多元函数积分学期末复习(考点)

合集下载

(整理)多元函数积分

(整理)多元函数积分

(整理)多元函数积分多元函数积分1. 利用积分区域的对称性化简多元函数的积分1.1 利用积分区域的对称性化简多元函数的重积分题型一计算积分区域具有对称性,被积函数具有奇偶性的重积分类型(一)计算积分区域具有对称性、被积函数具有奇偶性的二重积分常用下述命题简化计算二重积分.命题1 若f(x,y)在积分区域D 上连续,且D 关于y 轴(或x 轴)对称,则(1)f(x,y)是D 上关于x (或y )的奇函数时,有??=Ddxdy y x f 0),(;(2)f(x,y)是D 上关于x (或y )的偶函数时,有=D D dxdy y x f dxdy y x f 1),(2),(;其中D 1是D 落在y 轴(或x 轴)一侧的那一部分区域.命题2 若D 关于x 轴、y 轴对称,D 1为D 中对应于x ≥0,y ≥0(或x ≤0,y ≤0)的部分,则-=--=-=-=D D y x f y x f y x f y x f y x f y x f dxdy y x f dxdy y x f ).,(),(),(,0),,(),(),(,),(4),(1或命题3 设积分区域D 对称于原点,对称于原点的两部分记为D 1和D 2.(1);),(2),(),,(),(1==--D D d y x f d y x f y x f y x f σσ则若(2).0),(),,(),(??=-=--Dd y x f y x f y x f σ则若命题4 积分区域D 关于y x ,具有轮换对称性,则+==DD D d x y f y x f d x y f d y x f σσσ)],(),([21),(),( 记D 位于直线y=x 上半部分区域为D 1,则-===D D y x f x y f y x f x y f dxdy y x f dxdy y x f ),,(),(,0),,(),( ,),(2),(1类型(二)计算积分区域具有对称性,被积函数具有奇偶性的三重积分.常用下述命题简化具有上述性质的三重积分的计算.命题1若Ω关于xOy 平面对称,而Ω1是Ω对应于z ≥0的部分,则Ω∈?=-Ω∈?--=-=ΩΩ;),,(),,,(),,(,),,(2,),,(),,,(),,(,0),,(1z y x z y x f z y x f d z y x f z y x z y x f z y x f d z y x f υυ 若Ω关于yOz 平面(或zOx 平面)对称,f 关于x (或y )为奇函数或偶函数有类似结论.命题2 若Ω关于xOy 平面和xOz 平面均对称(即关于x 轴对称),而Ω1为Ω对应于z ≥0,y ≥0的部分,则=ΩΩ为奇函数;或关于,当为偶函数,关于当z y f z y f d z y x f d z y x f 0,,),,(4),,(1υυ 若Ω关于xOz 平面和yOz 平面均对称(即关于z 轴对称),或者关于xOy 平面和yOz 平面均对称,那么也有类似结论.命题3 如果积分区域Ω关于三个坐标平面对称,而Ω1是Ω位于第一象限的部分,则=ΩΩ为奇函数;或或关于,当均为偶函数,关于当z y x f z y x f d z y x f d z y x f 0,,,),,(8),,(1υυ 命题4 若积分区域Ω关于原点对称,且被积函数关于x,y,z 为奇函数,即.0),,(),,,(),,(=----=Ωυd z y x f z y x f z y x f 则题型三计算积分区域具有轮换对称性的三重积分命题5 如果积分区域关于变量x,y,z 具有轮换对称性(即x 换成y,y 换成z,z 换成x ,其表达式不变),则ΩΩΩΩ++===υυυυd y x z f x z y f z y x f d y x z f d x z y f d z y xf )],,(),,(),,([31),,(),,(),,(.1.2 利用积分区域的对称性化简第一类曲线积分、曲面积分题型一计算积分曲线(面)具有对称性的第一类曲线(面)积分类型(一)计算积分曲线具有对称性的第一类曲线积分命题1.2.1 设曲线L 关于y 轴对称,则=??,0,),(2),(1L L ds y x f s d y x f 是奇函数,关于是偶函数,关于x y x f x y x f ),(),( 其中L 1是L 在x ≥0的那段曲线,即L 1是L 在y 轴右侧的部分;若曲线L 关于x 轴对称,则有上述类似结论.命题1.2.2 设f(x,y)在分段光滑曲线L 上连续,若L 关于原点对称,则=??,LL ds y x f s d y x f ),(2,0),( 为偶函数,关于若为奇函数,关于若),(),(),(),(y x y x f y x y x f 其中L 1为L 的右半平面或上半平面部分.类型(二)计算积分曲面具有对称性的第一类曲面积分第一类曲面积分的奇偶对称性与三重积分类似,可利用下述命题简化计算.命题1.2.3 设积分曲面Σ关于yOz 对称,则=∑∑1),,(2,0),,(dS z y x f dS z y x f 为偶函数,关于当为奇函数,关于当x z y x f x z y x f ),,(),,( 其中Σ1是Σ在yOz 面的前侧部分.若Σ关于另外两坐标面有对称性,则有类似结论.注意不能把Σ向xOy 面上投影,因第一类曲面积分的Σ投影域面积不能为0.题型二计算平面积分曲线关于y=x 对称的第一类曲线积分命题1.2.4 若L 关于直线y=x 对称,则??=L Lds x y f ds y x f ),(),(. 题型三计算空间积分曲线具有轮换对称性的第一类曲线积分命题1.2.5 若曲线Γ方程中的三变量x,y,z 具有轮换对称性,则ΓΓΓΓΓΓ====ds z ds y ds x zds yds xds 222,. 1.3 利用积分区域的对称性化简第二类曲线积分、曲面积分题型一计算积分曲线具有对称性的第二类曲线积分第二类曲线积分的奇偶对称性与第一类曲线积分相反,有下述结论.命题1.3.1 设L 为平面上分段光滑的定向曲线,P(x,y),Q(x,y)连续,(1)L 关于y 轴对称,L 1是L 在y 轴右侧部分,则=??,),(2,0),(1L L dx y x P dx y x P 为偶函数;关于若为奇函数,关于若x y x P x y x P ),(),( =??,),(2,0),(Q 1L L dy y x Q dy y x .),(),(为奇函数关于若为偶函数,关于若x y x Q x y x Q (2)L 关于x 轴对称,L 1为L 在x 轴上侧部分,则=??,),(2,0),(1L L dx y x P dx y x P 为奇函数;关于若为偶函数,关于若y y x P y y x P ),(),( =??,),(2,0),(1L L dy y x Q dy y x Q .),(),(为偶函数关于若为奇函数,关于若y y x Q y y x Q (3)L 关于原点对称,L 1是L 在y 轴右侧或x 轴上侧部分,则+=+,2,0),(),(1L L L Qdy Pdx dy y x Q dx y x P .),(),(),,(),(),(),,(为奇函数关于若为偶函数,关于若y x y x Q y x P y x y x Q y x P (4)L 关于y=x 对称,则.),(),(),(),(),(),(+-=+=+-LL L dx x y Q dy x y P dx x y Q dy x y P dy y x Q dx y x P 即若L 关于y=x 对称,将x 与y 对调,则L 关于直线y=x 翻转,即L 化为L —.因而第二类曲线积分没有轮换对称性.题型二计算积分曲面具有对称性的第二类曲面积分命题1.3.2 设Σ关于yOz 面对称,则=∑∑,0,),,(2),,(1dydz z y x P dydz z y x P .),,(),,(为偶函数关于当为奇函数,关于当x z y x P x z y x P 其中Σ1是Σ在yOz 面的前侧部分.这里对坐标y 和z 的第二类曲面积分只能考虑Σ关于yOz 面的对称性,而不能考虑其他面,这一点也与第一类曲面积分不同.2. 交换积分次序及转换二次积分题型一交换二次积分的积分次序※直接例题,无讲解.题型二转换二次积分转换二次积分是指将极坐标系(或直角坐标系)下的二次积分转换成直角坐标系(或极坐标系)下的二次积分.由极坐标系(或直角坐标系)下的二次积分的内外层积分限写出相应的二重积分区域D 的极坐标(或直角坐标)表示,再确定该区域D 在直角坐标系(或极坐标系)中的图形,然后配置积分限.3. 计算二重积分题型一计算被积函数分区域给出的二重积分含绝对值符号、最值符号max 或min 及含符号函数、取整函数的被积函数,实际上都是分区域给出的函数,计算其二重积分都需分块计算.题型二计算圆域或部分圆域上的二重积分当积分区域的边界由圆弧、过原点的射线(段)组成,而且被积函数为)(22y x f y x m n +或)/(x y f y x m n 的形状时,常作坐标变换θθsin ,cos r y r x ==,利用极坐标系计算比较简单.为此,引进新变量r,θ,得到用极坐标(r ,θ)计算二重积分的公式:=')sin ,cos (),(D D rdrd r r f dxdy y x f θθθ (其中rd θdr 是极坐标系下的面积元素). 用极坐标系计算的二重积分,就积分区域来说,常是圆域(或其一部分)、圆环域、扇形域等,可按其圆心所在位置分为下述六个类型(其中a,b,c 均为常数).类型(一)计算圆域x 2+y 2≤a 上的二重积分. 类型(二)计算圆域x 2+y 2≤2ax 上的二重积分.类型(三)计算圆域x 2+y 2≤-2ax 上的二重积分.类型(四)计算圆域x 2+y 2≤2ay 上的二重积分.类型(五)计算圆域x 2+y 2≤-2ay 上的二重积分.类型(六)计算圆域x 2+y 2≤2ax+2by+c 上的二重积分.4. 计算三重积分题型一计算积分区域的边界方程均为一次的三重积分当积分区域Ω主要由平面围成时,宜用直角坐标系计算,如果积分区域Ω的边界方程中含某个坐标变量的方程只有两个,则可先对该坐标变量积分。

