玻尔理论--原子的能级结构---

合集下载

高中物理第2章原子结构第3节玻尔的原子模型第4节氢原子光谱与能级结构课件鲁科版选修3

高中物理第2章原子结构第3节玻尔的原子模型第4节氢原子光谱与能级结构课件鲁科版选修3
跃迁 假设 定频率的光子能量 hν,假如,原子从定态 E2 跃迁到
定态 E1,辐射的光子能量为 hν=E2-E1
基本 内容
假设
原子的不同能量状态对应于电子的不同运行轨道.原
子的能量状态是不连续的,电子不能在任意半径的轨 轨道 道上运行,只有轨道半径 r 跟电子动量 mev 的乘积满 假设 足下式 mevr=n2hπ(n=1,2,3,…)这些轨道才是可
对玻尔原子模型的理解 1.轨道量子化:轨道半径只能够是一些不连续的、某些分立的 数值. 模型中保留了卢瑟福的核式结构,但他认为核外电子的轨道是 不连续的,它们只能在某些可能的、分立的轨道上运动,而不 是像行星或卫星那样,能量大小可以是任意的量值.例如,氢 原子的电子最小轨道半径为 r1=0.053 nm,其余可能的轨道半 径还有 0.212 nm、0.477 nm、…不可能出现介于这些轨道半径 之间的其他值.这样的轨道形式称为轨道量子化.
按照玻尔原子理论,氢原子中的电子离原子核越远, 氢原子的能量________(选填“越大”或“越小”).已知氢原 子的基态能量为 E1(E1<0),电子质量为 m,基态氢原子中的电 子吸收一频率为 ν 的光子被电离后,电子速度大小为 ________(普朗克常量为 h). [思路点拨] 根据玻尔原子理论与能量守恒定律求解.
得到了氢原子的能级结构图(如图所示).
n=∞————————E∞=0 ⋮
n=5 ————————E5=-0.54 eV n=4 ————————E4=-0.85 eV n=3 ————————E3=-1.51 eV n=2 ————————E2=-3.4 eV n=1 ————————E1=-13.6 eV
4.原子跃迁时需注意的几个问题 (1)注意一群原子和一个原子 氢原子核外只有一个电子,这个电子在某个时刻只能处在某一 个可能的轨道上,在某段时间内,由某一轨道跃迁到另一个轨 道时,可能的情况只有一种,但是如果容器中盛有大量的氢原 子,这些原子的核外电子跃迁时就会有各种情况出现.

玻尔理论的基本假设现象氢原子光谱是分立线状

玻尔理论的基本假设现象氢原子光谱是分立线状
第四节
原子的能级结构
回顾
19世纪末20世纪初,人类叩开了微观世界
的大门,物理学家根据研究提出了关于原子
结构的各种模型,卢瑟福的核式结构模型能
够很好
盾.
经典电磁理论
经典电磁理论认为:电子绕核作匀速圆周运动, 绕核运动的电子将不断向外辐射电磁波。由于原子 不断地向外辐射能量,能量 v 逐渐减小,电子绕核旋转的频 e F
Em>En 发射光子, Em<En 吸收光子
能级结构猜想
能级:原子内部不连续的能量称为原子的能级。
数值上等于原子在定态时的能量值。 跃迁:原子从一个能级变化到另一个能级的过程。 在跃迁的过程中,原子辐射(或吸收)光子的能 量为:
hv= Em- En
Em和En分别为跃迁前后的能级
(1)处于高能级的原子会自发
由 T ( m ) T ( n ) 知道,氢原子辐射光谱的波长取决 于两光谱项之差;而hv=Em-En式则揭示出氢原子 辐射光的频率取决于两能级之差。 能级与光谱项之间的关系 最先得出氢原子能级表达式的,是丹麦物理学 家玻尔,他在吸取前人思想的基础上,通过大胆假 设,推导出氢原子的能级满足:
在解决核外电子的运动时 成功引入了量子化的观念
同时又应用了“轨 道”等经典概念和 有关牛顿力学规律
除了氢原子光谱外,在解决 其他问题上遇到了很大的困难.
半经典半量子理论,存在逻辑上的缺点,即把微观粒子看成是遵 守经典力学的质点,同时,又赋予它们量子化的特征。
玻尔理论解决了原子的稳定性和 辐射的频率条件问题,把原子结构的 理论向前推进了一步 .
率也逐渐改变,原子的发射光 谱应是连续谱。由于原子总能 量减小,电子将最终逐渐接近 原子核,而使原子变得不稳定。

