TWDM-PON
一种基于FPGA实现TWDM-PON系统同步时钟和数据通道分离的设计

• 142•引言:随着宽带接入的发展,需要对用户带宽进行升级,而可以承载高带宽业务的TWDM-PON 采用多波技术,每个波长都是独立数据和时钟通道,传统的TWDW-PON 技术中数据和时钟通道是合一的,本文提出一种这两种通道分离的设计实现。
前言:随着多种多样高带宽数据传输业务的推广,用户对带宽的要求大幅度上升。
2013年公布的《国务院关于印发“宽带中国”战略及实施方案的通知》中要求,到2015年,基本实现城市光纤到楼入户、农村宽带进乡入村,部分发达城市宽带接入能力达到100Mbps ;到2020年,发达城市部分家庭用户可达1吉比特每秒。
目前运营商主要使用的GPON 不能满足宽带接入能力达到100Mbps 的要求。
解决该问题需要引入新的技术。
一种提升TDM PON 通道带宽,仍采用和GPOP/EPON 技术一样采用TDM 时分技术,但是采用了更高速率的光器件,但是高速25G/40G 的光器件成本较高,色散等问题较难解决。
另一种提升带宽的办法是在PON 系统中引入波分技术,通过多波长承载业务从而提升系统带宽。
TWDM-PON (Time and Wavelength Division Multiplexed Passive Optical Network )即时分和波分复用无源光网络,TWDM-PON 技术在每根光纤提供四对或更多波长,每对波长可提供2.5Gbps 或10Gbps 或25Gbpd ,可以实现40乃至100G 的系统带宽,系统可以采用对称或非对称速率的双向传输能力。
在2012年,FSAN 将TWDM-PON 技术定为NG-PON2架构实施的方案选择。
目前TWDM-PON 采用4个XG-PON 承载在不同的波长上堆叠而成,可以与现有GPON/XG-PON 在同一个ODN 中实现共存;TWDM-PON 提供下行40Gbps 、上行10Gbps 速率的接入能力,其中每个ONU 上行峰值速率2.5Gbps ,下行峰值速率10Gbps ,国际标准组织ITU-T 和FSAN 已完成对TWDM-PON 的标准化,对应G.989系列标准,目前已发布TWDM-PON 总体技术要求标准G.989.1、物理层技术要求标准G.989.2和TC 层技术要求标准G.989.3。
TWDM领引光纤进入全新波分时代

TWDM-PON引领光纤进入全新波分时代基于时分和波分复用(以下简称TWDM-PON)将是通信行业在NG-PON2即下一代光纤接入的技术选择。
TWDM-PON技术将帮助网络运营商实现开源节流。
1、从提升带宽到创造价值:光纤正在进行角色转换目前运营商主要通过GPON技术实现将光纤网络向用户侧的延伸。
GPON技术可以充分满足未来几年驻地用户对于带宽的要求。
但从未来业务和市场角度考虑,运营商必须及时找到合适的技术来实现对GPON在传输带宽上的超越,从而发挥光纤网络的极致能力,获得收益的最大化。
许多运营商希望拥有一张灵活弹性的网络,可以支持很多可盈利业务,有效地利用已有资产,并降低大规模部署极速宽带时的成本。
TWDM技术正是为达成以上几个目标而出现。
最近全业务接入组织FSAN和国际通信联盟ITU正在完成对TWDM的标准化,这将帮助运营商未来实现对现有GPON网络平滑高效的演进发展。
2、光纤演进路标FSAN和ITU将光纤网络未来演进定义为两个阶段:NG-PON1(中期)和NG-PON2(长期)。
NG-PON1是基于XG-PON1的技术实现,可提供10Gbps下行速率和2.5Gbps上行速率。
然而当XG-PON1可实际商用投入市场后却遇到一定的阻碍,在中短期时间内市场对于10Gbps速率的接入业务需求并不明显。
随着更新技术的出现,市场也逐步将注意力转移到了NG-PON2。
对于NG-PON2的发展,FSAN做了几个评估方案,认为可能会出现以下三个主要竞争技术:●TDM演进方案在概念上是与当前的PON系统非常接近的,采用了更高速率的光电子,可以为用户提供非常高效的共享带宽。
但该技术方案需要每个ONT(光终端)在40Gbps的线速下运作,该速率已远超市场对终端个人用户需求的预测。
基于高成本、色散问题无法解决等难题角度考虑,FSAN组织已经放弃了TDM-PON技术。
●密波分复用PON(DWDM-PON)技术支持在一根光纤上传送很多波长,它可以为每个PON用户提供一根独享的1Gbps对称速率的波长(未来可实现10Gbps)。
一种改进的TWDM-PON架构方案及带宽分配算法