《高等数学》第八章复习要点

《高等数学》第八章复习要点

第八章 多元函数微分法及其应用 复习要点多元函数的微积分的概念、理论、方法是一元微积分中相应概念、理论、方法的推广和发展,它们既有相似之处(概念及处理问题的思想方法)又有许多本质的不同,要善于进行比较,既要认识到它们的共同点和相互联系,更要注意它们的区别,深刻理解,融会贯通。

1. 会求多元函数的偏导数对二元函数),(y x f z =, x y x f y x x f x z f x ∆-∆+=∂∂='→∆),(),(lim 01,yy x f y y x f y z f y ∆-∆+=∂∂='→∆),(),(lim 02 因此求x z ∂∂时,暂时将y 看作常数,对x 求导; 求y z ∂∂时,暂时将x 看作常数,对y 求导.同理,会求三元函数的偏导数。

2. 会求多元函数的高阶偏导数对二元函数),(y x f z =,有)(2211x z x x z f ∂∂∂∂=∂∂='', )(212xz y y x z f ∂∂∂∂=∂∂∂='', )(221y z x x y z f ∂∂∂∂=∂∂∂='', )(2222y z y yz f ∂∂∂∂=∂∂=''. 定理:xy z y x z x y z y x z ∂∂∂∂∂∂⇔∂∂∂=∂∂∂2222, 连续 3. 会求多元函数的全微分对二元函数),(y x f z =,dy yz dx x z dz ∂∂+∂∂= 对三元函数),,(z y x f u =,dz z u dy y u dx x u du ∂∂+∂∂+∂∂=4. 掌握多元复合函数的求导法则设)],(),,([),(),,(),,(y x v y x u f z y x v v y x u u v u f z =⇒===则 xv f x u f x v v z x u u z x z ∂∂⋅'+∂∂⋅'=∂∂⋅∂∂+∂∂⋅∂∂=∂∂21yv f y u f y v v z y u u z y z ∂∂⋅'+∂∂⋅'=∂∂⋅∂∂+∂∂⋅∂∂=∂∂21 重点:会求复合函数的二阶偏导数。

