第三章 3 水对岩石强度的影响
岩体结构面强度特性及地下水影响

岩体结构面强度特性及地下水影响肖桃李;艾明;路亚妮【摘要】结构面强度是岩体重要的力学特征之一,它控制着岩体的强度及变形;通过对结构面强度理论的分析和总结,从理论上验证了压应力状态下节理岩体的2种破坏形式,即结构面的剪切破坏和岩石的剪切破坏;考虑地下水的影响,引入有效应力原理,建立了饱和岩体结构面剪切破坏的强度准则.该准则对于深部岩体强度的研究具有重要的理论意义.【期刊名称】《河北大学学报(自然科学版)》【年(卷),期】2013(033)006【总页数】6页(P572-577)【关键词】岩体结构面;抗剪强度;地下水;强度准则;有效应力原理【作者】肖桃李;艾明;路亚妮【作者单位】长江大学城市建设学院,湖北荆州 434023;武汉理工大学道路桥梁与结构工程重点实验室,湖北武汉430070;长江大学城市建设学院,湖北荆州 434023;武汉理工大学道路桥梁与结构工程重点实验室,湖北武汉430070【正文语种】中文【中图分类】TU45近10年来,随着国民经济的迅猛发展,基本建设的规模日益扩大,基础建设在向空间发展的同时,地下资源的开发和利用也在不断走向深部.越来越多的水利、交通、军事和能源工程都不可避免地建设在含结构面的岩体地区.岩体中包含有从微观、细观到宏观缺陷的各种结构面,大量的研究及实践表明,岩体的失稳与破坏总是伴随着原生结构面的起裂、扩展和贯通,且与原生结构面的裂隙形态、分布形式及地下水因素紧密相关.结构面强度特性的研究是结构面研究领域的重要课题之一,国外Lemaitre[1]、Swoboda[2]和Kyoya[3]等学者把岩体中的结构面看作岩体自身的损伤,用损伤力学的观点、理论和方法获得岩体及结构面的力学特性;国内学者周维恒[4]、李新平[5]等学者亦从损伤断裂角度出发研究结构面岩体取得了丰硕成果;在地下水对结构面岩体影响研究方面,渗流理论与有效应力原理是研究的切入点,国外Witherspoon[6]、Louis[7]和国内朱珍德[8]、翟淑花[9]等学者在这方面进行了深入研究.近几年频发的矿难、围岩塌陷、地质滑坡等灾害性事故,大多与结构面有关,因此,对岩体结构面强度特性进行系统分析与研究具有重要的理论价值及现实指导意义.1 岩体结构面分类岩体结构面的分类方法众多.从工程地质学的角度而言,结构面可以划分为:原生节理、构造节理和次生节理;按地质力学观点,结构面分为:单节理、节理组、节理群、节理带和破坏带;按结构面的充填状态,可以将其划分为:平直无充填的结构面、粗糙起伏无充填的结构面、非贯通断续结构面及有充填的软弱结构面;从地质构造学的角度,结构面又可以分为:压性结构面、张性结构面、扭性结构面、压扭性结构面及张扭性结构面[10];同时,很多学者在进行结构面的实验研究中,对结构面的众多特性进行了简化,而重点探求某一特性对结构面的影响,结构面也被分为了满足研究需要的多种类型,如光滑结构面、规则齿状结构面、硬性结构面、软弱结构面等.2 结构面的抗剪强度特性2.1 结构面的抗剪强度不同地质构造下的结构面实际上是凹凸不平、不规则的,不连续和起伏性是实际结构面的主要特点.2.1.1 平直光滑无充填结构面限于研究手段及理论落后等原因,在研究岩体结构面时,一些专家和学者把其假设为表面平整、规则,充填物单一的理想结构面.该类结构面的抗剪强度主要以结构面的微咬合和胶结作用为主,同时也与结构面表面的岩性及其平直、光滑度相关.其抗剪强度参照人工磨制面的强度计算,即式中,τ为平直光滑无充填结构面的抗剪强度;σ为结构面的法向应力;φj,cj分别为结构面摩擦角与黏聚力.对于光滑面的岩体结构面,日本学者吉中龙之庆和Barton等人的研究表明,湿润时的峰值抗剪强度比干燥时大且发生了剧烈的黏滑;1995年,贺建明选取泥岩和灰岩为岩样,用80#金刚砂对岩样表面进行打磨制作成光滑的结构面,研究结果则正好与日本学者的结论相反[11].2.1.2 规则齿形结构面1966年,Patton[12]引入结构面起伏角i来描述结构面的表面形态,并假设结构面沿齿面滑动时的黏聚力Cb为0,当法向应力较低时,Patton推导出的抗剪强度表达式为式中,φb为齿形结构面的摩擦角;σT为齿形剪断时的临界应力值.当法向应力较高,且超过齿形剪断时的临界应力时,外力所做的功超过剪断齿形所需的功,结构面齿形凸起部分被剪断,此时的结构面抗剪强度可表示为式中,φ为岩体结构面表面的内摩擦角,c为岩体结构面表面的黏聚力.在Patton等人的研究基础上,孙广忠[13]对规则齿形结构面进行了更加深入的研究,把有起伏度的结构面细分为台阶型、锯齿型和波浪型,详细研究了各种结构面的抗剪强度特性及理论推导,获得了较丰富的成果.在规则齿形结构面抗剪性能研究方面,同济大学的沈明荣[14-15]教授进行了比较深入的研究工作,认为规则齿形结构面的抗剪强度参数与爬坡角关系密切,并通过模型实验方法验证了随着爬坡角增加,结构面抗剪强度参数亦逐渐增大.