质谱基础知识飞行时间质谱仪原理及应用课件

合集下载

质谱基础知识飞行时间质谱仪原理及应用

质谱基础知识飞行时间质谱仪原理及应用
营养成分和功能成分分析
飞行时间质谱仪能够检测食品中的营养成分和功能成分,为食品的 营养评价和功能研究提供依据。
04
质谱技术的发展趋势
高灵敏度质谱技术的发展
灵敏度提升
随着技术的不断进步,质谱仪的 灵敏度不断提高,能够检测到更 低浓度的物质,为痕量物质的分 析提供了可能。
选择性增强
高灵敏度质谱技术通过改进离子 化方法和分离技术,提高了对复 杂样品的选择性,降低了干扰物 质的影响。
质谱的应用领域
01
02
03
04
生物医药
用于蛋白质、核酸等生物大分 子的检测和鉴定。
环境监测
检测空气、水体中的有害物质 和污染物。
食品安全
检测食品中的添加剂、农药残 留等。
化学分析
对有机化合物进行定性和定量 分析,用于化学反应机理研究
等。
02
飞行时间质谱仪原理
飞行时间质谱仪的结构
电离源
用于将样品分子转化为带电离 子,常见电离源有电子轰击、 化学电离、电喷雾等。
飞行管
离子在其中进行无散射的飞行 ,通常由真空密封的管子组成 。
ቤተ መጻሕፍቲ ባይዱ
进样系统
用于将样品引入质谱仪中,通 常采用气相色谱或直接进样方 式。
加速电场
用于加速离子,使其获得足够 的能量进入飞行管。
检测器
用于检测到达终端的离子,通 常采用电子倍增器或微通道板 。
飞行时间质谱仪的工作原理
01
02
03
04
进样系统将样品引入电离源, 电离源将样品分子转化为带电
在化学领域的应用
在化学领域,质谱技术用于研究化合物的结构、组成、反应机理等,可以用于合成路线的确定、反应条件的优化等。

质谱原理及使用课堂PPT

质谱原理及使用课堂PPT
35
在灯丝和阳极之间加入约70V 电压,获得轰击能量为70eV的电 子束(一般分子中共价键电离电位 约10eV),它与进样系统引入气 体束发生碰撞而产生正离子。
36
正离子在第一加速电极和反射极间 的微小电位差作用下通过第一加速电极 狭缝,至质量分析器电极狭缝,而第一 加速极与第二加速极之间的高电位使正 离子获得其最后速度,经过狭缝进一步 准直后进入质量分析器。
47
4.质量分析器
质谱仪的质量分析器位于离子源和检 测器之间,依据不同方式将样品离子按质 荷比m/z分开。质量分析器的主要类型 有:磁分析器、飞行时间分析器、四极滤 质器、离子捕获分析器和离子回旋共振分 析器等。随着微电子技术的发展,也可以 采用这些分析器的变型。
48
(l)磁分析器 最常用的分析器类型之一就是扇
5
1 u1 12 (6.01 2.2 0 2 1 0 12 0 0 g 4 1 3 1C 0 2 C 2原 /0 m/1 m 子 o C 2l1 o C 2) l
=1.66054×10-24g/12C原子 =1.66054×10-27kg/12C原子
6
而在非精确测量物质的场合,常 采用原子核中所含质子和中子的总数 即质量数来表示质量的大小,其数值 等于其相对质量数的整数。
37
(2)化学电离源 在质谱中可以获得样品的重要
电子轰击产生的M+峰,往往不存在 或其强度很低。必须采用比较温和 的电离方法,其中之一就是化学电 离法。
38
化学电离法是通过离子——分 子反应来进行,而不是用强电子束 进行电离。离子(为区别于其它离 子,称为试剂离子)与试样分子按 下列方式进行反应,转移一个质子 给 试 样 或 由 试 样 移 去 一 个 H+ 或 电 子,试样则变成带+l电荷的离子。