(完整版)多元函数微积分复习试题

(完整版)多元函数微积分复习试题

多元函数微积分复习题一、单项选择题1.函数()y x f ,在点()00,y x 处连续是函数在该点可微分的 ( B )(A) 充分而不必要条件; (B) 必要而不充分条件; (C) 必要而且充分条件; (D) 既不必要也不充分条件.2.设函数()y x f ,在点()00,y x 处连续是函数在该点可偏导的 ( D )(A) 充分而不必要条件; (B) 必要而不充分条件;(C) 必要而且充分条件; (D) 既不必要也不充分条件.3.函数()y x f ,在点()00,y x 处偏导数存在是函数在该点可微分的 ( B ).(A) 充分而不必要条件; (B) 必要而不充分条件;(C) 必要而且充分条件; (D) 既不必要也不充分条件. 4.对于二元函数(,)z f x y =, 下列结论正确的是 ( C ).A. 若0lim x xy y A →→=, 则必有0lim (,)x x f x y A →=且有0lim (,)y y f x y A →=; B. 若在00(,)x y 处zx∂∂和z y ∂∂都存在, 则在点00(,)x y 处(,)z f x y =可微; C. 若在00(,)x y 处zx∂∂和z y ∂∂存在且连续, 则在点00(,)x y 处(,)z f x y =可微; D. 若22z x ∂∂和22z y ∂∂都存在, 则. 22z x ∂∂=22zy ∂∂.5.二元函数(,)z f x y =在点00(,)x y 处满足关系( C ).A. 可微(指全微分存在)⇔可导(指偏导数存在)⇒连续;B. 可微⇒可导⇒连续;C. 可微⇒可导, 或可微⇒连续, 但可导不一定连续;D. 可导⇒连续, 但可导不一定可微.6.向量()()3,1,2,1,2,1a b =--=-,则a b = ( A ) (A) 3 (B) 3- (C) 2- (D) 25.已知三点M (1,2,1),A (2,1,1),B (2,1,2) ,则→→•AB MA = ( C ) (A) -1; (B) 1; (C) 0 ; (D) 2;6.已知三点M (0,1,1),A (2,2,1),B (2,1,3) ,则||→→+AB MA =( B )(A);2-(B) (C)2; (D)-2;7.设D 为园域222x y ax +≤ (0)a >, 化积分(,)DF x y d σ⎰⎰为二次积分的正确方法是_____D____.A. 20(,)aa adx f x y dy -⎰⎰B. 202(,)adx f x y dy ⎰C. 2cos 0(cos ,sin )a a ad f d θθρθρθρρ-⎰⎰D. 2cos 202(cos ,sin )a d f d πθπθρθρθρρ-⎰⎰8.设3ln 1(,)x Idx f x y dy =⎰⎰, 改变积分次序, 则______.I= BA. ln30(,)y e dy f x y dx ⎰⎰B. ln330(,)y edy f x y dx ⎰⎰C. ln33(,)dy f x y dx ⎰⎰ D. 3ln 1(,)x dy f x y dx ⎰⎰9. 二次积分cos 20(cos ,sin )d f d πθθρθρθρρ⎰⎰可以写成___________. DA. 1(,)dy f x y dx ⎰⎰B. 100(,)dy f x y dx ⎰C. 11(,)dx f x y dy ⎰⎰ D. 10(,)dx f x y dy ⎰10. 设Ω是由曲面222x y z +=及2z =所围成的空间区域,在柱面坐标系下将三重积分(,,)I f x y z dx dy dz Ω=⎰⎰⎰表示为三次积分,________.I = CA . 22120(cos ,sin ,)d d f z dz ρπθρρθρθ⎰⎰⎰B. 22220(cos ,sin ,)d d f z dz ρπθρρθρθρ⎰⎰⎰C . 22222(cos ,sin ,)d d f z dz πρθρρθρθρ⎰⎰⎰D . 222(cos ,sin ,)d d f z dz πθρρθρθρ⎰⎰⎰11.设L 为y x 0面内直线段,其方程为d y c a x L ≤≤=,:,则()=⎰Ldx y x P , ( C )(A ) a (B ) c(C ) 0 (D ) d12.设L 为y x 0面内直线段,其方程为d x c a y L ≤≤=,:,则()=⎰Ldy y x P , ( C )(A ) a (B ) c (C ) 0 (D ) d13.设有级数∑∞=1n n u ,则0lim =∞→n n u 是级数收敛的 ( D )(A) 充分条件; (B) 充分必要条件; (C) 既不充分也不必要条件; (D) 必要条件;14.幂级数∑∞=1n n nx 的收径半径R = ( D )(A) 3 (B) 0 (C) 2 (D) 115.幂级数∑∞=11n n x n的收敛半径=R ( A )(A) 1 (B) 0 (C) 2 (D) 316.若幂级数∑∞=0n nn x a 的收敛半径为R ,则∑∞=+02n n n x a 的收敛半径为 ( A )(A) R (B) 2R(C) R (D) 无法求得17. 若lim 0n n u →∞=, 则级数1n n u ∞=∑( ) DA. 收敛且和为B. 收敛但和不一定为C. 发散D. 可能收敛也可能发散18. 若1n n u ∞=∑为正项级数, 则( B )A. 若lim 0n n u →∞=, 则1n n u ∞=∑收敛 B. 若1n n u ∞=∑收敛, 则21n n u ∞=∑收敛C. 若21n n u ∞=∑, 则1n n u ∞=∑也收敛 D. 若1n n u ∞=∑发散, 则lim 0n n u →∞≠19. 设幂级数1n n n C x ∞=∑在点3x =处收敛, 则该级数在点1x =-处( A )A. 绝对收敛B. 条件收敛C. 发散D. 敛散性不定 20. 级数1sin (0)!n nx x n ∞=≠∑, 则该级数( B )A. 是发散级数B. 是绝对收敛级数C. 是条件收敛级数D. 可能收敛也可能发散二、填空题1.设22(,)sin (1)ln()f x y x y x y =+-+,则 =')1,0(x f ___1___.2.设()()()22ln 1cos ,y x y x y x f +-+=,则)1,0('x f =____0______.3.二重积分的变量从直角坐标变换为极坐标的公式是()()⎰⎰⎰⎰=DDd d f dxdy y x f θρρθρθρsin ,cos ,4.三重积分的变量从直角坐标变换为柱面坐标的公式是()()⎰⎰⎰⎰⎰⎰ΩΩ=dz d d z f dxdydz z y x f ϕρρϕρϕρ,sin ,cos ,,5.柱面坐标下的体积元素 z d d d dv θρρ=6.设积分区域222:D x y a +≤, 且9Ddxdy π=⎰⎰, 则a = 3 。