同时,文献[14-15]采用规则齿形结构面的水泥砂浆试件,在不同应力状态下进行常规剪切实验和卸载剪切实验研究,总结出规则齿形结构面的抗剪强度公式:式中,β为结构面的爬坡角;φj0为结构面的基本内摩擦角;kβ,kβ′分别为加载和卸载时结构面的综合内摩擦角修正系数;kc,kc′分别为加载和卸载时结构面的综合黏聚力修正系数.2.1.3 不规则起伏结构面与理想中的规则齿形结构面相反,工程岩体中绝大部分结构面的起伏形态是不规则的,不仅起伏角度和高度不易量测,而且起伏形态也无规律性,该种结构面的特点以随机而离散分布为主.Ladanyi和Archambault[16]自1970年开始,通过在岩体中人工制作大量的粗糙结构面开展剪切实验,对结构面从剪胀到剪断全过程进行了全面分析与研究,获得了如下的抗剪强度公式:式中,αs为结构面剪断率,指被剪断的凸起部分的面积与整个剪切面积的比值;n 为剪胀率,指剪切时的垂直位移与水平位移的比值;τr为凸起体岩石的抗剪强度;φu为结构面的基本摩擦角.Barton[17]对8种不同粗糙起伏的结构面进行了实验研究,提出了剪胀角的概念,并用以代替起伏角,剪胀角定义为剪切时剪切位移的轨迹线与水平线的夹角.Barton通过对大量的实验资料的统计发现,结构面的峰值剪胀角不仅与凸起高度有关,而且与作用于结构面的方向应力σ、结构面的抗剪强度τ及壁岩强度JCS 之间也存在良好的统计关系,在此基础上,Barton推导出结构面抗剪强度公式式中,JRC表示粗糙度系数;JCS表示结构面抗压强度;φu为结构面的基本摩擦角.张林洪[18]通过对岩体进行回弹实验,使用摄影测量方法进行结构面粗糙度测量,建立了一套用回弹试验、摄影测量及由实验结果建立的公式确定结构面抗剪强度的方法:式中,N为结构面面壁上的回弹值;SF为面壁的形貌参数;Rn为结构面面壁单轴抗压强度平均值.2008年,童志怡,陈从新等[19]尝试引入摩擦学中的黏着磨擦理论对结构面的摩擦过程进行分析,根据结构面剪切过程中实际接触面积的变化规律,建立了结构面抗剪强度选取的新方法:式中,Ar为直剪过程中结构面的实际接触面积;s为实际剪切位移量.2.2 结构面的强度准则大量研究表明,均质岩体内岩体破坏面与主应力面总是成一定的角度关系.当剪切受力时,破裂面总是与大主应力面法线方向成α=45°+φ/2夹角;当受拉伸应力时,破裂面就是主应力面.而一旦岩体中存在软弱结构面,剪切受力时,其破裂面可能是α=45°+φ/2的面,但绝大多数情况下,破裂面就是软弱结构面,即破裂面与主应力的夹角就是软弱结构面与主应力的夹角.图1为含结构面岩体受力图,σ1、σ3为岩体所处的应力状态,结构面方向与σ1面的夹角为β.根据该处岩体的应力状态绘制的应力圆和强度包络线如图2所示,图2中CD为岩体的强度包络线(c和φ分别为岩体的黏聚力和内摩擦角),AB为软弱结构面的强度包络线(cj和φj分别为结构面的黏聚力和内摩擦角),M点为软弱结构面的应力状态点,根据莫尔-库伦准则,如果M点位于AB之间,说明岩体结构面剪切应力大于结构面的抗剪强度,结构面以滑动破坏为主;如果M位于AB下方,说明岩体结构面的剪应力小于结构面的抗剪强度,结构面是稳定的.因此,岩体是否沿结构面滑动破坏的判定条件与角度β1和β2相关.图1 受力的岩体单元Fig.1 Rockmass unit under loads图2 结构面的应力状态Fig.2 Stress condition of structural surface设则式(10),(11)给出了角度β1和β2的计算式,如前分析,当结构面倾角β1<β<β2,岩体破坏特征为沿结构面的剪切破坏;当β<β1或β<β2时,则岩体的破坏特征与结构面的存在无关,属于岩体自身的剪切破坏;当β等于β1或β2,岩体的破坏介于沿结构面破坏或岩体自身破坏的临界状态.3 地下水对结构面强度的影响水对岩体的影响主要包括2个方面:一是水对岩石的软化作用,水的存在使得岩体的力学性能降低,黏聚力和内摩擦角减小;二是水与岩体相互耦合作用下的力学效应,一旦饱和岩石在荷载作用下不易排水或不能排水,则岩体孔隙或裂隙中产生孔隙水压力(图3),相应的岩石颗粒所承受的压力减小,强度降低.根据莫尔-库仑准则,则有图3 理想结构面饱水受力Fig.3 Stress condition of saturated ideal structuralsurface图4 含水结构面与岩体接触关系Fig.4 Contact retation between rockmass and structural surface of water-bearing式中,τn为岩体的抗剪强度;c为岩体的凝聚力;φ为岩体的内摩擦角;σ为结构面上覆岩体作用在结构面上的正应力;p为结构面上的孔隙水压力;σe为作用在结构面上的有效应力.式(3)表明,岩体中结构面由于孔隙水的存在,使有结构面受到的有效应力σe 降低,岩体产生剪切破坏的极限应力τn也降低,因此,岩体沿结构面的剪切滑动破坏更容易发生.图3为理想结构面的饱水受力状态,结构面上下岩体为光滑面,但自然界中的岩体结构面往往是随机而无规律可循的,因此,结构面中孔隙水压的作用仅产生于接触面孔洞部位(图4).