一种改进的TWDM-PON架构方案及带宽分配算法徐赟昊;沈建华【期刊名称】《光通信技术》【年(卷),期】2017(41)2【摘要】Based on the analysis of typical application scene for hybrid business and home building,this paper proposes an improved TWDM-PON system architecture along with a relevant improved DWBA algorithm,which supports the resource sharing of different types of ONU group.When an ONU has service requirement exceeding default bandwidth limit,OLT can dynamically switch the upstream wavelength for the ONU in order to entirely make use of the overall resource of the system.Theoretical analysis and simulation experiment show that the performance of latency has an obvious improvement in this system.%针对典型的商住混合楼宇应用场景,提出了一种TWDM-PON架构方案及带宽分配算法.该算法支持不同类型ONU组间资源共享,在有ONU突发业务请求超出带宽限制时,OLT动态切换其上行波长以充分利用系统整体带宽资源.理论分析和仿真实验表明,系统总体时延性能有明显提升.【总页数】4页(P17-20)【作者】徐赟昊;沈建华【作者单位】南京邮电大学通信与信息工程学院,南京210003;南京邮电大学通信与信息工程学院,南京210003【正文语种】中文【中图分类】TN929.11【相关文献】1.一种改进的EPON动态带宽分配算法与仿真 [J], 付兰英;丰大红;田丽军;王洪学;赵润清2.一种改进的基于流量预测的动态带宽分配算法 [J], 郑宇;李广军;钱宇平3.TWDM-PON中时延约束节能动态波长带宽分配算法 [J], 于存谦;唐明珠;何荣希4.一种改进的光网络动态上行带宽分配算法研究 [J], 荆倩;沈三民5.TWDM-PON中基于网络编码的动态波长带宽分配算法 [J], 孙皓;杜俐洁;何荣希因版权原因,仅展示原文概要,查看原文内容请购买。
TWDM-PON中软件定义控制的全局资源分配机制

TWDM-PON中软件定义控制的全局资源分配机制熊余;张振振;师劲;吴大鹏【摘要】针对多时分波分复用无源光网络资源缺乏全局性的集中控制和灵活分配的问题,建立了软件定义光接入网络架构,并提出一种带有预测的全局资源分配机制.基于软件定义光接入网络,运用模糊神经网络预测模型减小控制器与光线路终端信息交互时延,并采用自适应弹性权重对光线路终端间的资源进行分配;同时,对各光线路终端内的资源设计周期空闲时隙填充式的分配算法,进一步降低网络时延.仿真结果表明,所提资源分配机制从网络全局视角优化了不同层级资源的分配,有效地减小了网络整体时延,提高了信道利用率.%For lack of global centralized control and flexible allocation of the inter-TWDM-PONs network resource,the architecture of the software-defined optical access network is designed and a novel global resource allocation mechanism with prediction is proposed.Based on the software-defined optical access network,the fuzzy neural network predicting model is utilized to reduce the interactive information delay between controller and OLT.Simultaneously,the adaptive and flexible weighting is utilized to allocate the inter-OLTsresource.Furthermore,an allocation algorithm with filling idle slots is designed to further reduce the network delay for the intra-OLT resource.Simulation results show that the proposed mechanism can optimize allocation of the different layers resource from the global network view.Also,the overall network delay is effectively reduced,and the channel utilization is improved.