2多元函数积分学.docx

2多元函数积分学.docx

2.多元函数积分学K考试内容》(数学一)二重积分、三重积分的概念及性质二重积分与三重积分的计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林公式平面曲线积分与路径无关的条件己知全微分求原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯公式斯托克斯公式散度、旋度的概念及计算曲线积分和曲面积分的应用K考试要求》(数学一)1 •理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理。

2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标)。

3•理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。

4.掌握计算两类曲线积分的方法。

5.掌握格林公式并会运用平面曲线积分与路径元关的条件,会求全微分的原函数。

6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法。

会用高斯公式、斯托克斯公式计算曲面、曲线积分。

7.了解散度与旋度的概念,并会计算。

8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、重心、转动惯量、引力、功及流量等)。

K考试要求』(数学二)1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。

K考试要求》(数学三)1.了解二重积分的概念及性质,掌握二重积分的计算方法(直角坐标、极坐标)。

2.了解无界区域上较简单的广义二重积分及其计算。

K考试要求》(数学四)同数学三2.多元函数积分学K知识点概述H 2. 1二重积分基本概念:定义、基本性质计算方法:直角坐标法(x型简单区域;y型简单区域)极坐标法(r型简单区域;&型简单区域)一般变换法几何应用:面积、曲顶柱体体积物理应用:质量、质心、转动惯量2. 2三重积分基本概念:定义、基本性质计算方法:直角坐标法:x型简单区域;y型简单区域;z型简单区域投影法(先定积分后二重积分)截面法(先二重积分后定积分)柱坐标法;球坐标法;一般变换法儿何应用:体积物理应用:质量、质心、转动惯量、引力2. 3曲线积分第一类曲线积分基本概念:定义、基本性质计算方法:参数化法儿何应用:弧长物理应用:质量、质心、转动惯量、引力第二类曲线积分基本概念:定义、基本性质计算方法:参数化法曲线积分基本定理(曲线积分与路径无关的条件(平面情形,空间情形);全微分的原函数;场论基本概念与计算格林公式(平面曲线积分);斯托克斯公式(空间曲线积分)物理应用:功,环流量,通量第一类曲线积分与第二类曲线积分的联系2. 4曲而积分第一类曲面积分基本概念:定义、基本性质计算方法:投影法(向xoy 平面投影;向yoz 平面投影;向zox 平面投影)儿何应用:曲面面积 物理应用:质量、质心、转动惯量、引力第二类曲面积分基本概念:定义、基本性质计算方法:有向投影法(各向投影;单向投影);化成第一类曲面积分;高斯公式;斯托克斯公式物理应用:通量第一类曲面积分与第二类曲面积分的联系K 典型例题一二重积分H例1 (91103)设D 是XOY 平面上以(1,1),(-1,1),(-1,-1)为顶点的三角形区域,®是D 在第 一象限部分,则 jjp (xy + cosxsin y)dxdy =()K 注》二重积分的对称性例2计算力dy,其中D 是由直线兀=-2,y = 0,y = 2以及曲线兀= -(2y- y 2所围成的平而区域K 注》平面区域的重心(质心)变式1计算Jjp(x+刃加/y,其中: 2以+》2 < y +1例3计算血(手+評如),,其中D :X 2 + y 2 </?2 (/?>0)注1极坐标法是计算二重积分的重要方法变式 1 计算 JJ^ln(x 2+ y 2 yixdy ,其中 D: x 2 + y 2 < 1 变式2计算吕-和如其中D :名+着「注2二重积分的轮换对称性变式3计算H (斗+其)必〃y ,其中D:x 2 + y 2<R 2 (/?>0) H D a 2 b 2(B) 2血 xydxdy (A)cosxsin ydxdy (C) (xy + cos x sin y)dxdy (D) 0x » 0, y 2 0上的正值连续函数例 4 (94103)计算 JJ D + xf(x 2 + y 2)]dxdy ,其中 D 由直线 y = x,y = -\,x = \ 围成,f 为连续函数 变式 1 (01306)计算 J.y [l +兀+〉)]dxdy ,其中 D 由直线 y = x.y =-l,x = 1^成 例 5(02107)计算 JJ 创曲{兀2,护}必労,其中 p = {(X5y ):o<x<l,O<y<l}变式 1 计算^D x 2dxdy ,其中 D: x 4 + y 4 < 1 变式 2 (95305)计算 jj /?2 min{x,y}e-^2^y 2)dxdy ,其中 M 为整个 xoy 平面 例6计算Z = J ■:必产号%‘注将二重积分化成二次积分计算时,确定积分次序是关键变式1计算心恥J 謬字变式2计算I = ff^sin y 2dxdy ,其中D 由y = x, y =五及Y 轴围成变式3计算/二J 診rj ; 了——dy , f\x)在[0, a ]连续u J(d-x)(x- y)例7设/(兀)在[0,1]上连续,证明J :闵:/(兀)/()曲=*[仃(兀)〃兀]2例 8 求在 D:x 2 + y 2 < y 9x>0上连续的 /(x,刃,使 /(x,y) = Jl-x 2一)2 一却需/仏*)dud\ 例9 (97306)求/(/),使得/⑴在[0,2)上连续,且满足方程 f ⑴=e 伽2 + 几2+严 <4,2 f(yx 2 + y 2)dxdy例]0 (00406)设 f(x,y)=<X "求 /(x, y)dxdy ,其中 D:x 2 + y 2 > 2x 0, 他变式 1 (05111)计算二重积分仏巩1 + %2 + y2]Jxdy ,其中 D :x 2 + y 2 < 72,x> 0, y > 0,[1 +兀2 +y2]表示不超过1 +兀2 + y2的最大整数变式4 (05204)计算血aj/(兀)+bj/(y) z/xdy ,其中 为常数,/(x)为£>:%2 + ^2 <4,变式 2 (05209)计算二重积分血| 兀 2+y2_i/dy,其中 D = {(x,y):O<x<l,O<y<l}K 典型例题一三重积分H例1 (88203)设有空间区域V1 : x 2 + y 2 + z 2 < /?2,z > 0 , V2 :x 2 + y 2 +z 2 < /?2,x>0, y >0,z>0,贝!J ()⑷ JJJy xdxdydz = 4川xdxdydz (B) JJ. ydxdydz = ydxdydz(0 zdxdydz = 4出” zdxdydz (D) xyzdxdydz = xyzdxdydz 注三重积分的对称性 例 2 计算 J%兀,其中 V : x 2 + y 2 + z 2 < /?2,x > 0,>?> 0,z > 0 (/? > 0)解一:投影法解二:截面法解三:柱坐标变换法解四:球坐标变换法,2 n 变式1用截面法计算出“如皿,其中V:^- + -p- + ^-<l,z>0变式 2 利用对称性计算^^x-dxdydz ,其中 V : x 2 + y 2 4- z 2 < /?2,z > 0 (7? > 0)dxdydz (l+|x| + |y| + |z|)3 例 4 计算 (x + y + z)dxdydz ,其中 V : 2以+3y2 + 么2 5 z注空间区域的重心(质心)变式 1 设 /⑴可导,V :以 +『2 + z2 w/2 , = /(x 2 +y2 + z^)dxdydz,求 F'(/) 例 6 (03112)设/(r)为正值连续函数,V(t):x 2 + y 2 + z 2 <t 2 , D(t):x 2 + y 2<r 2, 肛⑴ /X + y 2 + z2 Zdxdydz血初 f(x 2 + y 2)dxdy F ⑴ JJ D(Z) /(x 2 + y 2)dxdy (1)讨论F(f)在(0,+oo)内的单调性(2)证明(>0时,F(r)>-G(r)71 K 典型例题一曲线积分与曲面积分H例1计算#厶(2兀2+3y2)〃$ ,其中厶:兀2 + y2 = 2(兀+y)解一:参数化法 解二:利用曲线积分的对称性变式1计算+ yz + xz)d$ ,其中厶为球面兀2 +y2 +z2 =]与平面乂+y + z 二0的交线例3计算皿 其中 V:|x| + |y| + |z|<l例5设/⑴可导, /(0) = 0, V :兀2 + y2 + z2 5/2 求 Ii m+ y2 + z 2)dxdydz f_t f(x 2)dx变式2计算#/2ds ,其中厶为球面兀2 +歹2 + z2 =以与平面兀+ + z = 0的交线例2 计算(x2 + y)dS 9其中S: x2 + y2=a^fi<z< h.a > 0解一:投影法解二:利用曲面积分的对称性例3 (87103)计算(2xy-2y)dx4-(x2 -4x)dy,其中L:x2 + y2 =9取正向(逆时针方向)解一:参数化法解二:格林公式例4 (03110)己知平面区域£)= {(x,y):0<x<^, 0<y<7r},厶为其正向边界,试证(1 )彳厶壮sin yjy _ y^-sin x(}x = #厶壮-sin y dy - ye s^n X dx , ( 2 ) #厶xe sin ydy - >^_sin X dx > 2兀2解一:参数化法解二:格林公式例5 (97105)计算(z - y)dx + (x - z)dy 4- (x - y)dz ,其中L x2 + y2 = 1与平面x-y + z = 2的交线,从Z轴正向往Z轴负向看厶的方向是顺时针正向解-:参数化法解二:斯托克斯公式例6 (00106)计算i r Xdy~ycb",其中厶是以点(1,0)为中心,半径为R(R > 1)的圆周,JL 4兀2 +y2取逆时针方向例7 (98106)确定常数使在右半平面x>0上的向量A(x,y) = 2xy(x4 + y2)a i -x2(x4 + y2)a j为某二元函数u(x9y)的梯度,并求u(x9y)解一:曲线积分法解二:不定积分法变式1(05112)设函数0(y)具有连续导数,在围绕原点的任意分段光滑简单闭曲线厶上, 曲线积分£俠鑒身晋的值恒为同一常数。