质谱基础知识-飞行时间质谱仪原理及应用 PPT

质谱基础知识-飞行时间质谱仪原理及应用 PPT

直线式VS反射式
直线型飞行时间质谱仪的 主要缺点:分辨率低。
离子初始能量不同,使得 具有相同质荷比的离子达 到检测器的时间有一定分 布,造成分辨能力下降。
改进的方法
在线性检测器前面的加上 一组静电场反射镜,将自 由飞行中的离子反推回去, 初始能量大的离子由于初 始速度快,进入静电场反 射镜的距离长,返回时的 路程也就长,初始能量小 的离子返回时的路程短, 这样就会在返回路程的一 定位置聚焦,从而改善了 仪器的分辨能力。
质量精度(mass accuracy):衡量质谱仪器测量物质 成分的准确度;ppm
质量范围(mass range ):质谱仪器测量物质成分的 质量大小范围;1~ ∞
灵敏度(sensitivity):质谱仪器所能测量物质成分 的最低含量;单分子检测
飞行时间质谱仪TOF-MS的构成
离子源:
电喷雾电离源(ESI)
大家应该也有点累了,稍作休息
大家有疑问的,可以询问和交流
飞行时间质谱仪TOF-MS的构成
质量分析器
TOF-MS分辨率低的原因
时间分散 空间分散 能量分散
改进方法
脉冲电离 离子延迟引出 反射器技术
目前, TOF -MS大都装有反射器,使离子 经过多电极组成的反射器后沿V型或W 型路线飞行到达检测器,使得分辨率可 达20 000 以上, 最高检测质量可超过 300 000 Da,且具有很高的灵敏度。
+ +

++ + ++
+
+++ +++
+++ +++
+

质子转移反应飞行时间质谱仪原理

质子转移反应飞行时间质谱仪原理

质子转移反应飞行时间质谱仪原理
质子转移反应飞行时间质谱仪(PTR-TOF-MS)是一种高灵敏度
的质谱仪,用于气相和气溶胶中挥发性有机化合物(VOCs)的分析。

它的工作原理基于质子转移反应(PTR)和飞行时间(TOF)技术。

首先,让我们来看看质子转移反应(PTR)的原理。

在PTR-
TOF-MS中,样品气体通常与H3O+(氢氧根离子)接触,形成离子化
的分子。

这些离子化的分子具有不同的质荷比,它们通过电场加速
器进入飞行时间部分。

接下来是飞行时间(TOF)部分的原理。

一旦分子离子化并加速,它们进入飞行管道,其中它们在电场的作用下以不同的速度飞行。

根据飞行时间和离子质荷比的关系,可以确定分子的质量。

通过测
量到达检测器的时间,可以计算出分子的飞行时间,从而确定其质量。

PTR-TOF-MS的工作原理可以帮助科学家快速、准确地分析复杂
的气味和气味混合物,例如大气中的挥发性有机化合物、生物质燃
烧产物和环境挥发性有机化合物等。

这种技术在环境监测、生物地
球化学、大气化学等领域具有重要的应用价值。

总的来说,PTR-TOF-MS利用质子转移反应和飞行时间技术,能够快速、高灵敏地分析气相和气溶胶中的挥发性有机化合物,为环境科学和相关领域的研究提供了重要的分析工具。

飞行时间质谱仪原理与应用

飞行时间质谱仪原理与应用

SF
(
X SF 2 X 3X SF
A2
)3/ 2
X
A2 )
U A2
U
2( X A2 X SF ) 3X SF
空间/能量聚焦条件下旳离子飞行时间
t m ( 2X A1 2X A2 X SF ) 2q U U A2 U U U A2 U
小结
为取得较高旳质量辨别:
A.飞行时间质谱旳几何尺寸和工作电压 都需调整。 B.几何尺寸和工作电压间有有关性。 C.可取得较“空间聚焦”条件下更高旳 质量辨别能力。
XSF
U UA2
双电极情况下旳空间聚焦条件
X SF
2
X
A1
U ( U A2
)3
/
2
(1X A2 X A1 NhomakorabeaU ( U A2
U )1) U A2
XA1 XA2
XSF
U
UA2
结论:
能够经过调整电极间距离和不同电 极上旳电压来变化离子焦点旳位置。
在设计飞行时间质谱时。能够先拟 定飞行管旳长度L,然后经过变化各个电 极间旳距离和工作电压旳设置来取得最 佳旳质量辨别成果。
则: 离子初始动能分布:ΔU=7.5 eV, XSF=20 cm, t1= 5 µs, t2=40 µs. 所以,Δt=0.3 ns
又假定:离子到达探测器表面旳时间 差为0.1ns
RFTOFMS质量辨别率:~105
t 1 ( 7.5 )2 5 3 ( 7.5 )3 40 45 4 1000 45 16 1000 45 t 6 *105
当飞行距离:L,和工作电压:V,一定时,离子 飞行时间:T,和离子质荷比一一相应。
飞行时间质谱仪旳质量辨别
全部质荷比(m/z)相同旳离子尽量同步到达离子探测 器,即具有尽量相同旳飞行时间。