【期刊名称】《西安电子科技大学学报(自然科学版)》【年(卷),期】2017(044)005【总页数】7页(P140-146)【关键词】时分波分复用无源光网络;软件定义网络;模糊神经网络;全局资源分配;空闲时隙【作者】熊余;张振振;师劲;吴大鹏【作者单位】重庆邮电大学光通信与网络重点实验室,重庆 400065;重庆邮电大学光通信与网络重点实验室,重庆 400065;重庆邮电大学光通信与网络重点实验室,重庆 400065;重庆邮电大学光通信与网络重点实验室,重庆 400065【正文语种】中文【中图分类】TN929.1Abstract : For lack of global centralized control and flexible allocation of the inter-TWDM-PONs network resource, the architecture of the software-defined optical access network is designed and a novel global resource allocation mechanism with prediction is proposed. Based on the software-defined optical access network, the fuzzy neural network predicting model is utilized to reduce the interactive information delay between controller and OLT. Simultaneously, the adaptive and flexible weighting is utilized to allocate the inter-OLTs resource. Furthermore, an allocation algorithm with filling idle slots is designed to further reduce the network delay for the intra-OLT resource. Simulation results show that the proposed mechanismcan optimize allocation of the different layers resource from the global network view. Also, the overall network delay is effectively reduced, and the channel utilization is improved.Key Words: time and wavelength division multiplexed passive optical network; software defined network; fuzzy neural network; global resource allocation; idle time时分波分复用无源光网络(Time and Wavelength Division Multiplexed Passive Optical Network, TWDM-PON)以其低成本、大容量、广覆盖等优势,成为下一代无源光网络最具竞争力的解决方案之一[1-2].而资源分配对TWDM-PON的传输性能起着至关重要的作用.由于TWDM-PON具有波长和时隙二维特性,其资源调度较传统单纯的时分复用或波分复用无源光网络更为复杂[3].因而,如何设计高效的资源分配机制,在减小时延的同时提高信道利用率,是TWDM-PON 研究的重点问题[4-5].针对波长和时隙的分配问题,文献[6]基于波长最早可用原则对光网络单元(Optical Network Unit, ONU)进行资源调度,有效地减小了平均包时延,但未充分利用轻负载光网络单元的剩余带宽,导致信道利用率不高.文献[7]通过收集轻负载光网络单元的剩余带宽,并将其合理地分配给重负载光网络单元,可提高信道利用率,但引起了周期空闲时隙的产生.文献[8]提出基于用户行为感知的动态资源分配机制,在保障用户服务质量的同时,一定程度上减小了周期空闲时隙.文献[9]基于波长结束时间提出多线程部分空隙填充机制(EFT-Partial-VF),有效地消除了闲置时间,提高了信道利用率.