高分子水凝胶简介

合集下载

高分子凝胶

高分子凝胶

高分子凝胶的应用
常规做法是:将药物包埋在水凝胶或由其制成的微胶 囊中 ,包埋药物的释放速度可经由凝胶体积的调控 来实现。 随着科学的发展、技术的进步,人们对疾病的治疗 效果和手段的要求也越来越高。就药物控释系统来 说,提高药效、简化用药方式一直是人们努力的方 向。智能性高分子凝胶具有其刺激响应性能,可以 很好地满足定位释放、对疾病刺激产生响应性释放 及人为进行某种目的释放,这对药物控释系统的研 究和应用具有重要的推动作用,将成为控释系统的 主要研究方向。
高分子凝胶的定义
• 高分子凝胶的三维网 络结构示意图
• 高分子凝胶的交联网 络点,可以是化学 的、由共价键组成, 也可以是物理交联, 如结晶等。
高分子凝胶的分类
根据高分子网络里所含的溶剂分类: 水凝胶
高分子凝胶
有机凝胶பைடு நூலகம்
高分子凝胶的分类
水凝胶是最常见也是最为重要的一种。 绝大多数的生物、植物内存在的天然凝胶以 及许多合成高分子凝胶均属于水凝胶。而且 生物凝胶具有出色的智能性和高强度。智能 型水凝胶(intelligent Hydrogels or smart Hydrogels)是一类对外界刺激能产生敏感响 应的水凝胶。
高分子凝胶的应用
基于智能型水凝胶的可控溶胀收缩 , 人们制作了一种 温控化学阀 , 将丙烯酰脯氨酸甲酯 与双烯丙基碳酸 二甘醇酯 按 6∶4 摩尔比共聚 ,得到聚合物膜 ,然后 将此膜在NaOH 溶液中用离子束技术蚀刻得到多孔 膜。显微观察发现膜孔道在 0 ℃时完全关闭 ,30 ℃ 时完全开放。将丙烯酸与丙烯酸正硬酯酰醇酯共聚 得到了一种具有形状记忆功能的温敏水凝胶。这种 材料的形状记忆本质在于长链硬脂酰侧链的有序、 无序可逆变化。基于这种材料他们设计制作了另一 种温控化学阀。施加电场时 ,膜孔径增大 ,撤去电场 后 ,膜重新溶胀 ,由此可以控制膜的开、关或孔径大 小。

水凝胶形成原理

水凝胶形成原理

水凝胶形成原理
水凝胶是一种高分子材料,具有吸水性、保水性、稳定性等特点,广泛应用于医疗、化妆品、农业、环保等领域。

水凝胶的形成原理是什么呢?
水凝胶的形成主要是通过高分子材料与水分子之间的相互作用力实现的。

高分子材料通常是由一些具有亲水性的单体组成的,这些单体在水中可以形成聚合物链,从而形成水凝胶。

水凝胶的形成过程可以分为两个阶段:吸水和凝胶。

在吸水阶段,水分子通过与高分子材料的亲水基团相互作用,进入高分子材料的内部,使其膨胀。

在凝胶阶段,高分子材料的聚合物链之间形成交联结构,从而形成凝胶。

水凝胶的形成与高分子材料的结构有关。

一般来说,高分子材料的结构越复杂,其形成的水凝胶的性能越好。

例如,聚丙烯酰胺是一种常用的水凝胶材料,其结构中含有大量的酰胺基团,这些基团可以与水分子形成氢键,从而实现吸水和凝胶。

除了高分子材料的结构外,水凝胶的形成还与环境条件有关。

例如,温度、pH值、离子浓度等因素都会影响水凝胶的形成和性能。

在不同的环境条件下,高分子材料与水分子之间的相互作用力也会发生变化,从而影响水凝胶的形成和性能。

水凝胶的形成是一种复杂的过程,涉及到高分子材料的结构、环境条件等多个因素。

了解水凝胶的形成原理,可以为其在不同领域的应用提供理论基础和技术支持。

高分子水凝胶

高分子水凝胶

高分子水凝胶凝胶是指溶胀的三维网状结构高分子。

即聚合物分子间相互连结,形成空间网状结构,而在网状结构的孔隙中又填充了液体介质。

药用的凝胶大部分是水凝胶(hydrogel),它们通过制剂的形式进入体内后吸收体液自发形成。

水凝胶是指一种在水中能显著溶胀、保持大量水分的亲水性凝胶,为三维网络结构,多数水凝胶网络中可容纳高分子本身重量的数倍至数百倍的水,它不同于疏水性的高分子网络如聚乳酸和聚乙醇酸(只有有限的吸水能力,吸水量不到10%)。