LC-MS原理以及应用PPT课件

LC-MS原理以及应用PPT课件
2020/1/16
具体应用
2020/1/16
2020/1/16
2020/1/16
•正离子模式:适合于碱性样品,可用乙酸或甲酸对样品加以酸 化。样品中含有仲氨或叔氨时可优先考虑使用正离子模式。 负离子模式:适合于酸性样品,可用氨水或三乙胺对样品进行 碱化。样品中含有较多的强伏电性基团,如含氯、含溴和多个 羟基时可尝试使用负离子模式。
杂质的可能结构式
O N
N
N
N
N N
C20H19N7O2 Mol. Wt.: 389.41
N H
O
N
N N
H2N
O
C13H10N4O Mol. Wt.: 238.24
NO
N
NN
NN
N O
H2N
Mol. Wt.: 404.43
NO
N
N
N N
Mol. Wt.: 263.25
CN N
N N
Mol. Wt.: 220.23
2020/1/16
电喷雾VS大气压化学电离
• 电离机理:电喷雾采用离子蒸发,而APCI电离是高压放电发生了质子转移而生成 [M+H]+或[M-H]-离子。
• 样品流速:APCI源可从0.2到2 ml/min;而电喷雾源允许流量相对较小,一般为 0.2-1 ml/min.
• 断裂程度:APCI源的探头处于高温,热不稳定的化合物会分解. • 适用范围:电喷雾有利于分析极性大的小分子和生物大分子及其它分子量大的化
17 1.1
m/z
2020/1/16
21
同位素的相对丰度(强度)
2020/1/16
2020/1/16
三、碎片离子峰
当有机化合物蒸气分子进入离子源受到电子轰击时,裂解生

飞行时间质谱仪 ppt课件

飞行时间质谱仪  ppt课件

缺点:
a). 金属离子干扰, Na, K; b). 离子源结构复杂,; c). 没有LC/MALDI 接口; d). 实现MS/MS 困难 e). 需要基质
质量范围: 分子量小于500,000 Da
ppt课件
48
6). 表面增强激光解吸电离(Surface-enhanced laser desorption/ionization, SELDI)技术
数据处理系统
离子检测器 离子转换成电信号
棒状峰
高斯状峰
ppt课件
蛋白质
34
质谱工作流程
进样系统
离子源
质量分析器
离子检测器
1.加热进样 2.直接进样
1.电子轰击 2.化学电离 3.场致电离 4.激光 5.快原子轰击
1.单聚焦
2.双聚焦 3.飞行时间
4.四极杆
ppt课件
35
质谱的构造
进样系统:按电离方式的需要,将样品送入 离子源的适当部位,分为加热进样和直接进样。
1911年: 世界第一台质谱装置 (J.J. Thomson)
40年代: 用于同位素测定和无机元素分 析
50年代: 开始有机物分析(分析石油) 60年代: 研究GC-MS联用技术 70年代: 计算机引入
ppt课件
30
生物质谱的发展
80年代:快原子轰击电离,基质辅助激 光解吸电离,电喷雾电离,大气压化学 电离
ppt课件
43
电喷雾离子化的特点是产生高电荷离子而不是 碎片离子,使质量电荷比(m/z)降低到多数 质量分析仪器都可以检测的范围,因而大大扩 展了分子量的分析范围,离子的真实分子质量 也可以根据质荷比及电荷数算出
可以方便地与多种分离技术联合使用,如液质 联用(LC-MS)是将液相色谱与质谱联合而 达到检测大分子物质的目的。

