔物理学奖。
石墨烯应用
替代硅生产超级计算机
石墨烯是目前已知
旳材料。石墨烯旳
这种特征尤其适合于高频电路。高频电路是当代电子工业旳领头羊,
某些电子设备,例如手机,因为工程师们正在设法将越来越多旳信息
填充在信号中,它们被要求使用越来越高旳频率,然而手机旳工作频
率越高,热量也越高,于是,高频旳提升便受到很大旳限制。因为石 墨烯旳出现,高频提升旳发展前景似乎变得无限广阔了。 这使它在
研究人员发觉,在石墨烯样品微粒开始碎裂前,它们每100纳米距 离上可承受旳最大压力居然到达了大约2.9微牛。据科学家们测算,这 一成果相当于要施加55牛顿旳压力才干使1微米长旳石墨烯断裂。假如 物理学家们能制取出厚度相当于一般食品塑料包装袋旳(厚度约100纳
米)石墨烯,那么需要施加差不多两万牛旳压力才干将其扯断。换句 话说,假如用石墨烯制成包装袋,那么它将能承受大约两吨重旳物品。
石墨烯 分子式
石墨烯分子式
石墨烯是一种由碳原子组成的单层晶格结构的二维碳材料,分子式为C。
石墨烯的出现引起了人们对新材料研究的热情,其在电子、光学、生物等方面的应用潜力被广泛关注。
石墨烯的分子式为C,表示其只由碳原子组成。
它的结构类似于一个由六个碳原子组成的蜂窝状结构,每个碳原子与相邻三个碳原子形成化学键,形成平面六边形晶格。
这种二维晶格结构使得石墨烯具有独特的力学、光学和电学性质。
要制备石墨烯,有许多种方法。
其中最常用的方法是机械剥离法,即用带有石墨烯的石墨块轻轻擦过一块粘有胶水的基底表面,然后将胶水涂抹在石墨块上,用胶水撕开石墨块,最终得到单层的石墨烯。
另外还有化学气相沉积法和化学还原法等制备方法。
石墨烯的独特性能为其在许多应用领域都提供了独特的优势。
例如,在电子学领域,石墨烯的高导电性和高迁移率使其成为制造超高速晶体管的理想材料。
在纳米医学领域,石墨烯的高表面积和生物相容性显示出良好的药物递送特性。
在能源领域,石墨烯可以用于制造锂离子电池电极和太阳能电池。
总之,石墨烯作为一种新型材料,在科技领域具有广阔的应用前景。
它的特殊结构和独特性能使其被广泛研究和应用,未来将会有更多的技术和科学创新基于石墨烯的性能开发而来。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯结构石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。
石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新材料。
是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料[1]。
石墨烯一直被认为是假设性的结构,无法单独稳定存在[1],直至2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,而证实它可以单独存在,两人也因“在二维石墨烯材料的开创性实验”为由,共同获得2010年诺贝尔物理学奖[2]。
石墨烯目前是世上最薄却也是最坚硬的纳米材料[3] ,它几乎是完全透明的,只吸收%的光"[4];导热系数高达5300 W/m·K,高于碳纳米管和金刚石,常温下其电子迁移率*超过15000 cm2/V·s,又比纳米碳管或硅晶体*高,而电阻率只约10-6 Ω·cm,比铜或银更低,为目前世上电阻率最小的材料[1]。
因为它的电阻率极低,电子迁移的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。
由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池。
石墨烯另一个特性,是能够在常温下观察到量子霍尔效应。
石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。
石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。
石墨烯的命名来自英文的graphite(石墨) + -ene(烯类结尾)。
石墨烯被认为是平面多环芳香烃原子晶体。
石墨烯的结构非常稳定,碳碳键(carbon-carbon bond)仅为Å。
石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排轻型飞机材料等。
