太阳能热利用原理与技术
利用太阳能热能发电的原理及优点

利用太阳能热能发电的原理及优点随着环保意识的日益提高,太阳能这种清洁、可再生能源受到越来越多的关注。
利用太阳能最为普遍的方式是太阳能电池板发电,不过这种方式对设备的成本、储能、使用寿命等方面都有一定的限制。
而利用太阳能热能发电则是另一种重要的利用太阳能的方式。
本文将介绍太阳能热能发电的原理及其优点。
一、太阳能热能发电的原理太阳能热能发电,即利用太阳能将水加热形成高温水蒸汽,再利用蒸汽驱动涡轮机旋转发电机,产生电能。
具体而言,太阳能集中在平板式或抛物面式的反射镜(聚光器)上,反射镜上的阳光被聚焦到集热器的吸热材料上,使水在光照下发热并沸腾,形成高温水蒸气,蒸汽进入涡轮机,驱动涡轮旋转,然后再转动发电机发电。
二、太阳能热能发电的优点太阳能热能发电有以下四个优点:1. 可以大规模发电相较于太阳能电池板发电,太阳能热能发电的发电量要更大,可以满足更多的能源需求。
并且,设备的维护也相对容易,不像太阳能电池板发电需要狭小的组件间隙,而且太阳能电池板在高温、高湿等气候条件下使用寿命会大幅降低。
2. 能耗低太阳能热能发电的能耗较低。
相比于传统燃煤、燃气等能源发电的方式,太阳能热能发电不需要进行燃料燃烧,相应地减少了因燃料燃烧而产生的污染物。
3. 适用性强太阳能热能发电广泛适用于世界各地。
只要有阳光照射,就可以产生能源,不受当地电网、天然气管道等基础设施的限制,并且,太阳能热能发电也可以在储能期间保持一定的电力输出,满足用户需要。
4. 环境友好太阳能热能发电的环保性能非常好。
在运营期间几乎不会产生任何排放,对环境的影响也非常小。
与其他的化石燃料发电方式相比,太阳能热能发电无疑更符合环保理念。
三、总结利用太阳能热能发电可以满足大规模的能源需求,其能耗低、适用性强、环保性好等优点让其成为了清洁能源领域的热门技术之一。
随着技术的不断发展,太阳能热能发电必将成为未来的发展方向之一。
太阳能光热利用技术的研究与开发

太阳能光热利用技术的研究与开发引言太阳能是一种清洁、可再生的能源,具有广泛的应用前景。
其中,太阳能光热利用技术是一种将太阳能转化为热能的方法,被广泛应用于供暖、热水和工业生产等领域。
本文将对太阳能光热利用技术的研究与开发进行详细探讨。
一、太阳能光热利用技术的基本原理太阳能光热利用技术是通过收集太阳辐射能,将其转化为热能。
太阳能热利用系统一般包括太阳能集热器、传热介质、热储罐和辅助热源等组成。
1. 太阳能集热器太阳能集热器是太阳能光热利用系统的关键组件,用来收集太阳辐射能。
目前,常见的太阳能集热器有平板型、真空管型和抛物面型等多种类型。
平板型太阳能集热器由铝板、玻璃面板、铜管和隔热材料等组成,可将太阳辐射能转化为热能。
2. 传热介质传热介质通常是通过循环管道将集热器中的热能传输到热储罐或供暖系统中。
常用的传热介质有水、空气和油等。
水是一种常用的传热介质,具有良好的传热性能和适宜的温度范围,广泛应用于太阳能热水器系统。
3. 热储罐热储罐用于存储集热器中转化的热能,以满足后续使用的需求。
热储罐分为压力式和非压力式两种类型。
压力式热储罐一般采用钢制,能够承受较高的压力,适用于供暖系统等高温高压场景。
非压力式热储罐一般采用玻璃钢或塑料材质,适用于太阳能热水器等低温场景。
4. 辅助热源在太阳能辐射不足或天气恶劣的情况下,为了保证供暖或热水系统的正常运行,需要使用辅助热源提供额外的热能。
常见的辅助热源有电加热器、燃气锅炉和太阳能辅助加热装置等。
二、太阳能光热利用技术的应用领域太阳能光热利用技术具有广泛的应用领域。
以下将对其在供暖、热水和工业生产等领域的应用进行介绍。