上述算法基于“请求-授予”机制实现光线路终端(Optical Line Terminal, OLT)与光网络单元之间的资源分配,但无法从全局视角实现多个光线路终端之间的网络资源优化配置,使得整体网络资源利用率不高.而具有集中控制及支持软件可编程的软件定义网络(Software DefinedNetwork, SDN)可解决上述问题,并受到业界高度关注,近年来也有学者把软件定义网络技术引入到光接入网领域.文献[10]通过建立软件定义以太网无源光网络架构,并设计可编程动态带宽分配(Dynamic Bandwidth Allocation, DBA)模块,可灵活改变动态带宽分配算法以满足不同类型业务带宽要求,但忽视了对全局资源的高效利用.文献[11]向TWDM-PON引入软件定义网络技术,通过对光网络单元灵活分组和所提S-DBA算法,优化了全局资源的分配并减小了周期空闲时隙,但未考虑软件定义网络控制器与光线路终端信息交互对时延的影响.文献[12]提出基于软件定义光接入网的感知服务流调度(Service-Aware Flow Scheduling,SA-FS)机制,实现了对接入网全局资源的优化配置,改善了全局资源利用率及网络时延,但也未考虑软件定义网络控制器与光线路终端信息交互对时延的影响.软件定义网络控制器与光线路终端的信息交互,将增大资源分配时的数据包时延,且TWDM-PON本身具有长距离的特性,光线路终端内的资源分配时延较大,这都将进一步恶化全网的时延性能.因此,如何减小软件定义网络控制器与光线路终端信息交互产生的时延,已成为软件定义网络控制下TWDM-PON高效分配资源的关键问题.此外,从网络全局视角看,基于软件定义的光接入网使整个TWDM-PON的带宽资源分配划分为光线路终端间和光线路终端内两个部分,因此如何高效地进行光线路终端间和光线路终端内的资源分配,也是保障全局资源高效分配的重要问题.为了减小软件定义网络控制器与光线路终端信息的交互时延和实现网络全局资源的高效分配,笔者提出带有预测的全局资源分配(Global Resources Allocationwith Predicting, GRAP)机制.全局资源分配由光线路终端间资源分配和光线路终端内资源分配两部分组成.光线路终端间资源分配运用模糊神经网络(Fuzzy Neural Network, FNN)自学习和高容错的优点实现光线路终端带宽需求的精确预测,降低软件定义网络控制器与光线路终端信息交互时延,同时采用自适应弹性权重算法,以实现光线路终端间带宽资源高效公平地分配;光线路终端内资源分配根据所提光网络单元传输机制,设计周期空闲时隙填充式动态带宽分配算法,减小周期空闲时隙,以实现光线路终端内带宽资源高效地分配.软件定义光接入网(Software Defined Optical Access Network, SDOAN)打破了传统光接入网的刚性架构,可实现控制平面与数据平面的分离,两者之间利用OpenFlow协议完成信息互通.软件定义光接入网控制区域由多个TWDM-PON 组成,与城域网的上行资源调度和光线路终端间资源分配都由软件定义网络控制器远程统一控制,其架构如图1所示.该架构包括光线路终端、光网络单元端和可变光分配网(Optical Distribution Network, ODN),其中光分配网由可编程顶端光机柜和其他无源器件组成.经软件定义网络硬件抽象、可编程应用网络的设计和软件定义光接入网架构,可将光线路终端间资源抽象成资源池,通过软件定义网络控制器实现集中控制,能有效地避免光线路终端间资源分配不合理造成的资源浪费[11].软件定义光接入网需对OpenFlow协议进行必要的扩展,在流表中加入PON资源分配所需要的保护时隙、OLT/ONU个数、时隙大小和带宽信息等.同时流表需含有特定的行为规则,如上行或下行方向流表信息、流表的丢失和流的重新配置等.由此软件定义光接入网全局资源分配可分为图1中所示的两部分,即光线路终端间资源分配和光线路终端内资源分配.传统光接入网因其独立性,光线路终端间资源缺乏协同分配能力,无法实现全局资源高效配置.基于软件定义光接入网架构的全局资源分配机制,通过软件定义网络控制器的全局资源集中控制能力,对光线路终端间资源和光线路终端内资源协同调度和优化配置,实现了软件定义光接入网全局资源高效地分配,其具体分配过程如下所示.2.1 带有预测性的光线路终端间资源分配TWDM-PON广覆盖的特性使得其接入用户数众多,业务数量巨大,且用户业务具有非线性、自相似和长期相关性等特点[13].而模糊神经网络的神经元类似网络节点,且具有优异的自学习能力,可以不断优化预测模型的参数.同时,模糊神经网络高容错的模糊规则能更精准地确定业务特性,提高收敛速率.由于TWDM-PON轮询周期长度远大于模糊神经网络时间计算复杂度,所以能满足光线路终端业务量预测的时间需求.