事实上,结构面与岩壁的接触面由于孔隙水压力和裂隙水化的双重作用,其力学性质与理想的塑性变形相当[14],因此式中,A0为结构面上、下表面岩体的实际接触面积;σ0为岩体塑性屈服应力;W为结构面上覆岩体的重量;p为结构面内孔隙水压力;A为结构面表面积.变换(13)可得假设结构面与岩体之间的有效接触为弹性接触,其有效接触面积为A0,则作用在结构面上的有效应力σe为令λ=A0/A,则将式(16)代入式(12),得式(17)即为考虑岩体结构面中孔隙水压和水化双重作用影响后的岩体破坏的莫尔-库仑破裂准则.假设结构面与岩体的夹角为θ,则倾斜结构面在自重应力作用下滑动的临界角满足方程将式(17)代入式(19),得上式可以看出,λ越小,表明结构面与岩体的有效接触面积A0越小,则θ越小,说明岩体滑动所需的临界角就越小;对于孔隙水压力p而言,有效应力减小,则有效接触面积A0减小,因此当结构面中存在孔隙水压力时,结构面与岩体的夹角即使较小,也较容易发生剪切滑动破坏.因此,工程岩体中赋存的地下水能加速岩体沿结构面的剪切滑移破坏.4 结论通过对岩体结构面强度理论的分析与总结,可以得出以下结论:1)压应力状态下的节理岩体的破坏分为2种情况,一种是岩体沿着结构面的剪切滑移破坏,另一种是岩体自身的剪切破坏,岩体的破坏形式判断可以用结构面的倾角表示,当β1<β<β2时,岩体沿结构面剪切破坏,当β<β1或β>β2时,则岩体的破坏是岩石的剪切破坏;2)岩体结构面内充填的地下水能够承担及传递压力,因此地下水对岩体结构面强度具有弱化作用;当岩体沿结构面剪切破坏时,地下水的作用能加速剪切破坏的发生.参考文献:[1] LEMAITRE J.How to use damage mechanics[J].Nuclear Engineeringand Design.1984,80:233-245.[2] SWOBODA H,YANG Q.Damage propagation model and its application to rock engineering problem[A].In:Int Cong Rock mechanics proceeding[C].Tokyo:[s.n.],1995:159-163.[3] KAWAMOTO T,ICHILAWA Y,KYOYA T.Deformation and fracturing behavior of discontinuous rock mass and damage mechanics theory [J].Int J Num Analy Geo,1998,12:1-30.[4] 周维恒,杨若琼,吴澎.节理岩体的损伤力学模型[M].中国岩石力学与工程学会教育工作委员会.岩石力学新进展.沈阳:东北工学院出版社,1989.[5] 李新平,朱维申.多裂隙岩体的损伤断裂分析与工程应用[J].岩体工程学报,1992,14(4):1-7.LI Xinping,ZHU Weishen.The damage-fracture analysis of jointed rock mass and its application in engineering[J].Chinese Journal of Geotechnical Engineering,1992,14(4):1-7. [6] WITHERSPOON A.New approaches of fluid flow in fractured rock masses[J].Proc US Symp Rock Mech,1981,22:1-20.[7] WALSH C B.Effect of pore pressure and confining pressure on fracture permeability[J].Int J Rock Mech and Min Sci,1981,18:429-435. [8] 朱珍德,郭海庆.裂隙岩体水力学基础[M].北京:科学出版社,2007. [9] 翟淑花,李文秀,高谦,等.基于遗传规划的岩石流变模型辨识[J].河北大学学报:自然科学版,2008,28(6):578-582.ZHAI Shuhua,LI Wenxiu,GAO Qian,et al.Identification of rheological constitutive model of rock based on genetic programming[J].Journal of Hebei University:Natural Science Edition,2008,28(6):578-582.[10] 韩丛发.煤矿生产中常见的结构面及其力学性质鉴定[J].煤炭技术,2003,22(7):91-92.HAN Congfa.The familiar parting plane in mine production and the determination of its mechanic property[J].Coal Technology,2003,22(7):91-92.