原子结构与玻尔理论

原子结构与玻尔理论

原子结构与玻尔理论原子结构和玻尔理论是物理学中两个重要的概念。

本文将详细讨论原子结构的组成和玻尔理论的发展,以及它们对理解原子性质的重要性。

一、原子结构的组成原子结构的组成包括原子的核和电子。

原子核位于原子的中心,由质子和中子组成。

质子带正电荷,中子不带电。

电子围绕着原子核运动,带负电荷。

原子的质量主要由质子和中子决定,而原子的电性质主要由电子决定。

在原子结构中,质子和中子的质量几乎集中在原子核,而电子的质量很小,可以忽略不计。

二、玻尔理论的发展玻尔理论是尼尔斯·玻尔于1913年提出的一种描述原子结构的理论。

根据玻尔理论,电子在原子中绕着核运动的轨道是离散的,每个轨道对应着一个特定的能量水平。

当电子从一个能量较高的轨道跃迁到一个能量较低的轨道时,会辐射出特定频率的光,这对应着光谱现象。

根据玻尔理论,原子的能级分为不同的壳层,以字母K、L、M等表示。

每个壳层又分为不同的轨道,以数字1、2、3等表示。

电子在壳层和轨道之间的跃迁满足一定的能量守恒条件。

玻尔理论的提出为解释光谱现象以及化学反应等提供了重要的依据。

三、原子结构与化学性质的关系原子结构决定了原子的化学性质。

在化学反应中,原子通过电子的转移或共享来形成各种化学键,从而形成分子或离子。

不同元素的原子由于电子结构的差异,具有不同的化学性质。

以氢原子为例,它由一个质子和一个电子组成。

氢原子的电子只位于一个轨道上,即第1能级。

由于氢原子的电子结构简单,使其具有较大的活泼性和较强的还原性。

在多电子原子中,电子之间的相互作用会导致能级的分裂和重组,使原子具备更多的化学性质。

原子的化学性质主要通过其电子配置来确定。

电子的分布决定了元素的周期性特征,如周期表中的元素周期性。

四、原子结构的研究方法研究原子结构的方法主要有光谱分析和电子显微镜等。

光谱分析是通过观察原子发射、吸收或散射特定频率的光来研究原子结构。

不同元素的原子具有不同的能级结构,因此会发射或吸收特定频率的光,形成特征性的光谱线。

原子结构玻尔模型的介绍

原子结构玻尔模型的介绍

原子结构玻尔模型的介绍原子结构是物质世界的基础,对于理解原子的组成和性质具有重要意义。

玻尔模型是对原子结构的一个简化描述,它通过引入能级和电子轨道的概念,解释了电子在原子内部运动的方式。

一、玻尔模型的提出1920年,丹麦物理学家尼尔斯·玻尔提出了他的原子结构模型,也被称为玻尔模型或波尔模型。

他基于当时最新的实验结果和量子理论的发展,提出了一种描述原子结构的简化模型。

玻尔模型的核心思想是:电子围绕原子核运动,在一系列离散的能级上,跳跃着不同的电子轨道。

二、玻尔模型的假设玻尔模型所基于的几个假设是:1. 电子在原子内部运动的能级是量子化的,即只能取离散的特定数值。

2. 电子只能在特定的电子轨道上运动,每个电子轨道对应一个特定的能级。

3. 电子在电子轨道上的运动是稳定的,不会发出或吸收能量。

4. 电子在电子轨道上的运动速度足够高,以至于电子轨道被看作是一个连续的环。

以上假设虽然在某些情况下存在局限性,但它为理解原子结构的基本特征和性质提供了一个起点。