1. 供暖系统太阳能光热供暖系统是一种常见的应用方式。
通过太阳能集热器收集太阳辐射能,传输至热储罐中,再通过循环管道将热能传输至供暖系统中。
太阳能供暖系统可以减少能源消耗,降低温室气体排放,具有环保和经济的优势。
2. 热水系统太阳能热水系统是太阳能光热利用技术的另一种常见应用方式。
利用太阳能加热的原理是

利用太阳能加热的原理是太阳能加热是利用太阳能将光能转化为热能的原理,通过太阳能热集中器或太阳能热板将太阳辐射能转化为热能,并将其应用于供暖、热水、烘干等领域。
太阳能加热技术以其无污染、可再生、节能等特点被广泛应用于全球各地。
太阳能加热的原理主要通过光能转换、传导、辐射等方式实现。
当太阳光照射到太阳能热集中器或太阳能热板表面时,光能被吸收并转化为热能,再通过传导和辐射的方式传递给被加热的对象。
光能转换是太阳能加热的首要过程。
太阳光中的光子能量被吸收,并转化为热能。
太阳能热板内的吸热介质(如水)通过吸收太阳光能而升温,形成热水。
太阳能热集中器则通过反射、折射和聚焦的方式将太阳光聚集在焦点上,使焦点处的介质升温。
传导是指热能通过物质的直接接触传递。
例如,太阳能热板上的热水可以通过热传导作用将热量传递给需要加热的设备或区域。
此外,太阳能热集中器中的热能也可以通过传导方式传递给热水等介质。
辐射是太阳能加热中的另一个重要方式。
所有物体在一定温度下都会发射热辐射,其中太阳辐射是利用最广泛的一种。
太阳能热集中器和太阳能热板吸收太阳辐射后会重新辐射出热辐射,进而加热其他物体。
太阳能加热技术有多种应用方式。
其中,太阳能热水器是最为常见的应用形式之一。
太阳能热水器利用太阳能将水加热,并将热水供应给家庭、酒店、游泳池等场所,以满足日常生活热水的需求。
太阳能热水器通过将太阳能热板中的吸热介质升温后供给水箱中的水,实现热水的加热。
太阳能供暖系统是利用太阳能加热技术为建筑物提供供暖的一种方式。
太阳能热板将太阳能转化为热能,并将其储存在水箱或储能装置中。
当室内需要供暖时,将储存的热能释放给室内供暖系统,从而实现室内温度的调节。
此外,太阳能加热还可以应用于烘干领域。
太阳能热板可以将太阳光能转化为热量,用于烘干粮食、蔬菜、衣物等材料。
相较于传统的燃煤烘干方法,太阳能加热无污染且节能,成为了绿色烘干技术的重要组成部分。
当前,太阳能加热技术不断发展与创新。
太阳能热发电技术

太阳能热发电技术太阳能热发电技术是一种利用太阳能将光能转化为电能的方式。
它是一种环保、可再生的能源技术,具有巨大的潜力和广阔的应用前景。
本文将介绍太阳能热发电技术的原理、应用领域和发展前景,并探讨其在可持续发展中的作用。
一、太阳能热发电技术的原理太阳能热发电技术利用太阳的能量,将光能转化为热能,再将热能转化为电能。
其中,关键的设备是太阳能热发电系统。
该系统包括聚光器、热能储存装置和发电装置。
首先,聚光器将太阳光聚焦到一个点上,使其产生高温。
然后,热能储存装置将热能储存起来,用于晚上或阴天时继续发电。
最后,通过发电装置将储存的热能转化为电能,用于供电。
二、太阳能热发电技术的应用领域太阳能热发电技术广泛应用于以下领域:1. 发电系统:太阳能热发电技术可以用于建设大型的太阳能发电站,通过将太阳能转化为电能,为大规模的能源消费提供可靠的电力支持。
2. 工业领域:太阳能热发电技术可以为工业生产过程提供热能,例如蒸汽、热水等。
它可以替代传统的燃煤锅炉和燃气锅炉,降低能源消耗和环境污染。
3. 建筑领域:太阳能热发电技术可以应用于建筑中的供暖、供热、供电等系统,减少对传统能源的依赖,提高能源利用效率。
4. 农业领域:太阳能热发电技术可以用于温室、畜牧场等农业生产环节,提供温度和光照条件,提高农作物和畜禽的生长效率。