利用之前光线路终端业务量的历史数据,由模糊神经网络预测模型可提前获知下一周期光线路终端业务量,并提前为之分配资源,能避免下一周期软件定义网络控制器与光线路终端的信息交互获取光线路终端业务量而产生的时延.模糊神经网络预测模型如图2所示,其原理是通过软件定义网络控制器收集光线路终端m个需求带宽数据x1,x2,…,xm,并划分为两部分,前h为学习数据,后 (1-h) 为校验数据.利用学习数据由误差反向传播法(Back-Propagation Algorithm, BPA)确定模型参数.校验数据用于与预测数据比较.若校验数据与模型预测数据之间的差值不满足预测精度要求,则经反向传播法更新模型参数,直至满足精度要求.μij(xi)为高斯隶属度函数,表示第k层第j个节点的输出,表示第k层第j个节点的输入.模糊神经网络模型中x和y之间的关系为 = .由模糊神经网络5层模型各层间关系可依次推导出每层节点输入输出函数的关系式,并得出最终输出y:其中,E为误差函数,;为实际值.模糊神经网络预测精度目标函数是通过不断调整参数mij,σij和wi来实现的.参数调整截止条件为ε=3% 或学习步长大于 2 000.参数调整采用反向传播法,根据复合函数链式求导法可反向计算出隶属度函数与各层误差的关系式.参数mij,σij和wi的更新过程为其中,η表示影响因子,取值范围为0至1.经上述过程预测得光线路终端下一周期需求带宽.为保证预测精准度,在软件定义网络控制器监测到光线路终端下一周期真实带宽时,更新控制器中光线路终端需求带宽的数据,确保用于预测的数据都为光线路终端实际需求带宽.因各光线路终端需求带宽不同,为公平高效地分配光线路终端层资源,对软件定义光接入网区域内光线路终端设定自适应弹性权重因子,Wn= {w1,w2,…,wM},Wn为第n周期M个光线路终端权重因子集合,wm为OLTm的权重因子,最终软件定义网络控制器由第n周期预测带宽和弹性权重因子确定各光线路终端最终分配的带宽:2.2 光线路终端内资源高效地分配为实现软件定义光接入网全局资源高效分配,需要光线路终端间和光线路终端内资源联合优化分配.而光线路终端内资源分配因其“请求-授予”的固有轮询机制,会引起周期空闲时隙,造成资源的浪费.其周期空闲时隙 Tidle= TDBA+ TRTT+ Tqueue,其中Tqueue 为光网络单元收到授予带宽信息到开始发送数据的排队时间,TDBA为动态带宽分配计算时间,TRTT为往返时延.为减小周期空闲时隙,将周期内每条波长上最后一个光网络单元的REPORT信息提前到数据包头部发送,改变动态带宽分配计算的起始时间,进而减小周期空闲时隙.假设U1,U2,…,UN在W条波长传输数据,光网络单元按传输数据大小升序依次向W条波长上传数据,同时为保证公平性,其传输机制如图3所示.其中表示第n周期第i条波长上最后一个光网络单元上传数据开始时刻,表示第n周期第i条波长上最后一个光网络单元上传数据结束时刻.因此,和的计算式为由此可确定周期轮询时间Tcycle (n)=Tn-Tn-1,其中 Tn= max(,+ Tidle),为第n周期轮询结束时刻.进而得出光网络单元最小保证带宽Bmin.此时光线路终端为Ui分配初次授予带宽为其中,按比例分配,Ri表示ONUi的申请带宽.因周期内每条波长光网络单元数据传输结束时刻不同,部分波长仍存在周期空闲时隙,如图3所示.当总额外剩余带宽小于总额外需求时,即其中l为轻负载光网络单元集合,h为重负载光网络单元集合.此时对重负载光网络单元初次授予带宽后仍未满足需求,将波长j上剩余周期空闲时隙再分配:其中,为第j条波长剩余周期空闲时隙分配给重负载Ui的带宽;i∈K,K为波长j 上重负载光网络单元集合;R表示波长的传输速率.为保障对剩余周期空闲时隙高效地分配,将每周期每条波长上光网络单元分成波长末光网络单元和非波长末光网络单元.因光网络单元传输数据量按升序排列,所以波长末光网络单元数据量最大.若被分配剩余周期空闲时隙仍小于保护时隙,则波长末Ui和非波长末Ui最终额外授予的总带宽分别为由上所述,得Ui最终授予带宽为3.1 仿真环境设定全局资源分配机制的对比机制为文献[9]中的EFT-partial-VF、文献[12]中的SA-FS以及将全局资源分配中的模糊神经网络预测模型去除的对比机制GRA-NP(无预测).仿真环境为软件定义网络控制器控制4个光线路终端,光线路终端通过远端节点与2个TDM子网相连,波长数 W=2 且波长速率为 1 Gbit/s,光网络单元个数 N=64; 控制器与光线路终端的距离为 5 km; 光网络单元到光线路终端的距离为40 km; 数据包到达率满足泊松分布,单个数据包的大小服从 64 B 到 1 518 B 的均匀分布[9]; 周期固定大小为 2 ms[9],光网络单元保护时隙为1 μs[12],动态带宽分配运行时长为10 μs[14].3.2 仿真性能指标定义1 平均包时延,即给定网络环境下,数据业务从到达光网络单元起至抵达光线路终端经历的时延平均值:定义2 上行信道利用率,即单位时间内用来传送有效数据的带宽占总信道的百分比:定义2中的Gi表示波长i传输的有效数据;W表示波长数.3.3 仿真结果与分析图4~图6表示波长 M=2 时,EFT-partial-VF、SA-FS、GRA-NP和全局资源分配机制平均包时延、信道利用率及网络吞吐量随负载的变化情况.