[11] 贺建民.对光滑结构面所具特性的一些新认识[J].力学与实践,1995,17(2):30-32.HE Jianmin.Some new understanding about the smooth structure surface features[J].Mechanics in Engineering,1995,17(2):30-32.[12] PATTON F D.Multiple modes of shear failure in rock[Z].The Ist Congress of International Society of Rak Mechanics,Lisbon,1966.[13] 孙广忠.岩体结构力学[M].北京:科学出版社,1988.[14] 张清照,沈明荣,张龙波.结构面在卸载条件下的力学研究[J].地下空间与工程学报,2009,5(6):1126-1130.ZHANG Qingzhao,SHEN Mingrong,ZHANG Longbo.Study on the mechanical properties of rock discontinuity under unloading[J].Chinese Journal of underground Space and Engineering,2009(6):1126-1130.[15] 沈明荣,张清照.岩体结构面的剪切试验研究[J].地下空间与工程学报,2010,6(1):38-43.SHEN Mingrong,ZHANG Qingzhao.Study on shearing test of rock mass discontinuity[J].Chinese Journal of Underground Space and Engineering,2010,6(1):38-43.[16] LADANYI B,ARCHAMBULT G.Simulation of shear behavior of ajointed rock mass[C]//SOMERTON W H.Proc 11th Symp on Rock Mechanics.[s.l.]:1970:105-125.[17] BARTON N R.The shear strength of rock and rock joints[J].Int J Rock Mech Min Sci&Geomech Abstr,1976,13:255-279.[18] 张林洪.结构面抗剪强度的一种确定方法[J].岩石力学与工程学报,2001,20(1):114-117.ZHANG Linhong.A determination method of joint shear strength[J].Chinese Journal of Rock Mechanics and Engineering,2001,20(1):114-117.[19] 温诗铸,黄平.摩擦学原理[M].2版.北京:清华大学出版社,2002. [20] 童志怡,陈从新,徐健,等.基于黏着摩擦理论的结构面抗剪强度选取方法[J].岩土工程学报,2008,30(9):1367-1371.TONG Zhiyi,CHEN Congxin,XU Jian,et al.Selection of shear strength of structural plane based on adhesion friction theory[J].Chinese Journal of Geotechnical Engineering,2008,30(9):1367-1371.。
3.4 水对岩石强度的影响

连结作用水楔作用
润滑作用溶蚀及潜蚀作用
孔隙压力作用
有缘学习更多+谓ygd3076或关注桃报:奉献教育(店铺)
结合水
连结作用
润滑作作用
水楔作用
连结作用
岩石矿物颗粒间的连接强度远远高于这种连结作用。
对被土充填的结构面的力学性质的影响也是比较明显。
润滑作用
水楔作用
◆压应力大于吸着力,水分子挤出;
◆压应力低于吸着力,水分子进入。
溶蚀-潜蚀作用
溶蚀作用
潜蚀作用
岩石强度大大降低变形加大。
孔隙水压力作用
◆有效应力减小,降低岩体的抗剪强度;
◆岩石的微裂纹端部处于受拉的状态,破坏岩石的连结。
w
p σσ'=-
饱和多孔岩石的抗剪强度公式随着孔隙水压力的增大,岩石强度降低。
孔隙水压力作用()f w c tg c p tg τσϕσϕ'=+=+-主应力表达式恒为负值
孔隙水压力作用τσσ1σ3σ'3σ'1p w p w 考虑孔隙水压的格里菲斯破坏准则
当σ1+2σ3>4p w 时,
(σ1-σ3)2-8R t (σ1+σ3-2p w )2=0
裂隙方位角β=—arccos ——————12 2 (σ1+σ3-2p w )
σ1-σ3当σ1+2σ3<4p w 时,σ3= -R t +p w
裂隙方位角β=0
◆水对岩石的物理化学作用◆水与岩石相互耦合力学效应。
工程地质复习题

