生物化学 核酸的结构与功能

合集下载

核酸的结构与功能

核酸的结构与功能

核酸的结构与功能核酸,这个生物体的基本组成部分,以其独特的结构和功能,影响着生物体的生命活动。

它包括DNA和RNA两种主要类型,各有其独特的特点和功能。

一、核酸的结构核酸是由磷酸、核糖和四种不同的碱基组成。

这四种碱基分别是腺嘌呤(A)、鸟嘌呤(G)、胸腺嘧啶(T)和尿嘧啶(U)。

它们通过特定的方式连接在一起,形成DNA或RNA。

DNA,也被称为脱氧核糖核酸,是生物体遗传信息的主要载体。

它是由两条相互旋转的链组成的双螺旋结构,其中碱基通过氢键以特定的配对方式连接,即A与T配对,G与C配对。

这种配对方式保证了DNA 的稳定性和遗传信息的正确复制。

RNA,也被称为核糖核酸,是生物体内重要的信息传递者和调节者。

它通常是由单链结构组成,也可以是双链结构。

与DNA不同,RNA的碱基配对方式相对简单,通常是A与U配对,G与C配对。

二、核酸的功能1、遗传信息的储存和传递:DNA是生物体遗传信息的主要载体,负责储存和传递生物的遗传信息。

这些信息通过DNA的复制传递给下一代,并指导生物体的生长和发育。

2、基因表达的调控:RNA在基因表达中起着重要的调控作用。

它可以通过碱基配对原则识别并携带DNA中的遗传信息,将遗传信息从DNA传递到蛋白质合成的地方。

同时,一些RNA还可以作为调节分子,影响基因的表达。

3、蛋白质合成:RNA不仅是遗传信息的载体,还是蛋白质合成的模板。

在蛋白质合成过程中,RNA将DNA中的遗传信息翻译成蛋白质中的氨基酸序列。

4、细胞内的信号传导:某些RNA分子可以作为分子开关,调控细胞内的信号传导通路。

这些RNA可以结合并调控蛋白质的活性,从而影响细胞内的生物化学反应。

5、免疫反应的调节:某些RNA分子还可以作为免疫反应的调节剂。

它们可以影响免疫细胞的活性,从而影响免疫反应的强度和持续时间。

总结起来,核酸是生物体中至关重要的分子,其结构和功能共同保证了生物体的正常生长和发育。

从DNA中的遗传信息传递到RNA的信息载体作用,再到蛋白质的合成和细胞内信号传导的调控,核酸都发挥着不可或缺的作用。

生物化学核酸的结构与功能

生物化学核酸的结构与功能

生物化学核酸的结构与功能核酸是由多个核苷酸通过3’,5’-磷酸二酯键相连的多聚物,分为rna和dna。

核酸的一级结构是指构成核酸的多聚核苷酸链上的所有核苷酸或硷基的排列顺序。

每一条线形多聚核苷酸链都具有极性,有5’-端和3’-端。

书写核酸一级结构的惯例是,从左到右先写5’- 端,再写3’- 端。

核酸一级结构的意义是储存生物体的遗传资讯。

dna的二级结构主要是各种形式的螺旋,特别是b型双螺旋,此外还有a型双螺旋、z型双螺旋、三链螺旋和四链螺旋等。

其中最主要的形式为watson和crick于1953年提出的b型双螺旋,其核心内容是:dna由两条呈反平行的多聚核苷酸链组成,它们相互缠绕形成右手双螺旋;两条链通过at硷基和gc硷基对互补结合在一起;硷基对位于双螺旋的内部,并垂直于暴露在外的脱氧核糖磷酸骨架。