三、玻尔模型的基本原理根据玻尔模型,原子结构包括了原子核和电子轨道。

原子核位于原子的中心,带有正电荷,质量远大于电子。

电子以高速围绕原子核运动,并通过跳跃不同的电子轨道来保持稳定。

玻尔模型将原子结构分为了不同的能级,每个能级对应一个电子轨道。

能级的编号由1开始,越往外编号越大,能级之间的能量差距逐渐增大。

根据电子在不同能级之间的跃迁,原子会吸收或释放特定频率的光子。

当电子从低能级跃迁到高能级时,原子吸收能量,并发射辐射出特定波长的光。

反之,当电子从高能级跃迁到低能级时,原子放出能量,并吸收特定波长的光。

四、玻尔模型的应用和局限性玻尔模型的提出对原子结构的理解产生了重大影响。

它为后续的原子理论奠定了基础,并为解释原子光谱等现象提供了重要线索。

然而,玻尔模型也存在一些局限性。

首先,它只适用于轻原子,对于重原子来说,电子轨道变得复杂,无法用简单的几个能级来描述。

第5讲 氢原子的玻尔理论玻尔兹曼分布原子状态的标记PPT课件

第5讲 氢原子的玻尔理论玻尔兹曼分布原子状态的标记PPT课件

原子电子组态的标记实例
例1:C原子基态
电子组态:
1s22s22p2
1:主量子数n s:角动量量子数l=0 2:该轨道中电子的个数
对应的电子排列为:
1 s 2 s 2 p1 2 p 0 2 p 1
5.3 原子状态的标记方法
例2:C原子激发态
电子组态:
1s2 2s2 p3
对应的电子排列为:
1 s 2 s 2 p1 2 p 0 2 p 1
3 .0 8 1 0 1 5H z
光子的能量只有等于能级差时,才能被吸收。
5.2 Boltzmann分布
什么是Boltzmann分布
Ni gieEi kBT
5.2 Boltzmann分布
N2 N1
g2 g1
expE2kBTE1
5.2 Boltzmann分布
例2 :
5.2 Boltzmann分布
Z2R
1 m2
1 n2
5.1 氢原子的玻尔理论
5.1 氢原子的玻尔理论
氢原子的电子轨道示意图
n 5
4 3 21
赖曼系 巴尔末系
帕邢系 布拉开系
氢原子的能级示意图
n
E/eV
∞--------------普-丰-特系-
5 4 3
布喇开系 帕邢系
0
-0.54 -0.85
-1.51
巴耳末系
激 发

解:
依据Boltzmann分布律,
n2 n1
N2 N1
g2 g1
expE2 expE1
kBT kBT
gg1 2exp(E1E2) kBT
(1) E 2 E 1 h 2 1 0 2 4 J ,n2 n10.9995

122原子结构玻尔理论

122原子结构玻尔理论

122原子结构玻尔理论玻尔理论是向量量子力学的第一个独立建立的基本理论,它对氢原子的谱线结构作了第一个解释。

原子是一个由带电粒子构成的微观系统,它的基本结构可以通过多种理论进行描述。

在玻尔理论中,原子被认为是由电子和质子组成的。

质子位于原子核中,具有正电荷,质量较大;电子绕着原子核运动,具有负电荷,质量较小。

玻尔在1913年提出的原子结构模型是基于下面几个假设:1)电子在绕原子核旋转时会发生辐射,失去能量,最终坠入原子核;2)只有当电子的能量量子化为离散的值时,它才能保持在稳定的轨道上运动。