1.岩石的固相质量与固相体积之比值是(B)A.岩石块体密度B.岩石颗粒密度C.比重D.容重2.影响岩石孔隙性的因素有(B)A.比重B.结构C.构造D.外力因素3.岩石浸水后强度降低的性能叫做岩石的(B)A.吸水性B.软化性C.可溶性D.崩解性4.评价岩石抗冻性的指标是(A)A.软化系数B.吸水率C.1.A.2.A.3.A.最好4.A.强度1.A.2.A.3.A.4.A.5.A.1.A.C.2.A.3.A.岩石的风化作用使岩体的结构构造发生变化,即其完整性遭到削弱和破坏B.岩石的风化作用使岩石的矿物成分和化学成分发生变化C.岩石的风化作用岩石的工程地质性质恶化D.岩石的风化作用仅发生在地表4.防止风化的措施主要在于(D)A.减少岩石受力面积B.增加岩石与空气和水的接触面积C.增加岩石的强度D.减少岩石与空气和水的接触1.岩石单轴饱和抗压强度为5以上至30MPa时,被称为(B)A.极硬岩B.硬岩C.软岩D.极软岩≤0.75的称之为软化岩石,那影响岩石软化的因素有:(ABD) 2.软化系数KRA.岩石的矿物组成B.岩体的结构特征C.空隙性D.岩体的构造特征•判断题1.含有高强度矿物的岩石,其强度一定就高.X2.石英的强度比方解石高,砂是由石英组成的,灰岩是由方解石组成的,所以砂的强度比灰度高。
X3.暗色造岩矿物比重一般比浅色矿物比重大,辉长岩比重比花岗岩比重大。
4.就胶结物的成分来说,硅质胶结的强度和稳定性高,泥质胶结的强度和稳定性低,钙质和铁质性质胶结的介于两者之间。
对5.垂直层面的抗压强度小X(大)于平行层面的抗压强度,平行层面的透水性大于垂直层面的透水性。
6.1.A.2.A.3.(D)A.4.A.5.A.6.A.成岩7.A.C.8.A.1. C.2.A.C.3.(D)A.4.在岩体结构类型中,构造变动中等,具中厚层状的沉积岩应属于(B)A.整体块状结构B.层状结构C.碎裂结构D.散体结构5.完全张开的结构面中的常见的充填物质成份中的(C)抗剪强度比较高。
重点蔡美峰《岩石力学与工程》答案

第一章【1】常见岩石的结构连结类型有那几种?答:岩石中结构连结的类型主要有两种:1.结晶连结:岩石中矿物颗粒通过结晶相互嵌合在一起,如岩浆岩、大部分变质岩以及部分沉积岩的结构连结。
2.胶结连结:指颗粒与颗粒之间通过胶结物质连结在一起的连结。
如沉积碎屑岩、部分粘土岩的结构连结。
【2】何谓岩石中的微结构面,主要指那些,各有什么特点?【3】表示岩石物理性质的主要指标及其表示方式是什么?答:指由岩石固有的物理组成和结构特性所决定的比重、容重、孔隙率、水理性等基本属性。
【4】岩石破坏有几种形式?对各种破坏的原因作解释。
答:试件在单轴压缩载荷作用破坏时,可产生三种破坏形式: (1)X状共轭斜面剪切破坏,破坏面上的剪应力超过了其剪切强度,导致岩石破坏。
(2)单斜面剪切破坏,破坏面上的剪应力超过了其剪切强度,导致岩石破坏。
(3)拉伸破坏,破坏面上的拉应力超过了该面的抗拉强度,导致岩石受拉伸破坏。
【6】什么是全应力-应变曲线?为什么普通材料实验机得不出全应力-应变曲线?答:全应力-应变曲线:能显示岩石在受压破坏过程中的应力、变形特性,特别是破坏后的强度与力学性质的变化规律。
由于材料试验机的刚度小,在试件压缩时,其支柱上存在很大的变形和变形能,在试件快要破坏时,该变形能突然释放,加速试件破坏,从而得不出极限压力后的应力-应变关系曲线。
【7】如何根据全应力-应变曲线预测岩石的岩爆、蠕变和在反复加载、卸载作用下的破坏?答:(a)预测岩爆:左半部分OEC 代表达到峰值强度时,积累在岩石试件中的应变能,右边CED 代表试件从破坏到破坏整个过程所消耗的能量。
如果A>B,可能产生岩爆,如果A<B,则不会产生岩爆。
(b)预测蠕变破坏:如图1-24 。
当岩石应力小于H 点的应力值,岩石不会发生蠕变,当岩石应力大于H 点而小于I 点,岩石会发生蠕变,但蠕变为稳定蠕变,岩石不会破坏,当岩石应力大于I 点,则岩石会发生不稳定蠕变,岩石最终会破坏. (c)预测循环加载条件下岩石的破坏。
岩石力学-影响岩石力学性质的主要因素

KW
1 2
(吸水率系数);
n1 R1 1 为新鲜岩石的孔隙率、抗压强度、吸水率;
n2 R2 2 为风化岩石的孔隙率、抗压强度、吸水率。
利用 K y 分级如下:
K y 0.1 Ky 0.1 ~ 0.35
Ky 0.35 ~ 0.65
Ky 0.65 ~ 0.90
Ky 0.90 ~ 1.00
三、加载速度对岩石力学性质的影响
做单轴压缩试验时施加荷载的速度对岩石的变形性质和 强度指标有明显影响。加载速率愈快,测得的弹性模量愈大; 反之,愈小。
ISRM(国际岩石力学学会)建议的加载速率为0.5~ 1MPa,一般从开始试验直至试件破坏的时间为5~10分钟。
四、围岩对岩石力学性质的影响
侧向压力(围压)对岩石的变形有很大的影响, 由三轴压缩试验可知:岩石的脆性和塑性并非岩石 固有的性质,它与受力状态有关,随着受力状态的 改变,其脆性和塑性是可以相互转化的。
岩石的风化程度可以通过室内岩石物理力学 性质指标评定的方法,也可以用声波及超声波的 方法。