硷基对之间的疏水键和範德华力对双螺旋的稳定起一定的作用;双螺旋的表面含有大沟和小沟;相邻硷基对距离为,相差约36°。

螺旋直径为2nm,每一转完整的螺旋含有10个bp,其高度为3.4nm。

一定的条件下,双链dna可以从b型转变成其他螺旋构象,但在正常的细胞环境中能够存在的只有a、b、z。

引起dna双链构象改变因素有硷基组成和序列、盐的种类、盐浓度和相对溼度。

低溼度下,dna可形成a 型双螺旋。

dna与rna形成的杂交双链为a型双螺旋;嘌呤嘧啶相间排列的dna在高的盐浓度下可形成左旋的z-dna。

而体内m5c 上的甲基化被认为有利于b型向z 型的转变。

体内z-dna的形成可能与基因表达调控有关。

dna双螺旋结构的证据有x射线衍射资料、chargaff 规则和硷基的互变异构性质。

双螺旋稳定的因素有氢键、硷基堆积力和阳离子或带正电荷的化合物对磷酸基团的中和,其中起决定性作用的是硷基的堆积力。

三链螺旋结构即h-dna,它是dna的非标準二级结构,其形成需要至少dna 的一条链全部由嘌呤核苷酸组成。

在细胞内,h-dna经常出现在dna複製、转录和重组的起始位点或调节位点。

大学药学-生物化学-核酸的结构与功能-试题与答案(附详解)

大学药学-生物化学-核酸的结构与功能-试题与答案(附详解)

生物化学第二节核酸的结构与功能一、A11、关于DNA的二级结构(双螺旋结构)描述正确的是A、碱基A和U配对B、碱基G和T配对C、两条同向的多核苷酸D、两条反向的多核苷酸E、碱基之间以共价键连接2、DNA双螺旋结构模型的描述,不正确的是A、腺嘌呤的摩尔数等于胸腺嘧啶的摩尔数B、同种生物体不同组织中的DNA碱基组成极为相似C、DNA双螺旋中碱基对位于外侧D、两股多核苷酸链通过A与T或C与G之间的氢键连接E、维持双螺旋稳定的主要因素是氢键和碱基堆积力3、核酸分子中储存、传递遗传信息的关键部分是A、戊糖构象B、碱基的旋转角C、碱基序列D、戊糖磷酸骨架E、磷酸二酯键4、DNA的主要功能是A、翻译的模板B、反转录的模板C、翻译和反转录的模板D、复制和基因转录的模板E、突变与进化5、对于tRNA 的叙述下列哪项是错误的A、tRNA 通常由70-80 个核苷酸组成B、细胞内有多种tRNAC、参与蛋白质的生物合成D、分子量一般比mRNA 小E、可作为各种氨基酸的转运载体6、下列关于RNA 的论述哪项是错误的A、主要有mRNA,tRNA ,rRNA 等种类B、原核生物共有5S、16S、23S三种rRNAC、tRNA 是最小的一种RNAD、tRNA主要的作用是在细胞核内转录DNA基因序列信息E、组成核糖体的RNA 是rRNA7、下列关于tRNA的叙述错误的是A、分子量最小B、是各种氨基酸的转运载体在蛋白质合成中转运氨基酸原料C、tRNA的二级结构为三叶草形D、tRNA的三级结构为倒“L”型的结构E、5’-末端具有特殊的帽子结构8、DNA中核苷酸之间的连接方式是A、氢键B、2’,3’-磷酸二酯键C、3’,5’-磷酸二酯键D、2’,5’-磷酸二酯键E、疏水键9、下列哪种碱基只见于RNA而不见于DNAA、AB、TC、GD、CE、U10、RNA和DNA彻底水解后的产物是A、戊糖相同,部分碱基不同B、碱基相同,戊糖不同C、碱基不同,戊糖不同D、碱基相同,戊糖相同E、碱基相同,部分戊糖不同11、组成核酸的基本单位是A、含氮碱基B、核苷酸C、多核苷酸D、核糖核苷E、脱氧核糖核苷12、核苷酸之间的连接方式是A、氢键B、酯键C、离子键D、糖苷键E、3’,5’-磷酸二酯键13、DNA的解链温度指的是A、A260nm达到最大值时的温度B、A260nm达到最大值的50%时的温度C、DNA开始解链时所需要的温度D、DNA完全解链时所需要的温度E、A280nm达到最大值的50%时的温度二、B1、A.α-螺旋B.β-折叠C.PolyA尾D.m7GpppNmE.双螺旋结构<1> 、DNA的二级结构特征A B C D E<2> 、真核生物mRNA3’-端特征A B C D E2、A.DNAB.mRNAC.rRNAD.tRNAE.hnRNA<1> 、储存遗传信息的关键核酸分子是A B C D E<2> 、蛋白质合成的直接模板是A B C D E答案部分一、A11、【正确答案】D【答案解析】DNA是一反向平行的双链结构,两条链的碱基之间以氢键相连接。