三、太阳能热发电技术的发展前景太阳能热发电技术在可持续发展中具有重要意义。
它具有以下发展前景:1. 环保性:太阳能热发电技术不会产生二氧化碳等污染物,对环境的影响较小。
它可以减少对传统能源的使用,降低温室气体排放,有助于应对气候变化和环境污染问题。
2. 可再生性:太阳能是一种取之不尽、用之不竭的能源,具有可再生性。
太阳能热发电技术可以持续不断地利用太阳能,满足能源需求,减少对传统能源的依赖。
3. 经济性:太阳能热发电技术具有良好的经济效益。
随着技术的进步和成本的下降,太阳能热发电技术的投资回报率将逐渐提高,吸引更多投资者参与。
太阳能光热利用技术研究

太阳能光热利用技术研究太阳能光热利用技术作为可再生能源的一种重要形式,日益受到人们的关注和重视。
在当前全球温室气体排放增加,能源消耗急剧增长的背景下,太阳能光热利用技术被认为是解决能源危机和环境问题的有效途径之一。
本文将就太阳能光热利用技术的研究进展和应用前景展开讨论。
一、太阳能光热利用技术概述及原理太阳能光热利用技术是指利用太阳能的光热转换性质进行能量转换和利用的过程。
其原理基于太阳能的辐射和吸收。
太阳辐射穿过大气层到达地球表面后,可以通过吸收和反射产生热量。
太阳能光热利用技术主要包括太阳能热水器、太阳能供暖和太阳能发电等多个方面。
1. 太阳能热水器太阳能热水器是太阳能光热利用技术的一种常见应用形式。
其基本原理是通过太阳能热能将水加热到适宜的温度,供人们日常生活使用。
太阳能热水器由太阳能集热器、储存水箱和管道系统组成。
太阳能集热器将太阳辐射转化为热能,传递给水箱中的水,供人们使用时将热水抽出即可。
太阳能热水器广泛应用于房屋、酒店、游泳池等场所,具有绿色环保、经济实用的特点。
2. 太阳能供暖太阳能供暖是指利用太阳能光热转换为热能来供应室内供暖的一种技术。
其原理是通过太阳能集热器将太阳辐射转化为热能,然后通过热传导、辐射等方式将热能传递给室内。
太阳能供暖系统主要包括太阳能集热器、热传输管道和室内散热器等组成。
太阳能供暖技术可以在节能减排的同时为用户提供舒适的居住环境,对于大气污染和碳排放的减少具有重要意义。
3. 太阳能发电太阳能发电是太阳能光热利用技术中的重要领域,其原理是通过太阳能光照辐射使光伏电池中的太阳能光子产生光电效应,将光能转化为电能。
太阳能发电系统主要由太阳能光伏电池组件、负载调节器和储能装置等组成。
太阳能发电技术具有可持续发展、分布式供电等优势,能够广泛应用于农村地区、偏远地区以及电力不足的地方,为能源结构优化和能源供应问题提供新的解决方案。
二、太阳能光热利用技术的研究进展太阳能光热利用技术的研究在过去几十年取得了显著的进展。
太阳能热利用原理与技术1

• E为时差,以分为单位。
E 9.87 sin 2B 7.53cos B 1.5sin B
B 360(n 81) 364
n是所求日期在一年中旳日子数 (从一月一日算起)。
日子数/日 0 30 60 90 120 150 180 210 240 270 300 330 360
• G —— 太阳辐照度,W/m2 • H —— 一天旳辐照量,J/m2·d • I —— —小时旳辐照量,J/m2·h
五.集热表面太阳入射角旳计算
• 太阳集热器所截取旳太阳直射辐射能量, 主要取决于太阳入射角θ。
• 而入射角θ与太阳赤纬角δ、地理纬度 、
集热器倾角β和方位角γ以及太阳时角ω有 关。
太阳旳辐射区
• 辐射区旳范围约从0.25 R⊙到0.8 R⊙,密 度和温度都不久向外减小,核反应区产 生旳能量经此区以辐射转移旳方式向外 传播,从核反应区出来旳是高能γ射线光 子,经辐射区物质接连地吸收并再辐射 出较低能量旳光子,自内向外依次变为X 射线、远紫外、紫外、可见光光子,最 终以可见光光子及其他形式辐射出来。