高三数学知识点:多元函数和多元微积分

高三数学知识点:多元函数和多元微积分

高三数学知识点:多元函数和多元微积分1. 多元函数1.1 定义多元函数是指含有两个或两个上面所述变量的函数。

通常表示为f(x1,x2, ..., xn),其中x1, x2, ..., xn是变量,称为自变量。

1.2 多元函数的图形多元函数的图形是多元函数的图像。

在平面上,我们可以画出二元函数的图像。

对于二元函数f(x, y),我们可以固定一个变量的值,然后画出另一个变量的值随该变量变化的曲线。

这些曲线称为等值线。

1.3 多元函数的偏导数多元函数的偏导数是指对一个变量的导数,而将其他变量视为常数。

对于函数f(x1, x2, ..., xn),其偏导数可以表示为:•∂f/∂x1:表示对x1的偏导数。

•∂f/∂x2:表示对x2的偏导数。

•∂f/∂xn:表示对xn的偏导数。

1.4 多元函数的极值多元函数的极值是指在某个区域内,函数取得最大值或最小值的情况。

通过求偏导数并解方程组,可以找到多元函数的极值。

2. 多元微积分2.1 多元积分多元积分是指对多元函数进行积分。

根据积分变量的不同,可以分为二重积分、三重积分和四重积分等。

2.1.1 二重积分二重积分是指对二元函数在某个区域上进行积分。

其一般形式为:∫∫_D f(x, y) dA其中,D表示积分区域,f(x, y)是被积函数,dA是面积元素。

2.1.2 三重积分三重积分是指对三元函数在某个区域上进行积分。

其一般形式为:∫∫∫_D f(x, y, z) dV其中,D表示积分区域,f(x, y, z)是被积函数,dV是体积元素。

2.1.3 四重积分四重积分是指对四元函数在某个区域上进行积分。

其一般形式为:∫∫∫∫_D f(x, y, z, w) dV其中,D表示积分区域,f(x, y, z, w)是被积函数,dV是体积元素。

2.2 向量微积分向量微积分包括向量的导数和向量的积分。

2.2.1 向量的导数向量的导数是指对向量场的导数。

对于向量场F(x, y, z),其导数可以表示为:∂F/∂x, ∂F/∂y, ∂F/∂z2.2.2 向量的积分向量的积分是指对向量场进行积分。

华中科技大学微积分下复习笔记—多元函数微分学

华中科技大学微积分下复习笔记—多元函数微分学

文档说明:本文档为作者自己整理的微积分(下)有关多元函数微分学的复习笔记,包含三部分——反例总结(基于自己的做题经验)、基本公式(基于华中科技大学微积分课本)和题型汇总(基于华中科技大学微积分学习辅导),请勿用作商用,若文中有打错的字还请多多包涵。