核酸的结构和功能

核酸的结构和功能

核酸的结构和功能核酸是生物体内的重要生物大分子之一,其结构和功能对于生物体的正常生理活动具有重要意义。

核酸主要包括核糖核酸(RNA)和脱氧核糖核酸(DNA),它们在细胞中扮演着信息传递、遗传、调控等方面的重要角色。

本文将详细介绍核酸的结构和功能。

一、核酸的结构核酸是由核苷酸单元组成的长链分子。

核苷酸由一个含氮碱基、糖分子和磷酸组成。

核苷酸通过磷酸二酯键连接成链状结构,相邻核苷酸之间的磷酸二酯键被称为链的磷酸骨架。

在DNA中,糖分子是脱氧核糖(deoxyribose),而在RNA中则是核糖(ribose)。

碱基分为嘌呤(鸟嘌呤和胸腺嘧啶)和嘧啶(腺嘌呤、鸟嘌呤和尿嘧啶)两类。

在DNA中,鸟嘌呤和胸腺嘧啶以氢键的方式通过碱基配对相互结合,形成双螺旋结构。

而在RNA中,核糖和碱基之间没有形成稳定的双螺旋结构。

二、核酸的功能1.存储遗传信息:DNA是生物体内存储遗传信息的主要分子。

通过DNA的序列编码了生物体内所有蛋白质的合成信息。

每一个DNA分子都包含了生物体所有的遗传信息,它能够准确地复制自身,并通过遗传信息的传递实现后代群体的生存和繁殖。

2.转录和翻译:DNA的遗传信息通过转录作用被转录成一种中间产物RNA,即RNA的合成过程。

在细胞质中,RNA通过读取DNA上的密码信息并翻译成蛋白质序列,从而实现遗传信息的传递。

这个过程被称为翻译。

3.转运和储存能量:核酸还能承担转运和储存能量的功能。

例如,三磷酸腺苷(ATP)是细胞内的一种重要能量转移分子,在胞吞、细胞呼吸等细胞代谢过程中转运和释放能量。

4. 催化作用:部分RNA分子具有催化作用,被称为酶RNA (ribozyme)。

酶RNA能够在特定条件下催化化学反应,例如:RNA酶能够剪切RNA链,还能参与核酸的合成和修复等生物化学过程。

5.调控基因表达:除了DNA编码蛋白质的功能外,核酸还能调控基因表达过程。

RNA在细胞内扮演着信使RNA、转运RNA和核糖体RNA等不同角色,参与调控基因表达的过程,例如:转录因子通过与一些基因的调控区域结合,将DNA转录为RNA,进而调控该基因的表达。