水凝胶中的水有两种存在状态。

靠近网络的水与网络有很强的作用力,这种水在极低温度下又有冻结的和不冻结之分,而离网络比较远的水与普通水性质相似称为自由水。

影响水凝胶形成的主要因素有浓度、温度和电解质。

每种高分子溶液都有一个形成凝胶的最小浓度,小于这个浓度则不能形成凝胶,大于这个浓度可加速凝胶。

对温度来说,温度低,有利于凝胶,分子形状愈不对称,可胶凝的浓度越小,但也有些高分子材料加热后胶凝,低温变成溶液。

电解质对胶凝的影响有促进作用也有阻止作用,其中阴离子起主要作用。

水凝胶从来源分类,可分为天然水凝胶和合成水凝胶;从性质来分类,可分为电中性水凝胶和离子型水凝胶,离子型水凝胶又可分为阴离子型、阳离子型和两性电解质型水凝胶。

根据水凝胶对外界刺激应答情况不同,水凝胶又可分为两类:①传统的水凝胶,这类水凝胶对环境的变化,如PH或温度变化不敏感;②环境敏感水凝胶,这类水凝胶对温度或PH 等环境因素的变化所给予的刺激有非常明确和显著的应答。

不同结构、不同化合物的水凝胶具有不同的物理化学性质如溶胀性、触变性、环境敏感性和黏附性等:(一)溶胀性:水凝胶在水中可显著溶胀。

溶胀性是指凝胶吸收液体后自身体积明显增大的现象,这是弹性凝胶的重要特性,凝胶的溶胀可分为两个阶段:第一阶段是溶剂分子钻入凝胶中与大分子相互作用形成溶剂化层,此过程很快,伴有放热效应和体积收缩现象(指凝胶体积的增加比吸收的液体体积小);第二阶段是液体分子的继续渗透,这时凝胶体积大大增加。