根据其优异的导电性,使它在微电子领域也具有巨大的应用潜力。
石墨烯有可能会成为硅的替代品,制造超微型晶体管,用来生产未来的超级计算机,碳元素更高的电子迁移率可以使未来的计算机获得更高的速度。
另外石墨烯材料还是一种优良的改性剂,在新能源领域如超级电容器、锂离子电池方面,由于其高传导性、高比表面积,可适用于作为电极材料助剂石墨烯出现在实验室中是在2004年,当时,英国曼彻斯特大学的两位科学家安德烈·杰姆和克斯特亚·诺沃消洛夫发现他们能用一种非常简单的方法得到越来越薄的石墨薄片。
他们从石墨中剥离出石墨片,然后将薄片的两面粘在一种特殊的胶带上,撕开胶带,就能把石墨片一分为二。
不断地这样操作,于是薄片越来越薄,最后,他们得到了仅由一层碳原子构成的薄片,这就是石墨烯。
这以后,制备石墨烯的新方法层出不穷,经过5年的发展,人们发现,将石墨烯带入工业化生产的领域已为时不远了。
因此,两人在2010年获得诺贝尔物理学奖。
"石墨烯的出现在科学界激起了巨大的波澜,人们发现,石墨烯具有非同寻常的导电性能、超出钢铁数十倍的强度和极好的透光性,它的出现有望在现代电子科技领域引发一轮革命。
在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯表现得好。
由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,目前一般的电脑芯片以这种方式浪费了70%-80%的电能,石墨烯则不同,它的电子能量不会被损耗,这使它具有了非同寻常的优良特性。
[2]©sp2杂化碳质材料的基本组成单元石墨烯是由碳六元环组成的两维(2D)周期蜂窝状点阵结构, 它可以翘曲成零维(0D)的富勒烯(fullerene),卷成一维(1D)的碳纳米管(carbon nano-tube, CNT)或者堆垛成三维(3D)的石墨(graphite), 因此石墨烯是构成其他石墨材料的基本单元。
石墨烯的基本结构单元为有机材料中最稳定的苯六元环, 是目前最理想的二维纳米材料.。
理想的石墨烯结构是平面六边形点阵,可以看作是一层被剥离的石墨分子,每个碳原子均为sp2杂化,并贡献剩余一个p轨道上的电子形成大π键,π电子可以自由移动,赋予石墨烯良好的导电性。
二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本组成单元。
编辑本段石墨烯与其他碳元素的区别单层石墨烯及其派生物在近20年中,碳元素引起了世界各国研究人员的极大兴趣。
自富勒烯和碳纳米管被科学家发现以后,三维的金刚石、“二维”的石墨、一维的碳纳米管、零维的富勒球组成了完整的碳系家族。
其中石墨以其特殊的片层结构一直以来是研究的一个热点。
石墨本体并非是真正意义的二维材料,单层石墨碳原子层(Graphene)才是准二维结构的碳材料。
石墨可以看成是多层石墨烯片堆垛而成,而前面介绍过的碳纳米管可以看作是卷成圆筒状的石墨烯。
当石墨烯的晶格中存在五元环的晶格时,石墨烯片会发生翘曲,富勒球可以便看成通过多个六元环和五元环按照适当顺序排列得到的。
电子运输—在发现石墨烯以前,大多数(如果不是所有的话)物理学家认为,热力学涨落不允许任何二维晶体在有限温度下存在。
所以,它的发现立即震撼了凝聚态物理界。
虽然理论和实验界都认为完美的二维结构无法在非绝对零度稳定存在,但是单层石墨烯在实验中被制备出来。
这些可能归结于石墨烯在纳米级别上的微观扭曲。
石墨烯还表现出了异常的整数量子霍尔行为。
其霍尔电导=2e²/h,6e²/h,10e²/h.... 为量子电导的奇数倍,且可以在室温下观测到。
这个行为已被科学家解释为“电子在石墨烯里遵守相对论量子力学,没有静质量”。
导电性石墨烯结构非常稳定,迄今为止,研究者仍未发现石墨烯中有碳原子缺失的情况。
石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。
这种稳定的晶格结构使碳原子具有优秀的导电性。
石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。
由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中电子受到的干扰也非常小。