生物化学学习题核酸的组成与功能

生物化学学习题核酸的组成与功能

生物化学学习题核酸的组成与功能核酸是生物体内重要的生物大分子之一,它在细胞的遗传信息传递和蛋白质的合成过程中起着关键的作用。

本文将围绕核酸的组成与功能展开讨论。

第一部分:核酸的组成核酸主要由核苷酸组成,而核苷酸又由磷酸、核糖或脱氧核糖以及核碱基三个部分构成。

核酸可分为两类:核糖核酸(RNA)和脱氧核糖核酸(DNA)。

1. RNA的组成RNA由核糖和磷酸基团以及四种不同的核酸碱基组成,分别是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和尿嘧啶(U)。

RNA具有单链结构,呈现出多样的空间构象。

2. DNA的组成DNA由脱氧核糖和磷酸基团以及四种不同的核酸碱基组成,包括腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T)。

DNA 以双链螺旋的形式存在,两条链通过碱基间的氢键相互结合。

第二部分:核酸的功能核酸在生物体内具有多种重要的功能,主要包括遗传信息传递、蛋白质合成和调控基因表达等。

1. 遗传信息传递DNA是生物体内遗传信息的携带者,通过基因的排列组合和序列的变异,决定了个体的遗传特征。

DNA通过复制和遗传物质的传递,保证了遗传信息在代际之间的传递。

2. 蛋白质合成RNA在蛋白质的合成过程中发挥重要作用。

首先,DNA通过转录过程生成RNA的复制体,即mRNA。

然后,mRNA被带有氨基酸的tRNA识别,从而在核糖体上进行翻译,合成出特定的蛋白质。

3. 调控基因表达除了编码蛋白质的mRNA外,RNA还包括转运RNA(tRNA)、核糖体RNA(rRNA)和小核RNA(snRNA)等。

这些RNA参与了基因表达的调控过程,例如,tRNA将特定的氨基酸带给核糖体进行蛋白质合成,而rRNA则是核糖体的组成部分。

此外,还有一类特殊的RNA,即非编码RNA(ncRNA),它们不编码蛋白质,而在细胞过程中扮演重要的调控角色,如调控基因表达、修饰染色体结构等。

结语:核酸作为生物体内不可或缺的生物大分子,其组成和功能多种多样。

核酸的结构和功能Structureandfunctionofnucleicacid-生物化学

核酸的结构和功能Structureandfunctionofnucleicacid-生物化学

人DNA 2.9 109bp 9.9 108nm
方向
RNA易降解
核酸链示意图(线条式)
核酸的文字表述方式
5’pApCpTpTpGpApApCpG3’ DNA 5’pApCpUpUpGpApApCpC3’ RNA
简化为:
5’pACTTGAACG3’ DNA
5’pACUUGAACG3’RNA
一级结构的基本特征
由四种脱氧核苷酸通过3,5-磷酸二酯键连成不分枝的多
碱基不参于主链而是
向外伸出形成侧链, 主链单调重复,侧链千变万化。
一级结构中重要的是核苷酸的组成(数量)和排列顺序
(碱基序列)。不同的DNA有不同的碱基组成和排列 顺序,这是构成DNA作为遗传物质的关键因素。
核酸的结构和功能
Structure and function of nucleic acid
1. 2. 3.
核酸的化学组成 核酸的分子结构 核酸的理化性质及应用
1 核酸的种类分布和化学组成
1.1 核酸的发现及其生物学功能 1.2 核酸的种类和分布
1.3 核酸的化学组成
1.1 核酸的发现及其生物学功能
结论:
在加热杀死的ⅢS型肺炎双球菌中有较耐高温的转化物质能够
进入ⅡR型
IIR型转变为ⅢS型
无毒转变为有毒。
1.1.2
A.D.Hershey
M.Chase (1952年)
1952年A.D.Hershey和
M.Chase用35S和32P分别标
记T2噬菌体的蛋白质和核酸,
感染大肠杆菌的实验进一步
证明了DNA是遗传物质
(A+T) /(G+C)
1.01 1.21 1.21 1.43 1.079