反例总结1.在(0,0)不连续,但fx和fy都存在且为0,所以用它可以组很多反例。

,在(0,0)。

满足以下命题:1)一元函数f(x,y0)与f(x0,y)分别在x0与y0连续,但f(x,y)在(x0,y0)不连续。

2)偏导数存在但原函数不连续。

3)偏导数存在但不可微。

4)偏导数存在,但除了沿坐标轴的正负方向,其余方向导数均不存在。

2.f(x,y)=|x+y|在(0,0)连续,但是偏导数不存在。

可以满足以下命题:1)原函数连续但偏导不存在。

2)沿任意方向的方向导数均存在,但偏导数不存在。

3.其他反例:1)f(x,y)在(x0,y0)连续,则一元函数f(x,y0)与f(x0,y)分别在x0与y0连续,但反过来不成立。

,在(0,0)点不成立。

2)可微推不出偏导数连续。

复杂式子比较记1.在f(x0,y0)连续f(x0,y0)- f(x0,y0)=02.偏导数f x(x0,y0)===3.验证在定点可微, - f(x0,y0)4.复合函数相关公式1)求导链式法则:全导数;比如z=(x,y),y=(x),2)微分的链规则:df(u1,u2 … u n)=…;比如z=f(u1(x,y),u2(x,y)),dz=z x dx+z y dy=z u1du1+z u2du25.方向导数和梯度1)方向导数a.几何意义:指的是函数在n方向上切线的斜率,即描述了在n方向上函数的增长速度。

b.条件:f在P。

点可微c.公式:其中,此事梯度指向函数值增长最快的方向,也指向法矢的方向。

d.定义公式:e.特殊地,梯度方向的方向导数是2)梯度a.几何意义:本质是一个向量,在这个方向上方向导数取最大,即梯度指向函数增长最快的方向,也即法矢。

第八讲 多元函数积分学知识点

第八讲  多元函数积分学知识点

第八讲 多元函数积分学知识点一、二重积分的概念、性质1、 ∑⎰⎰=→∆=n i i i i d D f dxdy y x f 10),(lim ),(δηξ ,几何意义:代表由),(y x f ,D 围成的曲顶柱体体积。

2、性质:(1)=⎰⎰D dxdy y x kf ),(⎰⎰Ddxdy y x f k ),((2)[]⎰⎰+D dxdy y x g y x f ),(),(=⎰⎰D dxdy y x f ),(+⎰⎰D dxdy y x g ),( (3)、D dx d y D =⎰⎰(4)21D D D +=,⎰⎰D dxdy y x f ),(=⎰⎰1),(D dxdy y x f +⎰⎰2),(D dxdy y x f (5)若),(),(y x g y x f ≤,则≤⎰⎰D dxdy y x f ),(⎰⎰Ddxdy y x g ),((6)若,),(M y x f m ≤≤则MD dxdy y x f mD D ≤≤⎰⎰),( (7)设),(y x f 在区域D 上连续,则至少存在一点D ∈),(ηξ,使=⎰⎰D dxdy y x f ),(D f ),(ηξ二、计算 (1) D:)()(,21x y x b x a ϑϑ≤≤≤≤⎰⎰⎰⎰=)()(21),(),(x x ba D dy y x f dx dxdy y x f ϑϑ (2) D :)()(,21y x y d y c ϕϕ≤≤≤≤,⎰⎰⎰⎰=)()(21),(),(x x d c D dy y x f dy dxdy y x f ϑϕ 技巧:“谁”的范围最容易确定就先确定“谁”的范围,然后通过划水平线和垂直线的方法确定另一个变量的范围(3)极坐标下:θθθrdrd dxdy r y r x ===,sin ,cos⎰⎰⎰⎰=)(0)sin ,cos (),(θβαθθθr D rdr r r f d dxdy y x f 三、曲线积分1、第一型曲线积分的计算(1)若积分路径为L :b x a x y ≤≤=),(φ,则 ⎰L ds y x f ),(=dx x x x f ba ⎰'+2))((1))(,(φφ (2)若积分路径为L :d y c y x ≤≤=),(ϕ,则⎰L ds y x f ),(=dy y y y f dc ⎰'+2))((1)),((ϕϕ (3)若积分路为L :⎩⎨⎧==)()(t y t x ϕφ,βα≤≤t ,则⎰L ds y x f ),(=dt t t t t f ⎰'+'βαϕφϕφ22))(())(())(),(( 2、第二型曲线积分的计算(1) 若积分路径为L :)(x y φ=,起点a x =,终点b y =,则⎰=+L dy y x Q dx y x P ),(),([]dx x x x Q x x P ba ⎰'+)())(,())(,(φφφ (2) 若积分路径为L :)(y x ϕ=,起点c y=,终点d y =,则 ⎰=+L dy y x Q dx y x P ),(),([]dy y y Q y y y P d c⎰+')),(()())),((ϕϕϕ (3) 若积分路为L :⎩⎨⎧==)()(t y t x ϕφ,起点α=t ,终点β=t ,则⎰=+L dy y x Q dx y x P ),(),([]dt t t t Q t t t P ⎰'+'βαϕϕφφϕφ)())(),(()())(),((。