太阳能旳一般情况
世界上最丰富旳永久性能源是太阳能。地 球截取旳太阳辐射能通量为:1.7×1014kW。 其中:约30%被直接反射回宇宙空间;47% 转变为热,以长波辐射形式再次返回太空; 约23%是水蒸发、凝结旳动力和风与波浪 旳动能;植物经过光合作用吸收旳能量不 到0.5%。
s
地球每年接受旳太阳能总量为 1×1018kW·h,相当于5×1014桶原油, 是探明原油储量旳几百倍,是世界 年耗能总量旳一万余倍。
太阳光谱曲线
2400 2000 1600 1200 800 400
太阳能供暖系统的运行原理和优化方法

太阳能供暖系统的运行原理和优化方法随着环保意识的提高和对能源消耗的关注,太阳能供暖系统成为了一种受欢迎的供暖方式。
太阳能供暖系统利用太阳能将光能转化为热能,为室内提供温暖的空气或热水。
本文将介绍太阳能供暖系统的运行原理和优化方法。
一、太阳能供暖系统的运行原理太阳能供暖系统主要由太阳能集热器、热媒循环系统和室内热交换器组成。
太阳能集热器是系统的核心部件,它通过吸收太阳辐射能将光能转化为热能。
典型的太阳能集热器是太阳能热水器,它利用太阳能加热水箱中的水。
太阳能集热器中的热媒负责将热能传递到室内热交换器。
热媒一般是一种特殊的液体,具有良好的热导性能。
在太阳能供暖系统中,热媒通过循环泵被送至室内热交换器,将热能传递给室内的空气或水。
室内热交换器将热能传递给室内空气或水。
对于空气供暖系统,室内热交换器通常是一个散热器,通过对流传热将热能传递给室内空气。
对于水暖系统,室内热交换器通常是一个热水循环系统,将热能传递给供暖设备,如散热器或地暖系统。
二、太阳能供暖系统的优化方法1. 改善太阳能集热器的效率太阳能集热器的效率直接影响系统的供暖效果。
为了提高太阳能集热器的效率,可以采取以下措施:- 选择高效的太阳能集热器材料,如具有较高吸收率和较低反射率的材料。
- 优化太阳能集热器的结构设计,增加光吸收面积,减少热能损失。
- 定期清洁太阳能集热器表面,保持其表面清洁,以提高光吸收效果。
2. 提高热媒循环系统的效率热媒循环系统的效率对于热能传递的效果至关重要。
以下是提高热媒循环系统效率的方法:- 选择合适的热媒,具有较高的热导性能和较低的粘度,以减少能量损失。
- 优化循环泵的运行参数,如流量和压力,以提高热媒的循环效率。
- 定期检查和维护循环系统,确保其正常运行,减少能量损失。
3. 提高室内热交换器的效率室内热交换器的效率直接影响室内的供暖效果。
以下是提高室内热交换器效率的方法:- 选择高效的室内热交换器,如具有较大换热面积和较高换热效率的设备。
太阳能利用原理与技术

太阳能利用原理与技术太阳能是指太阳辐射所带来的能量,从而转化为人类可利用的电力或热能。
太阳能利用的原理是通过太阳能电池板将太阳辐射转化为电能,或通过太阳能热水器将太阳辐射转化为热能。
太阳能利用技术主要包括太阳能发电和太阳能热利用。
太阳能发电是指利用太阳光的辐射能转化为电能的过程。
太阳能电池板是最常见的太阳能发电设备,它由光伏电池组成,光伏电池是一种将太阳能转化为直流电能的半导体材料。
当太阳光照射到光伏电池上时,光子的能量被电池中的半导体材料吸收,导致电子脱离原子获得自由电子,形成电流。
这个过程称为光电效应。
光伏电池通常由硅、镓等材料制成,其中硅材料最常用。
硅材料被分为P型和N型,并通过P-N结构连接起来形成半导体结构。
当光线照射到P-N结构上时,光伏电池中的电子会在P-N结界面上跃迁,从而产生电流。