生物化学中的核酸结构与功能

生物化学中的核酸结构与功能生物化学是研究生物分子结构与生命活动相关的化学知识。

而核酸作为生物分子中的一个关键组分,其结构与功能自然也是生物化学领域的热点之一。

本文将探讨核酸结构与功能这一重要话题。

1.核酸的基本结构核酸是由核苷酸构成的生物分子,核苷酸由碱基、糖和磷酸三部分组成。

DNA(脱氧核糖核酸)和RNA(核糖核酸)是两种常见的核酸类型。

DNA是存储细胞遗传信息的主要分子,RNA则参与了细胞信息的传递和蛋白质合成过程。

DNA分子中的糖是脱氧核糖,在其上连接着碱基(A、C、G、T),磷酸基则连接在糖的横向羟基上。

因此,聚合成的核酸分子具有一个单一的方向(5’端到3’端)。

RNA分子的糖是核糖,在其上连接着A、C、G、U 四种碱基。

2.核酸组装与空间结构在细胞内,DNA分子往往呈现出复杂的空间结构,包括环状、线性等形式。

其中的空间结构对于DNA在遗传过程中的功能发挥起到了至关重要的作用。

RNA分子则不具备对应的二级结构、三级结构,更多的是通过与蛋白质相互作用形成复合物来发挥催化和调控物质运转的能力。

3.核酸的生物功能从功能角度来讲,核酸是生物体重要的储存和传递遗传信息的生物分子。

这种传递是通过DNA基因编码蛋白质,进而实现生命活动中各种生命过程的顺畅进行。

RNA则参与了直接的蛋白质合成过程,由于核酸含有碱基、糖和磷酸等多种有机分子,因此也有着其他许多重要的生物功能,如RNA的酶活性,可以为其他分子转化化学键,将RNA分子作为分子的催化反应剂,促进细胞内的化学反应。

4.核酸构建与生命细胞如此微小而又复杂,核酸的构成和运作在其中起着至关重要的作用。

作为生物分子的一个重要组成部分,核酸的构建和正常的细胞分裂及特定功能发挥密切相关。

细胞内分子之间相互依存,调控本身,核酸与其他生物分子的相互作用与协调作用,让细胞更加完善,在生命表现方面不断实现优化。

总之,核酸结构与功能是生物化学领域的重点话题之一,涉及信息传递、蛋白质合成等许多关键过程。

核酸的结构和功能《生物化学》复习提要

核酸的结构和功能核酸(nucleic acid)是重要的生物大分子,它的构件分子是核苷酸(nucleotide),天然存在的核酸可分为脱氧核糖核酸(deoxyribonucleic acid,DNA)和核糖核酸(ribonucleic acid,RNA)两类。

DNA贮存细胞所有的遗传信息,是物种保持进化和世代繁衍的物质基础。

RNA 中参与蛋白质合成的有三类:转移RNA(transfer RNA,tRNA),核糖体RNA(ribosomal RNA,rRNA)和信使RNA(messenger RNA,mRNA)。