由图4可见,EFT-partial-VF在负载大于0.7之后急剧增大,而SA-FS、GRA-NP和全局资源分配在负载大于0.8之后才开始快速增长.此外,全局资源分配机制平均包时延随负载增加增长最缓慢,在负载大于0.6时,平均包时延远低于EFT-partial-VF,较SA-FS平均降低了22.05%.因全局资源分配较对比机制EFT-partial-VF可实现光线路终端间资源集中协同分配,避免了负载较高时光线路终端间资源分布不均衡而恶化平均包时延的情况;较对比机制SA-FS,由预测机制减小了软件定义网络控制器与光线路终端的交互时延,从而降低了平均包时延.由图5可见,EFT-partial-VF、SA-FS和全局资源分配机制上行信道资源利用率随负载增加而增大.当负载为1.0时,全局资源分配上行信道利用率可达94.4%,较EFT-partial-VF提升了5.6%,较SA-FS提升了2.2%.因EFT-partial-VF资源分配无法实现多光线路终端资源共享,随负载增加会存在光线路终端间资源分配不合理的现象,恶化信道利用率.全局资源分配较SA-FS在优化资源全局配置的同时,节约了部分软件定义网络控制器与光线路终端信息交互的时间以及周期空闲时间,从而增加了信道资源利用率.由图6 可见,网络吞吐量随负载增加而增大.在负载较小时,不同机制网络吞吐量相差不大;随着负载增加, EFT-partial-VF在负载为0.8时,网络吞吐量趋于平稳,而全局资源分配和SA-FS网络吞吐量持续增长,且全局资源分配网络吞吐量高于其他机制的.因EFT-partial-VF缺乏光线路终端间资源均衡调度,使网络吞吐量过早地达到饱和值.全局资源分配较SA-FS采取预测和资源联合优化机制,提高了全局资源的利用率,增大了网络吞吐量.图7和图8表示波长 M=2,负载为0.8时,光线路终端与光网络单元接入距离不同对不同机制平均包时延和上行信道利用率的影响.由图7可见,SA-FS、GRA-NP和全局资源分配平均包时延明显小于EFT-partial-VF.因前者资源集中分配,多光线路终端资源共享,避免了部分光线路终端间资源分配不合理造成的光网络单元申请带宽无法及时满足,时延急剧增大的现象.此外,全局资源分配机制平均包时延低于SA-FS机制,较SA-FS平均降低了26.8%.因全局资源分配有降低软件定义网络控制器与光线路终端交互时延的预测机制,同时全局资源分配采用周期空闲时隙填充式算法,减小了周期空闲时隙,降低了接入网往返时延对平均包时延的影响.由图8可见,上行信道利用率随着接入距离增加而减小.全局资源分配信道利用率高于其他对比算法的,且受接入距离变化影响较小.接入距离增加会造成周期间空隙增大,严重恶化信道利用率.而全局资源分配预测机制和周期空闲时隙填充式算法都能减小空闲时间,降低接入距离对信道利用率的影响.针对软件定义光接入网,笔者提出了一种全局资源分配机制,采用模糊神经网络预测模型,降低软件定义网络控制器与光线路终端的交互时延;对光线路终端间带宽资源采用弹性权重分配以保障公平性、高效性;对光线路终端内带宽资源,通过对轻负载光网络单元剩余带宽和部分波长剩余空闲时隙的双重分配,充分利用了带宽资源.仿真结果表明,全局资源分配平均包时延较SA-FS在负载大于0.6时,平均降低了22.05%;接入距离不同时,全局资源分配平均包时延较SA-FS平均降低了26.8%.同时,全局资源分配机制在上行信道利用率和网络吞吐量方面也有较好的优势.【相关文献】[1] KANEKO S, YOSHIDA T, FURUSAWA S, et al. Demonstration of Load-balancing Operation Based on Hitless Dynamic Wavelength Allocation on Symmetric 40-Gbit/s λ-Tunable WDM/TDM-PON[J]. Journal of Lightwave Technology, 2015, 33(3): 645-652. [2] BUTTABONI A, DE ANDRADE M, TORNATORE M, et al. Dynamic Bandwidth and Wavelength Allocation with Coexisting Transceiver Technology in WDM/TDM PONs[J].Optical Switching and Networking, 2016, 21: 31-42.