这个电流经过逆变器进行转换,就可以变成交流电供应给家庭或工业使用。
太阳能发电的优点是环保、可再生,缺点是成本较高。
太阳能热利用是指利用太阳能的热辐射转化为热能的过程。
太阳能热水器是最常见的太阳能热利用设备之一、太阳能热水器由集热器、热水储存箱和管路系统组成。
太阳能集热器通常使用黑色吸热涂料和玻璃罩,吸收太阳光的热辐射。
当太阳光射到集热器上时,吸热涂料将太阳能转化为热量,热量通过传导和对流的方式传递到储热箱中的水,并加热水温。
太阳能热水器的优点是可靠、经济,适用于家庭和商业热水供应;缺点是需要一定的储热容量和保温材料,以及要考虑天气的影响。
除了太阳能发电和太阳能热利用,还有其他一些太阳能利用原理和技术。
太阳能光伏发电是指将太阳能转化为光能,并利用光能产生电能。
光伏发电的原理与太阳能发电类似,但光伏发电主要应用于小型光伏设备,如太阳能计算器、太阳能灯等。
太阳能空调是指利用太阳能的热辐射驱动制冷循环,实现空调供冷的设备。
太阳能空调利用太阳能热能的特点,可以降低电能的消耗,减少对传统电力系统的依赖。
总体而言,太阳能利用的原理和技术是通过将太阳的能量转化为人类可利用的能源,以满足电力和热能需求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
方向的太阳辐射。 • 太阳总辐射——接收到的太阳辐射总和,直射
辐射+散射辐射。 • 长波辐射——任何物体当温度高于绝对零度时,
都会发出辐射能,温度不高时,辐射波长一般 大于3μm。
测量辐射量一般有:
• 直射辐射仪、散射辐射仪、长波辐 射仪、总辐射仪。
• 地球自转轴与椭圆轨道平面(称黄道平面) 的夹角为66°33′。地轴在空间的方位始终 不变,因而赤道平面与黄道平面的夹角为 23°27′。这就造成了太阳光线垂直照射在 地球表面的位置一年中在± 23°27′ 纬度之 间变化,这就是地球上形成四季的原因。
地球在一年中相对太阳的位置
3月21日 春分
6月22日 夏至
第一章: 绪 论
1.1 能源和太阳能 日常生活和社会生产与发展都离不开能源。所
谓能源就是人类生产生活所需要的能量资源。 能源主要有如下几种形式:矿物燃料(化石能
源)、水能、风能、太阳能、生物质能、海洋 能和地热能等。 从广义的角度看,几乎所有的自然能源都来自 太阳能。 现代社会的发展主要依靠:煤、石油、天然气、 水力能和原子能等。
9月23日 秋分
12月23日 冬至
在北半球
春分及秋分时,太阳光线正射(垂直照 射)在赤道上,赤纬角都为零,昼夜时 间相等。 • 夏至(6月22日),太阳光线正射在北回 归线上,δ= 23°27′。 • 冬至(12月22日),太阳光线正射在南 回归线上,δ= -23°27′。
一年中某日的赤纬可由下式计算:
• 太阳表面的温度是变化的,在一般的太阳能热 利用中,可将太阳表面温度看成固定温度 6000K(5700K)。
• 太阳光中有各种波长的光线,一般取0.3~3μm。 已占太阳光的98%以上。
二.地球绕太阳的运行规律
1.地球的公转与赤纬角
• 贯穿地球中心与南、北两极相连的线称为地 轴。地球除了绕地轴自转外(自转一周约24 小时),还在椭圆形轨道上围绕太阳公转, 运行一周为1年,约365天。
地球与太阳的相对大小
太阳
直
径
1.39×109m
太阳常数
G=1353W/
32°
m2
1.495×1011m (±1.7%)
地球
直
径
1.27×107m
• 太阳发出巨大能量向宇宙辐射,到达地球大气 层上界的太阳能量只占太阳总功率的1/20亿, 即180×1012kW。到达地球外表高层的太阳能 中,30%被大气层反射,23%被吸收,47%左 右可到达地面。尽管只有47%到达地面,其功 率已达85×1012kW。相当于全世界发电量的几 十万倍。