20世纪末,发现许多新的具有特殊功能的RNA,几乎涉及细胞功能的各个方面。

第一节核苷酸核苷酸可分为核糖核苷酸和脱氧核糖核苷酸两类,核糖核苷酸是RNA的构件分子,而脱氧核糖核苷酸是DNA构件分子。

细胞内还有各种游离的核苷酸和核苷酸衍生物,它们具有重要的生理功能。

核苷酸由核苷(nucleoside)和磷酸组成。

而核苷则由碱基(base)和戊糖构成。

一、碱基构成核苷酸中的碱基是含氮杂环化合物,有嘧啶(pyrimidine)和嘌呤(purine)两类。

核酸中嘌呤碱主要是腺嘌呤和鸟嘌呤,嘧啶碱主要是胞嘧啶、胸腺嘧啶和尿嘧啶。

DNA 和RNA中均含有腺嘌呤、鸟嘌呤和胞嘧啶,而尿嘧啶主要存在于RNA中,胸腺嘧啶主要存在于DNA中。

在某些tRNA分子中也有胸腺嘧啶,少数几种噬菌体的DNA含尿嘧啶而不是胸腺嘧啶。

这五种碱基受介质pH的影响出现酮式、烯醇式互变异构体。

在DNA和RNA中,尤其是tRNA中还有一些含量甚少的碱基,称为稀有碱基(rare bases)稀有碱基种类很多,大多数是甲基化碱基。

tRNA中含稀有碱基高达10%。

二、戊糖核酸中有两种戊糖DNA中为D-2-脱氧核糖(D-2-deoxyribose),RNA中则为D-核糖(D-ribose)(图3-5)。

在核苷酸中,为了与碱基中的碳原子编号相区别核糖或脱氧核糖中碳原子标以C-1’,C-2’等。

核酸的生物化学结构和功能解析

核酸的生物化学结构和功能解析核酸是构成生物体的重要分子之一,它在细胞内担负着存储和传递遗传信息的重要功能。

本文将深入探讨核酸的生物化学结构和功能,揭示核酸在生命活动中的重要作用。

一、核酸生物化学结构核酸是由核苷酸组成的大分子化合物。

核苷酸是由碱基、糖和磷酸基团组合而成。

碱基分为嘌呤和嘧啶两类,嘌呤包括腺嘌呤(A)和鸟嘌呤(G),嘧啶则包括胸腺嘧啶(T)、尿嘧啶(U)和胞嘧啶(C)。

糖分为核糖(在RNA中)和脱氧核糖(在DNA中)。

磷酸基团连接在糖的3'位和5'位,形成磷酸二酯键,从而将核苷酸链接成链状结构。

核酸的主要类型包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

DNA是双链结构,由两条互补的核苷酸链缠绕而成,通过碱基配对形成稳定的螺旋结构。

RNA则是单链结构,可以形成类似DNA的二级结构,也可以形成各种不同的三维结构。

二、核酸的功能1. 存储遗传信息DNA是细胞中的遗传物质,它编码了细胞中合成蛋白质所需的遗传信息。

每个生物体细胞核内都包含一段完整的DNA,称为基因组。

基因组中的基因决定了生物的遗传特征,包括形态、功能和行为等。

2. 转录和翻译DNA通过转录过程生成RNA,而RNA通过翻译过程转化为蛋白质。

这一过程被称为中心法则。

在细胞内,DNA通过转录酶酶解,使其中的一条链作为模板,合成相应的RNA分子。

这一过程可以是一次性的(即合成的RNA直接用于蛋白质合成)或经过修饰后再转化为蛋白质。

通过这种机制,细胞可以根据需要合成特定的蛋白质,发挥不同的功能。

3. 调控基因表达RNA具有多种功能,其中包括调控基因表达。

在基因调控过程中,某些RNA分子可以与DNA的调控区结合,阻止或促进基因的转录。

这种调控方式可以调整细胞内基因的表达水平,对细胞功能的稳定和适应具有重要影响。

4. 催化反应核酸具有催化某些生物化学反应的能力。

在细胞中,一类特殊的RNA分子称为酶RNA(ribozyme),它能够催化化学反应,如自身剪切、肽键形成等。

生物化学中的核酸结构和功能

生物化学中的核酸结构和功能核酸是生物体中最具有代表性的分子之一,它们不仅逐步揭示了生命中的复杂机理,而且也在基因工程、医学以及药物研究领域中发挥了关键作用。

本文将从核酸的结构和功能两个方面探讨其重要性。

一、核酸的结构核酸分为DNA和RNA,它们在化学成分上都是由核苷酸组成的,不同的是DNA的糖是脱氧核糖糖(deoxyribonucleic acid)而RNA的糖是核糖糖(ribonucleic acid)。