基于这些假设,玻尔得出了一系列重要的结果。

根据玻尔理论,电子在绕核运动时,只能占据特定能量的轨道,称为能级。

能级分为基态和激发态,基态对应最低的能量,激发态对应较高的能量。

每个轨道可以容纳一定数量的电子,但是每个轨道内的电子必须具有不同的量子数。

为了描述轨道内电子具体状态,玻尔引入了量子数。

主量子数(n)表示电子所处的能级,角量子数(l)表示电子所处的轨道形状,磁量子数(m)表示电子运动的方向。

玻尔理论还给出了氢原子的能级公式。

根据该公式,氢原子的能级E和主量子数n有关,能级越高,对应的n值越大。

能级之间的差值是离散的,而且当n增大时,能级之间的差值也会变得越来越小。

除了能级和能级间的能量差异,玻尔理论还解释了氢原子谱线的出现。

根据玻尔理论,当氢原子由激发态回到基态时,电子会释放出一定的能量。

这些能量以光的形式辐射出来,对应特定的波长和频率。

根据玻尔的公式,可以计算出氢原子谱线对应的波长或频率。

尽管玻尔理论成功解释了氢原子的谱线结构,但是对其他多电子原子体系的解释效果较差。

这是因为玻尔理论忽略了电子之间的相互作用。

为了解释多电子原子的结构和性质,后来发展出来了更精确的量子力学理论。

总结来说,玻尔理论是原子结构的一个重要里程碑。

它通过引入能级和量子数的概念,成功解释了氢原子的能级结构和谱线现象。

同时,玻尔理论也为后来的量子力学提供了重要的启示,促进了对原子结构的更深入研究。

第二章 第4节 玻尔的原子模型 能级

第二章  第4节  玻尔的原子模型 能级

第4节玻尔的原子模型__能级一、玻尔的原子结构理论(1)电子围绕原子核运动的轨道不是任意的,而是一系列分立的、特定的轨道,当电子在这些轨道上运动时,原子是稳定的,不向外辐射能量,也不吸收能量,这些状态称为定态。

(2)当原子中的电子从一定态跃迁到另一定态时,才发射或吸收一个光子,其光子的能量hν=E n-E m,其中E n、E m分别是原子的高能级和低能级。

(3)以上两点说明玻尔的原子结构模型主要是指轨道量子化和能量量子化。

[特别提醒]“跃迁”可以理解为电子从一种能量状态到另一种能量状态的瞬间过渡。

二、用玻尔的原子结构理论解释氢光谱1.玻尔的氢原子能级公式E n=E1n2(n=1,2,3,…),其中E1=-13.6 eV,称基态。

2.玻尔的氢原子中电子轨道半径公式r n=n2r1(n=1,2,3,…),其中r1=0.53×10-10 m。

3.玻尔理论对氢光谱解释按照玻尔理论,从理论上求出里德伯常量R H的值,且与实验符合得很好。

同样,玻尔理论也很好地解释甚至预言了氢原子的其他谱线系。

三、玻尔原子结构理论的意义1.玻尔理论的成功之处第一次将量子观念引入原子领域,提出了定态和跃迁的概念,成功地解释了氢原子光谱的实验规律。

2.玻尔理论的局限性不能说明谱线的强度和偏振情况;不能解释有两个以上电子的原子的复杂光谱。

1.判断:(1)玻尔的原子结构假说认为电子的轨道是量子化的。

()(2)电子吸收某种频率条件的光子时会从较低的能量态跃迁到较高的能量态。

()(3)电子能吸收任意频率的光子发生跃迁。

()(4)玻尔理论只能解释氢光谱的巴尔末系。

()答案:(1)√(2)√(3)×(4)×2.思考:卢瑟福的原子模型与玻尔的原子模型有哪些相同点和不同点?提示:(1)相同点:①原子有带正电的核,原子质量几乎全部集中在核上。

②带负电的电子在核外运转。

(2)不同点:卢瑟福模型:库仑力提供向心力,r的取值是连续的。

原子的能级结构

原子的能级结构
B.从n=4能级跃迁到n=1能级放出的光子波长 最长
C.从n=4能级跃迁到n=1能级放出的光子频率 最大
D.从n=4能级跃迁到n=3能级放出的光子波长 等于从n=2能级跃迁到n=1能级放出的光子波长
7.如图所示为氢原子的能级图,现让一束单色 光照射到大量处于基态(量子数n=1)的氢原 子上,受激的氢原子能自发地发出3种不同频 率的光,则照射氢原子的单色光的光子能量
C.氢原子光谱说明氢原子能级是分立的
D.氢原子光谱的频率与氢原子能级的能量 差无关
4.用光子能量为E的单色光照射容器中处于
基态的氢原子。停止照射后,发现该容器内
的氢能够释放出三种不同频率的光子,它们
的频率由低到高依次为ν1、ν2、ν3,由此 可知,开始用来照射容器的单色光的光子能
量可以表示为
A. hν1;
在解决核外电子的运动时 成功引入了量子化的观念
同时又应用了“粒子、 轨道”等经典概念和 有关牛顿力学规律
除了氢原子光谱外,在解决其他 问题上遇到了很大的困难.
氦原子光谱
牛顿力学只适用于低速运动(相对于光速) 的宏观物体,对于微观粒子的运动,牛顿
力学不适用了。
二.氢原子的能级:
1.氢原子可能的轨道:
B. hν3;
C. h(ν1+ν2); D. h(ν1+ν2+ν3)
答案:BC
5.在氢原子光谱中,电子从较高能级跃迁到n =2能级发出的谱线属于巴耳末线系.若一群 氢原子自发跃过时发出的谱线中只有2条属于 巴耳末线系,则这群氢原子自发跃迁时最多 可发生 6 条不同频率的谱线.
6.大量氢原子处于n=4的激发态,当它们向各较 低能级跃迁时,对于多种可能的跃迁,下面说法 中正确的是 ( C) A.最多只能放出4种不同频率的光子
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