但太阳能与有严重的缺陷:
1 .总量虽然巨大,但通量密度低, 大气层外为1353W/m2,在地面上 ≤1000 W/m2。
2.有季节、昼夜和晴雨等间歇性 变化。
1.2 太阳能热利用的历史、现状和未来
一.历史的回顾
• 我国西汉时即有“削冰令圆,举以向日, 以艾承其影,则生“火”的说法;
• 西周时代:我们的祖先已经掌握了“阳燧” 取火的技术,“阳燧”实际上是一种凹面 镜,这是我国太阳能利用的最早记录。
二.我国近年太阳能利用的发展
• 目前,我国已经成为世界上最大的太阳 能利用大国,但不是强国。我国上规模 的厂家有120多家,小厂家一起,超过 5000家,年产值400多亿元。这些成绩 的取得都是与我国科学工作者和太阳能 专家分不开的。
第二章 太阳辐射
一.太阳
太阳是离地球最近的一颗恒星。它是一 个巨大而炽热的等离子体,主要成份为 氢和氦元素。太阳几乎为球形,直径为 1.392×109m,是地球直径的109倍,体 积比地球大130万倍。日地平均距离为 1.5×108km,从太阳发出的光线到达地 球需要8分钟。
太阳光谱曲线
2400 2000 1600 1200 800 400
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 波长λ/µm 图2-6 太阳辐射光谱[15] (NASA,1971年)
卫星的测量表明,太阳光的波长分布非常宽广, 从0.24~50μm,但大致可分为三个部分:紫外
(单位为分钟) • E为时差,以分为单位。
E 9.87sin 2B 7.53cosB 1.5sin B
B 360(n 81) 364
n是所求日期在一年中的日子数 (从一月一日算起)。
日子数/日 0 30 60 90 120 150 180 210 240 270 300 330 360
15 10 5 0 -5 -10 -15
1 2 3 4 5 6 7 8 9 10 11 12 月份/月
图2-3 时差曲线
一年中时差变化曲线
太阳时角
• 用角度表示的太阳时叫太阳时角,以ω 表示。太阳午时ω=0°,上午取负值, 下午取正值。每昼夜变化为±180°,每 小时15°。例如上午10点钟时 ω=-30°;下午3点钟时,ω=45°。
线,可见光和红外线。
紫外线
可见光
红外线
波长范围/μm 所占总能量百分率/% 相应范围的辐照度/W/m2
0~0.38 7 95
0.38~0.78 47.29 640
0.78~∞ 45.71 618
四.太阳辐射的测量
• 太阳辐射可分为:直射辐射、散射辐射。 • 直射辐射——直接来自太阳而没有改变方向的
• 美国建立了首座5000kW的塔式热发电厂; • 美国建立了首座大型太阳能热泵采暖系统(供
暖面积27870 m2 ,平板集热器面积3344 m2)
• 1984的太阳能光电池的定单量已达18.5MW
二.我国近年太阳能利用的发展
• 我国能源从总体上相当丰富,水力资源含 量居世界第1位,煤碳居第3位,石油居第 8位,天然气居第16位。但我国人口众多, 按人均分配看,却是一个真正能源缺口大 国,人均拥有的能量储量仅有美国的十七 分之一。因此我国在太阳能利用方面有强 烈的愿望和需求。
• G —— 太阳辐照度,W/m2 • H —— 一天的辐照量,J/m2·d • I —— —小时的辐照量,J/m2·h
五.集热表面太阳入射角的计算
• 太阳集热器所截取的太阳直射辐射能量, 主要取决于太阳入射角θ。
• 而入射角θ与太阳赤纬角δ、地理纬度 、
集热器倾角β和方位角γ以及太阳时角ω有 关。