核苷酸是由五碳糖、碱基和磷酸基组成的。

其中碱基分为嘌呤和嘧啶两类,嘌呤有腺嘌呤(A)和鸟嘌呤(G),嘧啶有胸腺嘧啶(T)和胞嘧啶(C)。

DNA的结构是双螺旋结构,这也是Watson和Crick通过对X 射线晶体学的实验建立的模型。

这个结构是由两条互补的链组成的,两条链通过碱基的键合连接着,形成一个细长的旋曲结构。

而RNA的结构则没有DNA那么复杂,其中的碱基序列单链折叠成不同的结构体,例如tRNA、rRNA等。

这种单链结构使得RNA 在一些领域中也具有非常独特的功能。

二、核酸的功能核酸在细胞中有很多重要的功能,其中最为显著的就是携带生命的基因信息。

DNA是所有生物体的重要遗传信息数据储存物质,其序列决定了物种的生长、发育和生存。

人类DNA的基因组由约30亿个不同的碱基组成,其中只有一小部分负责蛋白质编码,其余则可能与常见的疾病、短暂起效的压力反应以及更长期的环境早期节律有关。

RNA则在生物学过程中具有多种的功能,例如:1.转录作用,tRNA和rRNA将DNA序列中的信息转录成蛋白质。

2.miRNA和siRNA制造,控制基因表达和killing错配的RNA分子。

3.telomeraseRNA,在DNA末端形成保护端(T/D)。

4. RNA丝,催化酶,帮助调节基因转录的过程。

5.纤维素RNA,凝聚编码序列中需求蜕变的基因。

在生物学的开发和应用方面,核酸发挥着重要的作用,并取得了很多的成就。

例如,我们可以利用DNA合成基因、制造蛋白质,或者通过基因检测和基因工程来开发药物。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O P O OH
OH
Adenine Nucleotides Are Components of Many Enzyme Cofactors
Coenzyme A (CoA) functions in acyl group transfer reactions.
二、DNA是脱氧核苷酸通过3’,5’-磷酸 二酯键连接形成的大分子
但在组成成份上略有不同。
Cytosine (C)
核苷酸是构成核酸的基本组成单位
分子组成
碱基(base):嘌呤碱,嘧啶碱 戊糖(ribose):核糖,脱氧核糖
磷酸(phosphate)
碱基
碱基(base)是含氮的杂环化合物。
碱基
嘌呤 嘧啶
腺嘌呤 鸟嘌呤 胞嘧啶 尿嘧啶
存在于DNA和RNA中 仅存在于RNA中
磷酸
Nucleoside (Ns) (脱氧)核苷
戊糖 Deoxy-ribose ( Ribose ) Base 碱基
脱氧核糖(核糖)
嘌呤Purin (pu) Pyrimidine (py) 嘧啶
Adenine (A) Thymine (T)
DNA与RNA结构相似,
Guanine (G) Uracil (U)
胸腺嘧啶
仅存在于DNA中
嘌呤(purine,Pu)
N 7
5 6 1N
8 9 NH
43 2 N
NH2 N
N
NH
N
腺嘌呤(adenine, A)
O
N NH
NH
N
NH2
鸟嘌呤(guanine, G)
嘧啶(pyrimidine,Py)
O
5 4 3N 612
NH
NH2
N
NH
O
胞嘧啶(cytosine, C)
N
O
O
O
N
N
-O P O-
OP O-
OPO O-
CH 2 O
H
H
H OH
H H
脱氧腺嘌呤核苷
脱氧腺嘌呤一磷酸 (dAMP)
脱氧腺嘌呤二磷酸 (dADP)
脱氧腺嘌呤三磷酸 (dATP)
核苷酸衍生物
环化核苷酸:cAMP、cGMP,是细胞信 号转导中的第二信使。
NH2
N
N
O CH2O N
N
cAMP
5´-磷酸基团 O-
OPO O-
碱基
CH2 O
H
H
H
H
O
H
DNA链的方向是5 → 3
交替的磷酸基团和戊
O
碱基
核酸方向 糖 构 成 了 DNA 的 骨 架
NH
仅存在于RNA中
NH
O
尿嘧啶(uracil, U)
O
H 3C NH