1964年以来,水电部成都勘察设计研究院科 研所提出用岩石风化程度系数( Ky )来评定岩石 的风化程度。
Ky
1 3
(
K
n
KR
Байду номын сангаас
KW
)
(1-46)
式中:
Kn
n1 n2
(孔隙率系数)
KR
R1 R2
(强度系数)
剧风化 强风化 弱风化 微风化 新鲜岩石
用上述分级法与地质上肉眼判断等级进 行对比,大多数是吻合的,所以采用以地质 定性评价为基础,再用定量分级加以补充, 可以消除认为的误差。
岩石力学第3章 岩石的强度

值(τo)
整理ppt
• 如取各线的τ0与相应的法向应力σ,即可点绘 得剩余强度线,它相应于岩石试样发生裂缝 之后的强度线,相当于摩擦试验所得的强度 线。它与纵轴交于坐标原点,表示C=0,此剩 余强度线与横轴的交角φr,即为剩余强度所 对应的内摩擦角;由图可见剩余强度也就是 失去凝聚力而仅有内摩擦力的强度 。
Rc---岩石单轴抗压强度(MPa) P---岩石试件破坏时的荷载(MN) A---试件的横断面面积(m2)
整理ppt
• 表3-1 岩石的单轴抗压强度和抗拉强度 • 影响岩石的抗压强度的因素很多,这些因
素可分为两方面: • 1 岩石本身的因素,如矿物成分、结晶程度
颗粒大小、颗粒联接及胶结情况、密度、 裂隙的特性和方向、风化程度和含水情况 等。 • 2 试验方法上的因素或人为因素,如试件形 状、尺寸、大小,试件加工情况和加荷速 率等 • 各因素的影响见书中P33-34
整理ppt
• 岩石的三种破坏形式
整理ppt
• 试验表明,岩石在破坏前后的应力--应变关系比金 属材料复杂得多,岩石究竟属于脆性材料还是属 于塑性材料,这不仅取决与岩性,且受应力状态, 地温,受荷时间等多种因素的影响。(例:坚硬 岩石一般属于脆性破坏,但在两向或三向受力较 大的情况下,或者在高温的影响下,也可能延性 破坏)
整理ppt
• 2 劈裂法试验:劈裂法是在圆柱体试样的直径方 向上,施加相对的线形荷载使试样沿该直径平面 破坏的试验。试验采用压力机加压,采用直径 D=5cm,厚度l=(0.5-1)D的标准圆柱体,以 0.29MPa/s--0.49MPa/s的加载速率沿某一直径的 两端施加相对的压荷载,加压前须在直径两端设 置垫条,以便压力沿垫条成均布线荷载作用于试 样的厚度l上,逐渐加大压力直到试样沿该直径平 面裂开。
岩石力学性质的影响因素

高硫矿山、自燃矿物 温度高
地下深部研究、核废 料处理研究
一般来说,随着温度 的增高,岩石的延性 加大,屈服点降低, 强度降低。
平洞 小立井内贮存核废料罐
2)温度对岩石力学性质的影响
如图所示即为三种不同岩石在围压为500MPa,温度由25℃ 升高到800℃时应力-应变特征。
温度升高产生延性的原因是由于岩石内部分子的 热运动增强,因此,削弱了它们之间的内聚力, 使晶粒面更容易产生滑移。
1)水对岩石力学性质的影响
结合水:产生三种作用:连结作用、润滑作用、水楔作 用。 连结作用:将矿物颗粒拉近、接紧,起连结作用。 润滑作用:可溶盐溶解,胶体水解,使原有的连结变成 水胶连结,导致矿物颗粒间连结力减弱,摩擦力降低, 水起到润滑剂的作用。 水楔作用:当两个矿物颗粒靠得很近,有水分子补充到 矿物表面时,矿物颗粒利用其表面吸着力将水分子拉到 自己周围,在两个颗粒接触处由于吸着力作用使水分子 向两个矿物颗粒之间的缝隙内挤入。
风化作用程度的评价方法
风化对岩石力学性质的影响可通过对岩石风化程度的评价来进 行。风化程度可通过室内岩石物理力学性质指标评定的方法, 也可能用声波及超声波的方法。
1964年以来,水电部成都勘察设计研究院科研所提出用岩石风
化程度系数(Ky)来评定岩石的风化程度。
Ky =( Kn + Kr + Kw )/3
岩 凝灰岩
砾岩 石英砂岩 泥质砂岩,粉
砂岩 泥岩
页岩 石灰岩 泥灰岩
0.6-0.8 0.57-0.95 0.61-0.74
0.52-0.86 0.50-0.96 0.65-0.97 0.21-0.75
0.40-0.60 0.24-0.74 0.70-0.94 0.44-0.54
3 水对岩石强度的影响

前已述汲水对岩石强度影响:膨胀、崩解、溶解水→岩软化渗透→水压水对岩石强度有影响的是孔隙和裂隙中的水压力,统称为孔隙水压力,用p w表示。
如果饱和岩石在荷载作用下不易排水或不能排水,那么,孔隙或裂隙中的水就有孔隙压力,岩石固体颗粒承受的压力将相应的减少,强度则降低。
对岩石中有连接的孔隙(包括细微裂隙)系统,施加应力σ,当有孔隙水压力p w时,岩石的有效应力为σ—岩石总应力(MPa);σ'—有效应力(MPa);p w——孔隙水压力(MPa)在有孔隙水压力作用时,可利用《岩石破坏准则》来分析岩石的稳定性。
1.莫尔摩伦准则根据莫尔库伦强度理论,考虑有孔隙水压力p w 的作用,其岩石的抗剪强度为:①ϕστtg c f ⋅'+= 或可见,由于p w 的存在,岩石的抗剪强度降低。