石墨烯最大的特性是其中电子的运动速度达到了光速的1/300,远远超过了电子在一般导体中的运动速度。
这使得石墨烯中的电子,或更准确地,应称为“载荷子”(electric charge carrier),的性质和相对论性的中微子非常相似。
石墨烯有相当的不透明度:可以吸收大约%的可见光。
而这也是石墨烯中载荷子相对论性的体现。
机械特性石墨烯是人类已知强度最高的物质,比钻石还坚硬,强度比世界上最好的钢铁还要高上100倍。
哥伦比亚大学的物理学家对石墨烯的机械特性进行了全面的研究。
在试验过程中,他们选取了一些直径在10—20微米的石墨烯微粒作为研究对象。
研究人员先是将这些石墨烯样品放在了一个表面被钻有小孔的晶体薄板上,这些孔的直径在1—微米之间。
之后,他们用金刚石制成的探针对这些放置在小孔上的石墨烯施加压力,以测试它们的承受能力。
研究人员发现,在石墨烯样品微粒开始碎裂前,它们每100纳米距离上可承受的最大压力居然达到了大约微牛。
据科学家们测算,这一结果相当于要施加55牛顿的压力才能使1微米长的石墨烯断裂。
如果物理学家们能制取出厚度相当于普通食品塑料包装袋的(厚度约100纳米)石墨烯,那么需要施加差不多两万牛的压力才能将其扯断。
换句话说,如果用石墨烯制成包装袋,那么它将能承受大约两吨重的物品。
电子的相互作用利用世界上最强大的人造辐射源,美国加州大学、哥伦比亚大学和劳伦斯·伯克利国家实验室的物理学家发现了石墨烯特性新秘密:石墨烯中电子间以及电子与蜂窝状栅格间均存在着强烈的相互作用。
|科学家借助了美国劳伦斯伯克利国家实验室的“先进光源(ALS)”电子同步加速器。
这个加速器产生的光辐射亮度相当于医学上X射线强度的1亿倍。
科学家利用这一强光源观测发现,石墨烯中的电子不仅与蜂巢晶格之间相互作用强烈,而且电子和电子之间也有很强的相互作用。
化学性质我们至今关于石墨烯化学知道的是:类似石墨表面,石墨烯可以吸附和脱附各种原子和分子。
从表面化学的角度来看,石墨烯的性质类似于石墨,可利用石墨来推测石墨烯的性质。
石墨烯化学可能有许多潜在的应用,然而要石墨烯的化学性质得到广泛关注有一个不得不克服的障碍:缺乏适用于传统化学方法的样品。
这一点未得到解决,研究石墨烯化学将面临重重困难。
石墨烯的合成方法主要有两种:机械方法和化学方法。
机械方法包括微机械分离法、取向附生法和加热SiC的方法;化学方法是化学还原法与化学解理法。
微机械分离法最普通的是微机械分离法,直接将石墨烯薄片从较大的晶体上剪裁下来。
2004年Novoselovt等用这种方法制备出了单层石墨烯,并可以在外界环境下稳定存在。
典型制备方法是用另外一种材料膨化或者引入缺陷的热解石墨进行摩擦,体相石墨的表面会产生絮片状的晶体,在这些絮片状的晶体中含有单层的石墨烯。
但缺点是此法是利用摩擦石墨表面获得的薄片来筛选出单层的石墨烯薄片,其尺寸不易控制,无法可靠地制造长度足供应用的石墨薄片样本。
取向附生法—晶膜生长取向附生法是利用生长基质原子结构“种”出石墨烯,首先让碳原子在 1150 ℃下渗入钌,然后冷却,冷却到850℃后,之前吸收的大量碳原子就会浮到钌表面,镜片形状的单层的碳原子“ 孤岛” 布满了整个基质表面,最终它们可长成完整的一层石墨烯。
第一层覆盖 80 %后,第二层开始生长。
底层的石墨烯会与钌产生强烈的交互作用,而第二层后就几乎与钌完全分离,只剩下弱电耦合,得到的单层石墨烯薄片表现令人满意。
但采用这种方法生产的石墨烯薄片往往厚度不均匀,且石墨烯和基质之间的黏合会影响碳层的特性。
另外Peter 等使用的基质是稀有金属钌。
加热 SiC法该法是通过加热单晶6H-SiC脱除Si,在单晶(0001) 面上分解出石墨烯片层。
具体过程是:将经氧气或氢气刻蚀处理得到的样品在高真空下通过电子轰击加热,除去氧化物。
用俄歇电子能谱确定表面的氧化物完全被移除后,将样品加热使之温度升高至1250~1450℃后恒温1min~20min,从而形成极薄的石墨层,经过几年的探索,Berger等人已经能可控地制备出单层或是多层石墨烯。
其厚度由加热温度决定,制备大面积具有单一厚度的石墨烯比较困难。
%包信和等开发了一条以商品化碳化硅颗粒为原料,通过高温裂解规模制备高品质无支持(Free standing)石墨烯材料的新途径。
通过对原料碳化硅粒子、裂解温度、速率以及气氛的控制,可以实现对石墨烯结构和尺寸的调控。