仅存在于DNA中
NH
O
胸腺嘧啶(thymine, T)
戊糖
D-2-脱氧核糖 脱氧核糖(deoxyribose)
(构成DNA)
D-核糖
核糖(ribose) (构成RNA)
(脱氧)核苷
核苷酸(ribonucleotide)
NH2 N
一个脱氧核苷酸3的羟基与另一个核苷酸 5的α-磷酸基团缩合形成磷酸二酯键 (phosphodiester bond)。
多个脱氧核苷酸通过磷酸二酯键构成了 具有方向性的线性分子,称为多聚脱氧核苷 酸(polydeoxynucleotide),即DNA链。
5 -末端 C
磷酸二酯键 A
磷酸二酯键 G
3 -末端
核苷酸(ribonucleotide)
NH2
酯键 N
N
9
O
N
N
HO P O CH 2 OHH
O
1'
H 2'
H
OH OH
糖苷键
核苷或脱氧核苷与磷酸通过酯键结合构成核苷酸 (ribonucleotide)或脱氧核苷酸(deoxyribonucleotide)。
多磷酸核苷酸
5′-磷酯键
NH 2 N
核 酸(nucleic acid)
是以核苷酸为基本组成单位的生物大 分子,携带和传递遗传信息。
核酸研究的发展简史
1868年 Fridrich Miescher 从脓细胞中提取核素。 1944年 Avery等人证实DNA是遗传物质。 1953年 Watson和Crick发现DNA的双螺旋结构。 1968年 Nirenberg发现遗传密码。 1975年 Temin和Baltimore发现逆转录酶。 1981年 Gilbert和Sanger建立DNA测序方法。 1985年 Mullis发明PCR技术。 1990年 美国启动人类基因组计划(HGP)。 1994年 中国人类基因组计划启动。 2001年 美英等国完成人类基因组计划。
一、核酸分子(DNA和RNA)的化学组成
核酸Nucleic Acid (NA) Polynucleotide chain (poly Nt)
核酸(DNA和RNA) 是一种线性多聚核 苷酸,它的基本结 构单元是核苷酸。
核苷酸 Nucleotide (Nt) basic unit
Mono-phosphate (Mp)
难点:
1. 真核生物染色体的结构. 2. 核酸的理化性质。
进展:
1. 核酶的发现及其重要的生物学意义.
10:31:28
3
第一节
核酸的化学组成及其一级结构
The Chemical Component and Primary Structure of Nucleic Acid
核酸是遗传信息的载体 (Appendix 1:)
核酸的分类及分布
脱氧核糖核酸
(deoxyribonucleic acid, DNA)
存在于细胞核和线粒体
携带遗传信息,并通过复制传递 给下一代。
核糖核酸 (ribonucleic acid, RNA)
分布于细胞核、细胞质、线粒体
是DNA转录的产物,参与遗传信 息的复制与表达。某些病毒RNA 也可作为遗传信息的载体
N
9
N
N
CH OH 2
O
HH
1'
H 2'
H
糖苷键
NH2
酯键 N
N
9
O
N
N
HO P O CH 2 OHH
O
1'
H 2'
H
OH OH
糖苷键
OH
(O) H
嘌呤N-9或嘧啶N-1与(脱氧) 核糖C-1通过β-N-糖苷键相连形成 (脱氧) 核苷 [(deoxy)ribonucleoside]
核苷或脱氧核苷与磷酸通过酯 键结合构成核苷酸(ribonucleotide) 或脱氧核苷酸(deoxyribonucleotide)
第2章
核酸的结构与功能
Structure and Function of Nucleic Acid
主要内容
第一节 核酸的化学组成及其一级结构 第二节 DNA的空间结构与功能 第三节 RNA的结构与功能 第四节 核酸的理化性质 第五节 核酸酶

学习指导
重点:
1. 核酸的化学组成; 2. DNA的一级结构与二级结构; 3. RNA的主要类型及功能; 4. 核酸的理化性质。
相关文档
最新文档