三.太阳辐射光谱
• 在平均日地距离处,大气层外垂直于辐 射传播方向上单位面积上的太阳辐射照 度为1353W/m2,称为太阳常数,用G表 示:即
G=1353W/m2 • 太阳常数是太阳光中所包含的总能量,
但太阳光中各种波长的辐射都有,描述 各种波长的光在总能量中的比重关系称 为光谱。
太阳辐射光谱
各种颜色的光都有相应的波长范围。红色光的 波长为700nm,光谱范围为640~750 nm;橙 色光的波长为620 nm,光谱范围为600~640 nm;黄色光的波长为580 nm,光谱范围为 550~600 nm;绿色光的波长为510 nm,光谱 范围为480~550 nm;蓝色光的波长为470 nm, 光谱范围为450~480 nm;紫色光的波长为420 nm,光谱范围为400~450 nm。通常人们把太 阳光的各色光按频率或波长大小的次序排列成 的光带图,叫做太阳光谱。
太阳时与各地使用的标准时间并 不一致,转换关系为:
• 太阳时 = 标准时间 + E ± 4×(L标准-L当地) • L标准——标准时间采用的标准经度,(°); • L当地——当地的经度,(°)。 • E为时差 • 公式中东半球为负号,西半球取正号。
我国取东经120°为标准时间(即北京时 间),所以 太阳时 = 北京时间 + E ± 4×(120-L当地)
E mc2 0.0481024 (31010)2erg 0.000 043erg 4.31012 J
太阳发出的能量及寿命
• 在太阳中心区有0.1 R⊙的氢燃烧就能释 放能量 E 1.28 1044 J ,这可以供给太 阳辐射(光度L⊙)寿命t达:
• t=E/L⊙=1.28×1044J/3.845×1026W=3.32 ×1017s≈1×1010年
23.45sin(360o 284 n )
365
n是所求当日在一年中的日子数 (从一月一日算起)。
2.地球的自转与太阳时
• 地球自转一周360°,所需时间24小时; 因此相当于每小时转15°。由于各地所 采用的时间标准不一样,所以我们生活 中的时间并不是真正太阳升起降落的时 间(称为太阳时)。太阳时的午时(中 午12时)太阳光线正好通过当地的子午 线。(或简单地说,正好在南北方向上)
热传递问题(传热学)
间接利用(工程热力学)
我国目前的各种用能的比例见下图:
美国目前的各种用能的比例见下图:
开发可再生能源的必要性
但化石能源是短时间不可再生的,叫做一次 性能源。这些能源的藏量有限,很快就会枯 竭,而且在使用时带来严重的环境污染。因 此,探索使用可再生的能源是十分必要的, 太阳能、生物质能、风能等是可再生能源的 主体,特别是太阳能:取之不尽,用之不竭, 清洁可靠、免费供应、人人均等。
太阳辐射光谱
• 太阳不仅发射可见光,同时还有不可见光。整 个太阳光谱包括紫外区、可见区和红外区3个 部分。但其主要部分,是由0.3~3.0μm的波长 所组成的。其中,波长小于0.4μm的紫外区和 波长大于0.76μm的红外区,则是人眼看不见的 紫外线和红外线;波长为0.4μm~0.76μm的可 见区,就是我们所看到的白光。在到达地面的 太阳光辐射中,紫外区的光线占的比例很小, 大约为8.03%;主要是可见区和红外区的光线, 分别占46.43%和45.54%。
太阳的辐射区
• 辐射区的范围约从0.25 R⊙到0.8 R⊙,密 度和温度都很快向外减小,核反应区产 生的能量经此区以辐射转移的方式向外 传输,从核反应区出来的是高能γ射线光 子,经辐射区物质接连地吸收并再辐射 出较低能量的光子,自内向外依次变为X 射线、远紫外、紫外、可见光光子,最 后以可见光光子及其他形式辐射出来。