多元函数微积分复习概要

多元函数微积分复习概要

第六章多元函数微积分复习要点一、基本概念及相关定理1.多元函数的极限定义:函数(,)z f x y =在区域D 有定义,当点P(x ,y )D ∈沿任意路径无限趋于点000(,)P x y (0P P ≠)时, (,)f x y 无限趋于一个确定的常数A,则称常数A 是函数(,)z f x y =当P(x ,y )趋于000(,)P x y 时的极限.记作0lim (,)x xy y f x y A →→=,或00(,)(,)lim(,)x y x y f x y A →=,或(,)f x y A →,00(,)(,)x y x y →,或lim (,)f x y A ρ→=,或(,)f x y A →,0ρ→.其中,ρ= 2.二元函数连续的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 有定义,如果对任意0(,)()P x y U P ∈,都有0000(,)(,)lim(,)(,)x y x y f x y f x y →=(或0lim ()()P P f P f P →=),则称函数(,)z f x y =在点000(,)P x y 处连续.3.偏导数的定义:函数(,)z f x y =在点000(,)P x y 的某一邻域0()U P 有定义.(1)函数(,)z f x y =在点000(,)P x y 处对x 的偏导数定义为00000(,)(,)lim x f x x y f x y x∆→+∆-∆,记作00x x y y zx ==∂∂,或00x x y y f x==∂∂,或00(,)x z x y ',或00(,)x f x y ',即x x y y zx==∂∂=00000(,)(,)lim x f x x y f x y x∆→+∆-∆.(2)函数(,)z f x y =在点000(,)P x y 处对y 的偏导数定义为00000(,)(,)lim y f x y y f x y y∆→+∆-∆,记作00x x y y zy ==∂∂,或00x x y y f y==∂∂,或00(,)y z x y ',或00(,)y f x y ',即x x y y zy==∂∂=00000(,)(,)lim y f x y y f x y y∆→+∆-∆.而称z x∂∂,或f x ∂∂,或(,)x z x y ',或(,)x f x y '及[z y ∂∂,或f y∂∂,或(,)y z x y ',或(,)y f x y ']为(关于x 或关于y )偏导函数.高阶偏导数:22(,)xx z zf x y x x x∂∂∂⎛⎫''== ⎪∂∂∂⎝⎭或(,)xx z x y '', 2(,)xy z zf x y y x x y∂∂∂⎛⎫''== ⎪∂∂∂∂⎝⎭或(,)xy z x y '', 2(,)yx z zf x y x y y x⎛⎫∂∂∂''== ⎪∂∂∂∂⎝⎭或(,)yx z x y '', 22(,)yyz zf x y y y y⎛⎫∂∂∂''== ⎪∂∂∂⎝⎭或(,)yy z x y ''. 同理可得,三阶、四阶、…,以及n 阶偏导数.4.全微分定义:设函数(,)z f x y =在点(,)P x y 的某一邻域()U P 有定义,若函数在点(,)x y 的全增量(,)(,)z f x x y y f x y ∆=+∆+∆-可表示为()z A x B y ρ∆=∆+∆+,其中A 、B 不依赖于x ∆、y ∆,仅于x、y有关,ρ=,则称函数(,)z f x y =在点(,)x y 处可微分,称A x B y ∆+∆为函数(,)z f x y =在点(,)x y 的全微分,记为dz ,即dz A x B y =∆+∆.可微的必要条件:若函数(,)z f x y =在点(,)x y 处可微分,则(1)函数(,)z f x y =在点(,)x y 的偏导数z x ∂∂、zy∂∂必存在;(2)全微分为z z dz x y z x y z dx dy x y∂∂+∂∂∂=∆+∆=∂∂∂. 推广:函数(,,)u f x y z =在点(,,)x y z 的全微分为u u udu dx dy dz x y z∂∂∂=++∂∂∂.可微的充分条件:若函数(,)z f x y =的偏导数z x∂∂、z y∂∂在点(,)x y 处连续⇒(,)z f x y =在点(,)x y 处可微分.5.复合函数微分法(5种情况,由简单到复杂排列): (1)含有多个中间变量的一元函数(,,)z f u v w =,()u u x =,()v v x =,()w w x =,则dz z du z dv z dwdx u dx v dx w dx∂∂∂=++∂∂∂, 称此导数dzdx为全导数;(2)只有一个中间变量的二元复合函数 情形1:()z f u =,(,)u u x y =,则z dz ux du x∂∂=∂∂ ,z dz u y du y∂∂=∂∂. 情形2:(,,)z f x y u =,(,)u u x y =,则z f z u x x u x∂∂∂∂=+∂∂∂∂ ,z f z u y y u y∂∂∂∂=+∂∂∂∂. zx wv u xx zuyxzy yuxx其中,f x∂∂与z x∂∂是不同的,z x∂∂是把复合函数[,,(,)]z f x y u x y =中的y 看作不变量而对x 的偏导数;f x∂∂是把函数(,,)f x y u 中的y 及u 看作不变量而对x 的偏导数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

围成
D

原式=
dy
y sin y2dx
0
0
yx
sin y2 ydy 1 0
x
例、计算 sin xdxdy , 其中 D 由 y x2 , y x所围. y Dx
解:I
1
dx
0
x sin x
1 sin x
dy
x x2
0x
y
x x2
dx
1
0 (1 x)sin xdx 1 sin1
1
dx
1
1 x2
dy
1 x2
2 x2
x22 y2 f ( x, y, z)dz.
x2 y2 1
2.利用柱面坐标计算
f (x, y, z)dxdydz
d
2( ) rdr
z2(r, ) f (r cos , r sin , z) dz
1( )
z1(r , )
计算方法: 三重积分的投影方法结合二重积分的极坐 标运算
多元函数积分学
一、 二重积分 f ( x, y)d D
二、三重积分 f ( x, y, z)dv L f ( x, y)ds
三、曲线积分
L P( x, y)dx Q( x, y)dy
四、曲面积分
P
(
x
,
y,
z
)dydz
Q( x, y, z)dzdx R( x, y, z)d x d y
第十章:重积分
f ( x, y)dxdy
A