[3] 郑巍, 刘三阳, 齐小刚, 等. 多层光网络实时选路算法[J]. 西安电子科技大学学报, 2010, 37(6): 1119-1124.ZHENG Wei, LIU Sanyang, QI Xiaogang, et al. Real-time Routing Algorithm for Multi-layer Optical Networks[J]. Journal of Xidian University, 2010, 37(6): 1119-1124.[4] NI C, GAN C, LI W, et al. Bandwidth Allocation Based on Priority and Excess-bandwidth-utilized Algorithm in WDM/TDM PON[J]. AEU - International Journal of Electronics and Communications, 2015, 69(11): 1659-1666.[5] XIA W D, GAN C Q, XIE W L, et al. Priority-rotating DBA with Adaptive Load Balance for Reconfigurable WDM/TDM PON[J]. Optical Fiber Technology, 2015, 26: 142-149. [6] DAS G, LANNOO B, JUNG H D, et al. A New Architecture and MAC Protocol for Fully Flexible Hybrid WDM/TDM PON[C]// Proceedings of the European Conference on Optical Communications. Piscataway: IEEE, 2009: 5287228.[7] DHAINI A R, ASSI C M, MAIER M, et al. Dynamic Wavelength and Bandwidth Allocation in Hybrid TDM/WDM EPON Networks[J]. Journal of Lightwave Technology, 2007, 25(1): 277-286.[8] 熊余, 唐剑波, 张鸿, 等. TWDM-PON中用户行为感知的动态资源分配策略[J]. 电子学报, 2016, 44(2): 398-404.XIONG Yu, TANG Jianbo, ZHANG Hong, et al. User-behavior Aware Dynamic Resource Allocation Strategy in TWDM-PON[J]. Acta Electronica Sinica, 2016, 44(2): 398-404.[9] BUTTABONI A, DE ANDRADE M, TORNATORE M. A Multi-threaded Dynamic Bandwidth and Wavelength Allocation Scheme with Void Filling for Long ReachWDM/TDM PONs[J]. Journal of Lightwave Technology, 2013, 31(8): 1149-1157.[10] LI C J, GUO W, WANG W, et al. Programmable Bandwidth Management in Software-defined EPON Architecture[J]. Optics Communications, 2016, 370: 43-48.[11] GU R T, JI Y F, WEI P, et al. Software Defined Flexible and Efficient Passive Optical Networks for Intra-datacenter Communications[J]. Optical Switching and Networking, 2014, 14(3): 289-302.[12] YANG H, ZHANG J, ZHAO Y, et al. Experimental Demonstration of Remote Unified Control for OpenFlow-dased Software-defined Optical Access Networks[J]. Photonic Network Communications, 2016, 31(3): 568-577.