②对于用主应力表示的莫尔库伦破坏准则,考虑p w 作用,则有c R N +'='ϕσσ31,式中w p -='11σσ,w p -='33σσ 推出由上式可解得p w ,即岩石从初始作用应力σ1和σ3达到岩石破坏时所需施加的孔隙水压力:亭定(Handin)砂岩实验结果,在p w为零时作一系列的实验,绘莫尔应力圆,得到p w=0时的包络线,即岩石强度曲线。
当施加主应力σ1、σ3时,(p w=0)岩石稳定(莫尔圆II),在此主应力下,增加p w直至破坏(莫尔圆I与包线相切)。
从上面分析可见,p w对岩体强度影响很大。
在实际工程中,特别是坝址区,对某种岩石,当主应力σ1、σ3一定时,水库蓄水后,如果有渗流,则p w 从0增加p w ′,当 w p '-1σ 和w p '-3σ的应力圆与包线相切或相交时,岩体将失稳。
2.格里菲思准则如果把有效应力引入格里菲思破坏准则,用1σ'和3σ'代替原式中的1σ 和3σ ,即 w p -='11σσ,w p -='33σσw p 4331>+σσ时,﹥0,破坏; ﹤0时,稳定工程上应用的《水力劈裂》方法就是以这一理论为基础的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五、水对岩石强度的影响前已述汲水对岩石强度影响:膨胀、崩解、溶解水→岩软化渗透→水压水对岩石强度有影响的是孔隙和裂隙中的水压力,统称为孔隙水压力,用p w表示。
如果饱和岩石在荷载作用下不易排水或不能排水,那么,孔隙或裂隙中的水就有孔隙压力,岩石固体颗粒承受的压力将相应的减少,强度则降低。
对岩石中有连接的孔隙(包括细微裂隙)系统,施加应力σ,当有孔隙水压力p w时,岩石的有效应力为σ—岩石总应力(MPa);σ'—有效应力(MPa);p w——孔隙水压力(MPa)在有孔隙水压力作用时,可利用《岩石破坏准则》来分析岩石的稳定性。
1.莫尔摩伦准则根据莫尔库伦强度理论,考虑有孔隙水压力p w 的作用,其岩石的抗剪强度为:①ϕστtg c f ⋅'+= 或可见,由于p w 的存在,岩石的抗剪强度降低。
②对于用主应力表示的莫尔库伦破坏准则,考虑p w 作用,则有c R N +'='ϕσσ31,式中w p -='11σσ,w p -='33σσ 推出由上式可解得p w,即岩石从初始作用应力σ1和σ3达到岩石破坏时所需施加的孔隙水压力:亭定(Handin结果,在p wp w=0时的包络线,曲线。
当施加主应力σ1、σ3时,(p w =0)岩石稳定(莫尔圆II ),在此主应力下,增加p w 直至破坏(莫尔圆I 与包线相切)。
从上面分析可见,p w 对岩体强度影响很大。
在实际工程中,特别是坝址区,对某种岩石,当主应力σ1、σ3一定时,水库蓄水后,如果有渗流,则p w 从0增加p w ′,当 w p '-1σ 和w p '-3σ的应力圆与包线相切或相交时,岩体将失稳。
2.格里菲思准则如果把有效应力引入格里菲思破坏准则,用1σ'和3σ'代替原式中的1σ 和3σ ,即 w p -='11σσ,w p -='33σσw p 4331>+σσ时, ﹥0,破坏; ﹤0时,稳定工程上应用的《水力劈裂》方法就是以这一理论为基础的。
w t p R +-=3σ增大w p 使w t p R +-≤3σ,就会产生水力壁裂。
如原始主应力03=σ,t R =10MPa 。
则当10≥w p MPa 时,w t p R +-≤3σ 当3σ六、岩体强度分析1、均质岩体强度分析均质岩体主要是:①完整岩体:岩块坚硬,且结构面不发育。
②软岩,结构不起主导作用这种岩体可用:①莫尔库伦准则②霍克和布朗经验破坏准则进行稳定分析。
莫尔库仑准则:有孔隙水压力时:霍克和布朗经验破坏准则左项> 右项,破坏;左项< 右项, 稳定。
m= 0 ~ 25,s=0 ~ 1。
结构面所决定。
大主应力面成245ϕα+= 角,裂面与主应力面平行。
对于有结构面存在时,多数情况下,沿结构面破裂,这时仍可用莫尔库伦强度准则来判定节理面上的稳定情况。
c,jϕ为节理面上的凝聚力和内摩擦角,jσ为节理面上的正应力。
τ为节理面的抗剪强度。
f当节理面上的剪应力τ小于等于τ时,节理面处于稳定和极限f状态:判断节理岩体稳定与否可用图解法和解析法:1)图解法(见图)根据σ1、σ3做应力圆,如果节理面线与节理强度线相交则破坏,反之,即使应力圆已与强度线相交,但节理面的线却不与节理强度线相交,则节理面仍处于稳定状态。
σ12) 解析法根据应力关系式:βσβσβσσσσσ23213131sin cos 2cos 22+=-++=ββσσβσστcos sin )(2sin 23131-=-=代入j j f tg c ϕσττ⋅+=≤中,得到满足此式,表明节理处于稳定或极限平衡状态。
利用上式可对节理岩体的稳定性进行简单的判断。
如,地下洞室、陡立边坡等的节理岩体稳定。
如图所示为高边坡,岩体中节理的倾角为β。
讨论:①j ϕβ<时,0)sin(>-βϕj , 上式左边为正,稳定②j ϕβ=时,0)s i n (=-βϕj ,0c o s ≥j j ϕσ,稳定③j ϕβ>时,0)sin(<-βϕj 。