积分中值定理
4、设D {(x, y) x 0, y 0, x y 1},则( )。
A. (x y)2d (x y)3d
D
D
B. (x y)2d (x y)3d
D
D
C. (x y)2d (x y)3d D. 无法确定这两个积分的大小
D
D
5、设区域 ( x, y, z) x 1, y 1, z 1 ,则下列不等式正
确的是( )
A. xdv 0
B. ( x y)dv 0
C. ( x y z)dv 0 D. ( x y z 3)dv 0
二、二重积分的计算方法
1.利用直角坐标计算
(1)X-型区域:
要兼顾被积函数和积分区域两个方面,不可误用
I f ( x, y)dxdy
D
(1)若D关于 x 轴对称,则
当f ( x , y )关于 y 为奇函数,I 0
当f ( x , y )关于 y 为偶函数, I 2 f ( x, y)dxdy D1
(2)若D关于 y 轴对称,则
当f ( x , y )关于 x 为奇函数,I 0
n 1
|1y
dy
o
1
对积分变量
x来说是常数
x
1 1 f ( y)(1 y)n1dy 右边 n 1 0
三、三重积分的计算方法
1.利用直角坐标计算
z
“坐标面投影”法
f ( x, y, z)dxdydz
dxdy z2( x, y) f ( x, y, z)dz
D
z1( x, y)
o
定限步骤:
o
y x2 yx
x
2. 交换积分顺序 根据给出的积分上下限定出积分区域
例、计算
1
dy
1
sin x3dx
0
y
y
x y
解:先确定积分区域
0 y 1
D:
y x 1

1
dx
x2 sin x3dy
0
0
1•

o
x
x 1
1
sin
x3
0
x2dx
1 3
[cos
x3
]10
1 (1 cos1) 3
3. 利用对称性简化计算
f
(
x )d
y
其中:D由x2 y2 4x, x2 y2 8x, x y, y 2x围成
D
f
(
x y
)d
arctan 2
d
4
8cos 4cos
f (cos )rdr sin
o
y
y 2x yx
x
cos
例. 2 d
f (r cos , r sin )rdr (
0
0
)。
1
y y2
例2. 计算三重积分
其中为由
柱面 x2 y2 2x ( y 0)及平面 z 0, z a (a 0), y 0
z
所围 成半圆柱体.
a
解: Dxy: x2 y2 2x,
a
原式 D rdrd 0 z r d z
2
d 0
2cos
r2 dr
0
a
zdz
0
4a2
2 cos3 d
y
在给定的积分区域内,求出 x2 y2 4 D2
的解析表达式,即去掉绝对值。
x2 y2 4 dxdy
D
D1
D2
D1
2 3x
(4 x2 y2 )dxdy ( x2 y2 4)dxdy
D1
D2
2
d
2 (4 r 2 ) rdr
2
d
3
(r
2
4)
rdr
0
0
0
2
41
柱体的体积为 V f ( x, y)dxdy. D
若立体是由曲面 z 2 (x, y)与 z 1(x, y)所围成,立体 在 xoy面上的投影区域为D,且2 (x, y) 1(x, y),则
V [2 (x, y) 1(x, y)]dxdy D
8 a2
30
9
o y
2 x x2 y2 2x ( y 0)
y
r 2cos
D
O
x
例、设是由曲面 z x2 2y2及 z 3 2x2 y2所
围成的有界闭区域。试将 f (x, y, z)dv分别化成
直角坐标与柱面坐标下的三次积分。
解: D : x2 y2 1
直角坐标系:
1
1 x2
1、二重积分的概念、性质、及其几何意义
2、计算: 熟练掌握二重积分的计算
直角坐标系中
x y
型区域 型区域
选择适当的积分次序
在极坐标系中:一种积分次序 先r后
3、三重积分的概念及计算:直 柱角 面坐 坐标 标系 系中 中 只需掌握坐标面投影法
一、二重积分的概念和性质
n
1.定义 :
f (x,
1
1
A. dx
f ( x, y)dy B. dx f ( x, y)xdy
0
0
0
0
1
1
C. dx f ( x, y)dy
0
0
1
x x2
D. dx
f ( x, y)dy
0
0
5. 其它
例、计算I x2 y2 4 dxdy ,其中 D : x2 y2 9
D
分析 由于被积函数中含有绝对值, 所以应首先
2
例、设f ( x, y) 1 ( x2 y2 f ( x, y)dxdy), , NhomakorabeaD
D : y 1 x2及y 0围成,求 f ( x, y)。
解: 设 f ( x, y)dxdy A, D
则:
A
1
D
x2 y2dxdy 1 Adxdy
D
1
d
1 r 2dr A
0
0
2
1 A 32
2º定限
下顶: z x2 2 y2 ( 或由(0,0)点处函数值的大小确定) 上顶:z 2 x2
2º定限
下顶: z x2 2 y2
上顶:z 2 x2
I f ( x, y, z)dxdydz
y
2 x2
dxdy f ( x, y, z)dz
D
x22 y2
D
–1
O 1x
D
y)d
lim
0
i 1
f
(i ,
i ) i
2.几何意义:表示曲顶柱体的体积
顶 : z f ( x, y) 底 : D
V f ( x, y)d ( f ( x, y) 0)
D
性质:线性性质; 可加性; D dxdy; 单调性; D
估值性质:若 m f ( x, y) M , 则 m D f ( x, y)d M D . D
3)
4
2
2
2
0 d 1 f (r cos , r sin ) r dr.
y
x2 y2 4x
x2 y2 4y
D
4)
o
D 4x
o
x
4 sin
0 d 0 f (r cos , r sin ) r dr
2
4 cos
d f (r cos , r sin ) r dr
2
0
例、化成极坐标系下的二次积分: D
例.计算I
(x y
x2 y2 )dxdy
0
x2 y2 1
1 y2
,
解: I D
x dxdy
D
y x2 y2 1 y2 dxdy
关于x为奇函数,
D关于y轴对称,
关于y为奇函数,
D关于x轴对称,
例、设 f (u)是连续函数,区域 D : 1 x 1, 2 y 2,
D1 : 0 x 1,0 y 2,则 I f ( x2 y2 )dxdy与 D
[
z2(
x,
y)
f
(
x,
y,
z
)
d
相关文档
最新文档