质谱分析技术原理与应用PPT模板课件

质谱分析技术原理与应用PPT模板课件

第3 章质量分析器
3.2傅里叶变换离子回旋共振质量分析器
3.2.1 质量分析器 3.2.2 离子回旋运动 3.2.3 离子阱内实际的离子运动 3.2.4 离子激发与检测 3.2.5 离子检测的模式 3.2.6 操作模式 3.2.7 质量分辨能力 3.2.8 捕获电压影响下的质量检测极限
A
C
E
3.2 傅里叶变换离子
3.4 四极杆与四极
3.6 质量分析器的
回旋共振质量分析 器
离子阱质量分析器
选择与应用
B
D
F
17
第3章质量分析器
参考文献
18
第3 章质量分析器
3.1扇形磁场质量分析器
3.1.1磁场单聚焦质量分析器 3.1.2磁场双聚焦质量分析器 3.1.3双聚焦质谱仪的串联质谱分析
19
40
第7 章质谱数据解析
7.3软电离法谱图解析
7.3.1带多电荷谱图分析 7.3.2软电离电喷雾电离的串联质谱分析谱图
41
第8章定量 分析
8.1定量专一性
8.2灵敏度、检测限与校准曲线
3. 使用质谱进行定量分析的方法 1. 外标法
2. 标准加入法 3. 同位素内标法 4. 同位素标定定量法 8.4分离与质谱技术的结合对定量分析的重要性及注意事 项 参考文献
38
第7 章质谱数据解析
7.1质谱数据介绍
7.1.1整数质量、精确质量、单一同位素质量 7.1.2同位素含量与分布、平均质量 7.1.3质量分辨率对谱图/质量准确度的影响
39
第7 章质谱数据解析
7.2电子轰击电离谱图解析
7.2.1电子轰击电离谱图简介 7.2.2氮规则与不饱和键数量规则 7.2.3谱图解读的简易指导原则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
质荷比一一对应。
质谱基础知识飞行时间质谱仪原理及应用
飞行时间质谱仪性能指标
• 质量分辨(Mass resolution, m/△m):质谱 仪器分辨不同成分物质的能力;~10000
• 质量精度(mass accuracy):衡量质谱仪器 测量物质成分的准确度;ppm
• 质量范围(mass range ):质谱仪器测量物 质成分的质量大小范围;1~ ∞
行中的离子反推回 质谱基础知识飞行时间质谱仪原空理间及应聚 用焦
XRef
XS
US
反射式飞行时间质谱仪
质谱基础知识飞行时间质谱仪原理及应用
飞行时间质谱仪的应用
• 质量分析器; • 可以单独使用,也可以
和其他仪器串联使用
• 与四级杆质谱串联 • 与离子阱质谱串联 • 与粒子淌度质谱串联
• 广泛用于化学、生物学、 环境科学等领域。
• 基质辅助激光解吸电离源(MALDI)
• 主要用于多肽、核苷酸、蛋白质和高分子聚合物等生物大分子 的电离
• 大气压光电离源(APPI)
• 主要用于芳烃、甾体等不宜用以上三种离子化的样品。
质谱基础知识飞行时间质谱仪原理及应用
飞行时间质谱仪TOF-MS的构成
• 质量分析器
• TOF-MS分辨率低的原因
• 中药分析 • 蛋白质组学
质谱基础知识飞行时间质谱仪原理及应用
Thanks!
质谱基础知识飞行时间质谱仪原理及应用
+ ++
+++ + + + + +++
+ +
++ + ++
+
+++ +++
++++ +++
+
++
检 测 器
EI源
Quadruopole
FAB源
Ion trap
MALDI源
Time-of-flight
ESI源
质谱基础知识飞行时间质谱仪原理及应用
电子倍增器 闪烁计数器
质谱的发展历史
1906年 J.JThomson在实验中发现带电荷离子在电磁场中的运 动轨迹与 它的质荷比(m/z)有关,并于1912年制造出第一台质谱仪.
• 时间分散 • 空间分散 • 能量分散
• 改进方法
• 脉冲电离 • 离子延迟引出 • 反射器技术
目前, TOF -MS大都装有反射器,使离子 经过多电极组成的反射器后沿V型或W 型路线飞行到达检测器,使得分辨率可 达20 000 以上, 最高检测质量可超过 300 000 Da,且具有很高的灵敏度。
• 灵敏度(sensitivity):质谱仪器所能测量物 质成分的最低含量;单分子检测
质谱基础知识飞行时间质谱仪原理及应用
飞行时间质谱仪TOF-MS的构成
• 离子源:
• 电喷雾电离源(ESI)
• 主要用于极性、难气化的成分在液相状态下的电离。
• 大气压化学电离源(APCI)
• 主要用于中等极性、易挥发的小分子化合物在气相状态下的电 离
质谱基础知识飞行时间质谱仪原理及应用
1996年 电喷雾离子源开始用于生物大分子的研究
基本原理

V L
质谱基础知识飞行时间质谱仪原理及应用
2V
基本原理——公式推导
T L* m L* ( 1 )(m)
2neV
2V ne
T L* ( 1 )(m)............(n1) 2
1946年 发明飞行时间质量分析器(Time-of-flight Analyzer) 1953-1958年 出现四极杆质量分析器(Quadrupole) 1956年 GC-MS开始联用 1959年 质谱首次用于peptide sequencing 1965年 离子共振质谱出现 1968年 电喷雾离子源Electrospray Ionization 1973年 LC-MS 1974年 Fourier transform ion cyclotor resonance MS 1987-1988年 Matrise_assisted laser desorption ionization
质谱基础知识飞行时间质谱仪原理及应用
直线式VS反射式
• 直线型飞行时间质
L
谱仪的主要缺点:
分辨率低。
• 离子初始能量不同,
使得具有相同质荷
比的离子达到检测
器的时间有一定分 V1 V2
布,造成分辨能力 XA1
XD1
下降。
XA2
XD2
• 改进的方法
• 在线性检测器前面
的加上一组静电场
XSF
反射镜,将自由飞 U
飞行时间质谱仪
庞钧文 12210300012
质谱基础知识飞行时间质谱仪原理及应用
质谱仪简介
• 质谱仪是按照离子的质荷比(m/z)不同,来分离不同分子量的分子. 测定分子量进行成分和结构分析.
• 离子的生成方式有失去或捕获电荷(如:电子发射,质子化或去质
子化)
离子源
质量过滤/分析器
进样部分 样品板 LC或GC
相关文档
最新文档