En

E1 n2
光频
nk

En
h
Ek
n= 6 n= 5 n= 4
n= 3
n= 2
氢 原 子 能 级 图
-13.6
n= 1
莱曼系 巴耳末系 帕邢系 布拉开系
例:计算处于基态的氢原子的电离能
解:使氢原子电离所需要的能量,就是把氢原子中处于基态(n=1)
的电子移到无穷远处(n)所需要的能量
由氢原子能级公式:

1 2
n2r1H
E

Ek

Ep

2e2
8 0rn
基态能为413.6ev 54.4ev
五. 能级分立的实验验证 -- 夫兰克-赫兹实验
1) 原理 利用电子碰撞基态水银原子 若原子能量是一份一份的(能级) 则电子损失能量也是一份一份的
E2 激发态 E1 基态
2) 物理图像 •若电子动能 EK< E2 - E1
2
(1)、(2n)、 (vr3) 联 立解 出 : n (2 3)m02he43

1 n3
n
n 2

me4
402h3
1 n3
(2)、电子从n态跃迁到(n-1)态所发出光子的频率为
'
c


cR

(n
1 1)2

1
n2


cR
2n n2 (n

k = 1 (n = 2, 3, 4, … ) 谱线系 —— 巴耳末系(1880年)
二、原子的核型结构与经典理论的矛盾
1、连续光谱,根据经典电磁理论,绕核运动的电子所发射的 光谱应是连续的,这与原子的线状光谱的实验事实不符,
2、原子由于辐射的缘故,电子的能量减少,它将沿螺旋线 逐渐接近原子核,最后落在核上,因此按经典理论,卢瑟福的核 型结构就不可能是稳定系统。
为-13.6ev,普朗克恒量h=6.6310-34Js)
解;从+13.6ev到-13.6ev共获得能量13.62(ev)
h 2 13.6ev
2 13.6 1.6 1019 6.56 1015hz
h
例题 按照玻尔理论,移去处于基态的He+中的电子所需能量 为多少?
5 10 15
灯丝
栅极 板极
K
G
P
E
U0 V
A IP
4)实验过程 • 观察电流变化
如果电流下降 说明电子损失能量 • 所以要单调地升电压 观察全过程
中电压在什么值时电流下降(电子损失能量) • 发现电流下降对应的相邻电压值差为4.9V
根据发光的频率条件可知 水银原子的基态和第1激发态的能量差是
E2 E1 4.9eV
解:He+:原子核带电+2e,核外为-e(因为是离子,一个电
子已激发掉)

所以由玻尔理论:

m
v2 r

1
4 0

2e e r2
mvr nh
En


1 n2
4
me4
8 0 2h2



4E1H n2
rn

n2
1 2

0h2 me2

玻尔理论的缺陷 1、只能计算单电子原子系统,如氢原子、类氢离子光谱线, 对其它稍微复杂原子就无能为力,如氦、碱金属元素。 2、没有涉及谱线强度、宽度及偏振性。
3、不能解释精细结构及塞曼效应 精细结构:每一条谱线实际上由相靠很近的若干条谱线所组成
塞曼效应:谱线在匀强磁场中会发生分裂的现象
原因: 以经典理论为基础,但又生硬地加上与经典理论不相容 的若干重要假设,如定态不辐射和量子化条件等,不是一个完善的 理论,
E电离

E

E1

0


me4
8 2h2


2.17 1018 J

2.17 1018 1.6 1019
13.6ev
四、氢原子光谱的解释
1、里德伯公式德推导
~nk
1
nk
nk
c
波数(波长的倒数)

1 hc
(
En

Ek )