水凝胶标准

水凝胶标准

水凝胶标准水凝胶标准如下:1.定义和分类水凝胶是一种由水溶性或亲水性高分子聚合物形成的新型凝胶材料。

它具有良好的生物相容性、高吸水性和一定的机械强度等特点,被广泛应用于医疗、制药、化妆品、个人保健、石油、粘蚊剂、造纸、纺织印染等行业。

根据性质和应用领域,水凝胶可分为物理水凝胶和化学水凝胶两大类。

物理水凝胶是通过物理交联形成的,具有永久性吸水性;化学水凝胶是通过化学反应交联形成的,具有更好的机械强度和稳定性。

2.原材料和制备方法水凝胶的主要原材料包括天然高分子材料(如淀粉、纤维素、胶原蛋白等)和合成高分子材料(如聚乙烯醇、聚丙烯酰胺、聚丙烯酸等)。

制备水凝胶的方法通常包括溶胶-凝胶法、反相乳液法、气凝胶法等。

其中溶胶-凝胶法最为常用,是将聚合物溶液与交联剂混合,然后通过物理或化学作用形成三维网络结构的过程。

3.性能指标水凝胶的性能指标因应用领域而异,但主要包括以下几个方面:力学性能:包括弹性模量、拉伸强度、断裂伸长率等,与水凝胶的使用寿命和使用时的稳定性有关。

化学性能:包括溶胀率、降解性、化学稳定性等,与水凝胶在体内外的化学环境中的反应有关。

物理性能:包括粒度、分布、溶液黏度等,与水凝胶的制备和使用过程中的工艺控制有关。

4.安全性评估水凝胶作为生物医学材料,必须进行安全性评估。

应检测水凝胶中重金属、有害物质、卫生标准等,确保其无毒无害。

此外,还应评估水凝胶在体内外环境中的生物相容性和生物降解性,以确保其不会对人体和环境造成不良影响。

5.生产过程的质量控制生产过程的质量控制是保证水凝胶产品质量的关键。

应严格控制生产环境,确保车间清洁、卫生,同时对原材料进行严格检验,确保其质量和卫生标准。

在生产过程中,应制定合理的工艺流程和操作规程,并对关键工艺参数进行严格控制,以确保产品质量稳定。

成品检验是保证产品质量的重要环节,应对产品的性能指标、安全性评估等方面进行全面检测,确保产品符合相关标准和客户要求。

6.产品的稳定性评估产品的稳定性评估是保证水凝胶产品质量和性能的关键。

高分子水凝胶

高分子水凝胶

v2 , s
v2 , s
10
2
G"
10
1
G'
PNIPA in water 10
0
24
26
28
30
32
o
34
36
38
40
T/ C
Winter’s Criterion
Winter & Chambon
G’ G” n
G’ : storage modulus G” : loss modulus : angular frequency n: relaxation exponent
Other IPNs
From poly(acrylamide), PAAm, and PAAc which form hydrogen bonds at low temperature
PAAc O H HN PAAm O H O
n
n
Katono, H.; Maruyama, A.; Sanui, K.; Ogata, N.; Okano, T.; Sakurai, Y. J. Controlled 15 Release, 1991, 16, 215
Ion cooperation
Coil-helix transition
Phase separation
Complex
Reversible, time-dependent
钙离子与海藻酸的交联模型
Ca2+ selectively chelated by G units
more Ca2+ required


合成水凝胶:生物相容性较差,但合成聚合物水凝胶的

水凝胶的制备原理

水凝胶的制备原理

水凝胶的制备原理
水凝胶是一种高分子材料,具有吸水性、稳定性和生物相容性等特点,广泛应用于医疗、环保等领域。

水凝胶的制备原理主要包括以下几个步骤:
1. 选择适当的高分子材料,如聚丙烯酸(polyacrylic acid)或聚丙烯酰胺(polyacrylamide)等。

2. 在高分子材料中加入交联剂,如甲醛、硼酸等,通过化学反应将高分子链相互交联,形成三维网络结构。

3. 在水中将交联后的高分子材料均匀分散,形成一种稠密的胶体溶液。

4. 通过冷冻干燥、喷雾干燥等方法将胶体溶液中的水分去除,形成干凝胶。

5. 在使用前将干凝胶浸泡在水中,使其重新吸水膨胀,形成水凝胶。

以上是水凝胶的制备原理,其中关键步骤是高分子材料的选择和交联剂的加入,不同材料和交联剂的组合可以得到不同性质的水凝胶材料。

- 1 -。

高分子水凝胶简介

高分子水凝胶简介

日用品
应用
工业用品
农业、土建
生物医学领 域
日用品
• 水凝胶作为一种高吸水性材料 ,广泛地 应用于香料载体以及纸巾等方面 ,用量 不大 ,价格能为消费者接受 ,目前用在 该领域的材料主要是交联的聚丙烯酸盐及 淀粉-丙烯酸接枝聚合物。
• 水凝胶可用于油水分离、废水处理、空气 过滤、电线包裹材料、防静电、密封材料、
聚合物交联
• 从聚合物出发制备水凝胶有物理交联和化学交 联两种。
• 物理交联通过物理作用力如静电作用、离子相 互作用、氢键、链的缠绕等形成。
• 化学交联是在聚合物水溶液中添加交联剂 ,如 在PVA 水溶液中加入戊二醛可发生醇醛缩合反 应从而使 PVA 交联成网络聚合物水凝胶。
• 从聚合物出发合成水凝胶的最好方法是辐射交 联法 ,所谓辐射交联是指辐照聚合物使主链线 性分子之间通过化学键相连接。
力学性能
水凝胶不仅要求具有良好的溶胀性能 ,而且 应大具多有数理水想凝的胶力在学溶强胀度状态,以下满呈足橡实胶际态的,需当要水。 凝胶处于橡胶态时 ,它的力学行为主要依赖 于聚合物网络结构 ,在足够低的温度下 , 这些凝胶失去橡胶弹性而表现为粘弹性。
力研性学究及水粘性凝弹能胶性力理学论性,能橡必胶须弹很性好及地粘掌弹握性橡理胶论弹基
性质
溶 胀 收 缩 行 为
吸水溶胀是水凝胶的一个重要特征。
在溶胀过程中 ,一方面水溶剂力图渗 入高聚物内使其体积膨胀,另一方面由 于交联聚合物体积膨胀 ,导致网络分子 链向三维空间伸展 ,分子网络受到应 力当产这生两弹种性相收反缩的能倾而向使相分互子抗网衡络时收,缩达。 到了溶胀平衡 , 可见凝胶的体积之所 以溶胀或收缩是由于凝胶内部的溶液与 其周围的溶液之间存在着渗透压 。 水凝胶的溶胀收缩行为通常用凝胶溶胀 前后的质量百分比表示 ,对于膜的溶胀 也常用膜面积的变化表示。