当j j j y c ϕβϕϕσcos )sin(cos ≤-时,满足稳定要求,反之不稳定④245ϕβ+= 时,即节理面与均质岩体的破裂面一致即在245ϕβ+= 时,节理岩体稳定的条件。
当岩体不稳定时,需要采取有效措施,如锚固、灌浆,对于边坡还可以减少y σ,即减载(减轻上部岩不重量)。
锚杆加固,需设计锚固力的大小,其原理如下:知: 因为x σ=0,j ϕβ>,不稳定时有0cos )sin(cos <+-j j j y c ϕβϕϕσ 为使其大于零,则需加水平应力x σ ,即使得如果锚杆与水平夹角为α 则ασσcos x=' ασππσσcos 4422xd d A p ⋅=⋅'=⋅'='σ′在y 向已有分量,应为(ασσsin '+y )则一般求出x σ后,再增加一个百分数,即不用求解此式也可。
减载对于边坡,通过减轻上部荷载,即减少y σ来增加稳定性。
因为βϕσsin 1cos 2-≥j j y c ,为了使得 左式 < 右式则需减小y σ ,方法是减少上部岩体的重量,使βϕσσsin 1cos 2'-<-j j y y c 则有根据 y σ' 就可确定挖除多大范围的上部岩体。
● 孔隙水压力当有孔隙水压力p w 时,有:0sin cos )cos(sin )sin(cos 31≥-+-+-j w j j j j p c ϕϕβϕβσβϕβσ当左边项 < 0时,不稳定,处理措施:排水,灌浆防渗,降低p w ● 固结固结灌浆可以增加节理面的抗剪强度,增大c j 和j ϕ因此,在边坡工程中,增加岩体稳定的常用措施有: 锚固、减载、排水、防渗灌浆和固结灌浆。
七、结构面方位对强度的影响结构面方位对岩体强度有很大影响,于某种方位时,在某些应力条件下,发生,而是仍在岩石材料内发生。
如图所示:仍由0cos )cos(sin )sin(cos 31≥+-+-j j j j c ϕβϕβσβϕβσ当3σ固定时,上式为β注意,上式为结构面破坏条件。
还是沿岩石材料内破坏呢,即β为何值时,是沿结构面破坏,还是在岩石内破坏。
从上式看,当0→β, 90→β时,或 j ϕβ→ 时,∞→-31σσ 这说明,当结构面与σ1平行或垂直以及等于j ϕ时,σ1可以很大,而不会沿结构而破坏。
① 当j ϕβ≤≤0时,不沿节理面破坏,而是沿岩石材料内部发生从图看出,β对岩石强度的影响以及裂隙岩体强度的各向异性。
②当 90<<βϕj 时,沿结构面发生破坏,将即245jϕβ+= 时,31σσ-为最小,可知1σ为最小。
将245jϕβ+= 代入βϕβϕσσσ2s i n )1(22)(3m i n31j j j tg ctg tg c ⋅-⋅+=-,并令)245(2jtg N j ϕϕ+=可推出:jjjjN c N N c N j j ϕϕϕϕσσσσ22)1(333min 1+=+-+=八、结构面粗糙度对强度的影响天然的结构面多为凹凸不平的面,在剪应力作用下滑动时,并不到处都平行于剪应力的方向。
因此,结构面的粗糙度必然影响到结构面强度。
1) 粗糙角i对于剪应力与结构面平行时tg PTϕ=当结构面与剪应力夹角为i时,iPiTT sincos-=*iTiPP sincos+=*则在结构面上iT i P i P i T P T tg j sin cos sin cos +-==**ϕ)sin cos (sin cos i T i P tg i P i T j +=-ϕ )cos (sin )sin (cos j j tg i i P tg i i T ϕϕ⋅+=⋅-帕顿(patton )把这个模型推广到锯齿状的结构面,当P 较小时,结构面沿锯齿面滑动,遵循上式,当P 较大时,滑动面沿锯齿面底破坏滑动。
因此,结构面抗剪强度为剪胀角 uVtg n ∆∆=α 。
低正应力时)(i tg j f +⋅=ϕστ● 高正应力时ϕστtg c j f ⋅+=式中j ϕ与ϕ不同,j ϕ为平面型的结构面内摩擦角, ϕ为锯齿面内摩擦角。
各种岩石结构面的基本摩擦角j ϕ大多数为30︒左右。
● 当有水压力时w p -='11σσ,w p -='33σσ 则由式0sin cos )cos(sin )sin(cos 31≥-+-+-j w j j j j p c ϕϕβϕβσβϕβσ有:计算时,可先用0=j c ,i j +=ϕϕ代入上式求得一个p w ,再用0≠j c ,ϕϕ=j上式再求一个p w关于粗糙角i巴顿给出一经验公式。
即式中JRC——节理粗糙度系数R cj——靠近结构面的岩石单轴抗压强度,由于表面,此强度一般都低于完整岩石的单轴抗压强度。
作业1:1. 全面推导More-Coulomb 理论推导(详细步骤):(1).用大、小主应力σ1,σ3来表示More-Coulomb 方程式?(2).推导公式3-37,1sin 1sin tg ϕψϕ+=- ? (3).如何推导More-Coulomb 的单轴抗压、抗拉强度公式?(4).推导用tg(45o -ϕ/2)表示σ1,σ3 ?(5).如何证明α=45o +ϕ/2 ?。