E1 hc
(
1 k2

1 n2
解:使氢原子电离所需要的能量,就是把氢原子中处于基态(n=1)
的电子移到无穷远处(n)所需要的能量
由氢原子能级公式:
E电离

E

E1

0


me4
8 2h2


2.17 1018 J

2.17 1018 1.6 1019
13.6ev
En ( eV) 0
-1.51 -3.39
玻尔的贡献:
1. 玻尔的理论第一次使光谱实验得到了理论上的说明,成 功地揭开了“巴耳末公式之迷”
2. 第一次指出经典理论不能完全适用于原子内部运动过程, 首次打开了人们认识原子结构的大门
3. 定态和频率假设在原子结构和分子结构的现代理论中仍 是重要概念
4. 为量子力学的建立奠定了基础 。 但他的理论是半经典 的,现代理论仍保留了“轨道”定态、能级、能级跃迁 等概念
r2=4r1
r2=9r1
定态能量
认为:氢原子的能量=电子的动能+电势能
在量子数为n的定态
Ek

1 2
mvn
2

Fe

1
4 0
e2 r2

m v2 r
1
4 0
e2 rn2
m v2 rn
mv2 e2
4 0rn
Ek

e2
8 0rn
设电子在无穷远处的静电势能为零,则
E

Ek
1 1)2

me4
802h3

2n n2 (n

1 1)2
(3)、当n很大时,上式变为:
'
me4
8 02h 3
2 1

n(n
n 1)2

me4
402h2

1 n3
n
例题 当一个质子俘获一个动能Ek=13.6ev的自由电子组成一个基 态氢原子时,所发出的单色光频率是多少? (基态氢原子的能量
例题 根据玻尔理论
(1)、计算氢原子中电子在量子数为n的轨道上作圆周运动的频率; (2)、计算当该电子跃迁到(n-1)的轨道上时所发出的光子的频率; (3)、证明当n很大时,上述(1)和(2)结果近似相等。
解:(1)
e2
4 0r2

m v2 r
( 1)
mvr n h ( 2)
三. 玻尔氢原子理论
1913年玻尔在卢瑟福的核型结构的基础上,把量子概念应用 于原子系统,提出三个基本假设,使氢光谱规律获得很好的解释。
1. 定态假设Leabharlann 稳 • 电子作圆周运动定 状
• 不辐射电磁波
态 • 这些定态的能量不连续
2. 跃迁假设
原子从一个定态跃迁到另一定态, Ek
会发射或吸收一个光子,频率
)

RH理论
(
1 k2

1 n2
)
与氢光谱得经验公式是一致的,比较可得里德伯常数得理论值为:
RH理论 1.097 3731107 m1
当时实验测得 RH实验 1.096 775 8 107 m1
2. 玻尔理论成功说明了氢原子和类氢离子(核外只有一个电 子的原子体系,如He+,Li2+……等)的光谱结构,表明这个理 论在一定程度上能正确地反映单电子原子系统的客观实际。

Ep

e2
8 0rn

e2
4 0rn
e2
8 0rn
Ep


1 n2
e2
4 0rn
e2
8 0r1


1 n2

me4
802h2


E1 n2
n
1,E1

me4
802h2

13.6ev 基态能级的能量
可见原子系统的能量是不连续的,即能量量子化,这种量子化 的能量值称为能级。
v
| Ek En |
En
h
3. 角动量量子化假设
轨道角动量 L mvr n h 2π
r
v
向心力是库仑力
mv 2 r

1
4π 0
e2 r2
由上两式得, 第 n 个定态的轨道半径为
rn n2 (πm0he22 ) n2r1 n 1,2,3,
玻尔半径 r1 0.0529 nm
n=1,E1=-13.6ev, n=2,3,4……En>E1
氢原子的最低能级,即基态能级原子最稳定 受基态,随n的增大,En也增大,能量间隔 减小
n,rn,En0
能级趋于连续,原子趋于电离,电子脱离核 束缚称为自由电子
E>0
原子处于电离状态,能量可连续变化
电离能:使原子或分子电离所需的能量称为电离能。 例:计算处于基态的氢原子的电离能
第一节 玻尔理论
一. 实验规律
氢 放 电 管
光 2~3 kV

光阑
三棱镜 (或光栅)
全息干板
记录氢原子光谱原理示意图
氢原子的巴耳末线系照片 (1) 分立线状光谱
(2)谱线的波数可表示为
~

1


RH
(
1 k2
相关文档
最新文档