光响应高分子水凝胶材料

光响应高分子水凝胶材料

感光基团 引人的感光基团种类很多,主要有:光二聚型感光基团 (如肉桂酸醋基)、重氮或叠氮感光基团(如邻偶氮醒磺 酸基)、丙烯酸醋基团以及其他具有特种功能的感光基 团(如具有光色性、光催化性和光导电性基团等)。
பைடு நூலகம்
4.光响应高分子水凝胶的制备
将所合成的丙烯酸酯偶氮苯(AZO-n)、HEMA、PEGDA600 和 MBAA 按一定比例混合(丙烯酸酯偶氮苯:甲基丙 烯酸羟乙酯:PEGDA600:N,N-亚甲基双丙烯酰胺 =0.02~0.1g:0.7g:0.2g:0.1g) ,制备的 5 种丙 烯酸酯偶氮苯含量不同的水凝胶。
将冻干后的水凝胶浸到 50ml 浓度为 2*10-2mol/L 的利巴韦林溶液 中,静置24h,使水凝胶达到最大溶胀,取出水凝胶,用滤纸吸干表 面的溶液,将其放入去离子水中算出每克凝胶所释放的药物量。
(1)含 AZO-6 的水凝胶在光照后的药物释放量略微增 加。偶氮苯基的异构化反应对释放的阻力影响不大。
AZO-6
AZO-8
聚乙二醇二丙烯酸酯(600) 甲基丙烯酸羟乙酯(HEMA)
N,N-亚甲基双丙烯酰胺
聚合物结构特点
(1)聚合物结构复杂交联程度很高 (2)AZO-6和AZO-8 含亲水的羟基和磺酸基 (3)侧脸上含有偶氮基团
在达到溶胀平衡后,再用 320-390nm 的紫外光光照, 我们发现凝胶的溶胀度会 随时间增加而减少。但减 少的不是很明显,大约减 少 5%左右。
(2)在无光照条件下,随着 AZO-8 在水凝胶中组分含 量的增加,而使利巴韦林的释放量减少,说明磺酸根的 增加使药物释放量减少,即磺酸根与药物的氢键作用使 得释放的阻力增加。 在光照的条件下,含 AZO-8 的水凝胶的释放量不 随磺酸基的增加而改变,且明显比无光照时多。 光照使得偶氮苯基团发生异构化反应,改变了基团 的分子构型,顺式偶氮苯的磺酸根被偶氮苯的两个苯环 包围,因为氢键的空间指向性和苯环的空间位阻,使得 磺酸根很难与药物形成氢键结合,从而使得释放的阻力 降低。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
水凝胶的简介
ቤተ መጻሕፍቲ ባይዱ
目录
定义
性质
分类
宏观凝胶与微观 凝胶 (微球) 之 分,形状的不同 宏观凝胶又可分 为柱状、多孔海 绵状、纤维状、 膜状、球状等 , 目前制备的微球 有微米级及纳米 级之分
传统的水凝胶和环境敏 感的水凝胶 。传统的水 凝胶对环境的变化如温 度或 pH 等的变化不敏 感 ,而环境敏感的水凝 胶是指自身能感知外界 环境 (如温度、pH、光、 电、压力等) 微小的变 化或刺激 ,并能产生相 应的物理结构和化学性 质变化甚至突变的一类 高分子凝胶。
研究前景
制备
应用
有一些两组分或多组分 的补齿材料含有 HEMA 或其他亲水型聚合物 , 这些材料被放在颚槽或 牙根部的孔内聚合或交 联 ,在大多数情况下 , 这些反应由 UV 引发。
水凝胶固定化的生物分子和细胞在分析、 医学诊断等方面有着广泛的应用。 生物分 子和细胞可以固定在水凝胶小球的表面或 其内部 ,然后装填柱子 ,这样的柱子可 以用于分离混合物中的特殊生物分子。 生 物传感器是表面固定了生物分子或细胞的 电化学传感器 ,生物分子一般固定在与生 物传感器物理元件相连的水凝胶表面或其 内部。 水凝胶膜是连接生物分子和物理元 件的枢纽 ,因此很重要 。
合成高分子水凝 胶和天然高分子 水凝胶。天然高 分子优点具有更 好的生物相容性、 对环境的敏感性 以及丰富的来源、 低廉的价格 , 但缺点是天然高 分子材料稳定性 较差 ,易降解
分为物理凝胶和化学凝 胶。物理凝胶是通过物 理作用力如静电作用、 氢键、链的缠绕等形成 的,这种凝胶是非永久 性的,通过加热凝胶可 转变为溶液,所以也被 称为假凝胶或热可逆凝 胶。化学凝胶是由化学 键交联形成的三维网络 聚合物,是永久性的, 又称为真凝胶。
相关文档
最新文档