[13] BASU S, DAS G. Scheduling Hybrid WDM/TDM Ethernet Passive Optical Networks Using Modified Stable Matching Algorithm[J]. Journal of Lightwave Technology, 2014,32(15): 2613-2622.[14] LEE J Y, HWANG I S, NIKOUKAR A, et al. Comprehensive Performance Assessment of Bipartition Upstream Bandwidth Assignment Schemes in GPON[J]. Journal of Optical Communications and Networking, 2013, 5(11): 1285-1295.。
TWDM-PON技术研究

信息通信 INFORMATION & COMMUNICATIONS
2017 (Sum. No 175)
TWDM-P O N 技术研究
闫复利
(上海大学通信与信息工程学院,上海 20Mபைடு நூலகம்4)
摘 要 :描 述 了 新 业 务 需 求 带 宽 越 来 越 高 的 现 实 背 景 ,未 来 接 入 网 发 展 是 满 足 长 期 增 长 的 带 宽 需 求 。对比分析了 NG-PON2
的 主 要 技 术 方 案 TWDM-PON、DWDM-PON、OFDM-PO N ,认 为 TW DM -PON是 现 阶 段 的 最 佳 选 择 。介绍了 TWDM-
P O N 的 工 作 原 理 和 关 键 技 术 及 研 究 现 状 ,说 明 了 该 技 术 方 案 满 足 商 用 的 前 提 条 件 ,华 为 和 中 兴 已 有 产 品 样 机 支 持 该 技
YanFuU (School o f Communication and Infarmation Engineering,Shanghai University, Shanghai 200444,China) Abstract:This paper describes the new business needs bandwidth increasingly high real background,the fiiture access network development is to meet the long-tom growth o f bandwidth requirements.The TWDM-PON,DWDM-PON and OFDM-PON are the main technical solutions o f NG-PON2. The TWDM-PON is the best choice at this stage.This paper introduces the work ing principle o f TWDM-PON and tiie key technology and research status.It shows that tiie technical scheme meets the prerequi site for commercialization.Huawei and ZTE's existing products support prototype fhe evolution o f the technology and cany out the experiment.Looking forward to the fiiture research o f TWDM-PON direction. K ey W ords:TWDM-PON,NG-PON2, OTN,Broadband network
用于TWDM-PON的波长可调的发射器和光网路单元[发明专利]
![用于TWDM-PON的波长可调的发射器和光网路单元[发明专利]](https://img.taocdn.com/s3/m/460e5fc70066f5335b8121bb.png)
专利名称:用于TWDM-PON的波长可调的发射器和光网路单元
专利类型:发明专利
发明人:高震森
申请号:CN201310256444.7
申请日:20130625
公开号:CN104253655A
公开日:
20141231
专利内容由知识产权出版社提供
摘要:本发明涉及用于带宽对称的TWDM-PON的波长可调的发射器(100),包括:多模发射器(110),其输出包含多个纵模的光学信号;光学环形器(120),其具有用于接收所述多模发射器的所述光学信号的第一端口、用于输出所述光学信号的第二端口和第三端口;以及第一微环谐振器(130),其具有用于从所述第二端口接收所述光学信号的第一输入端、用于输出所述光学信号的谐振部分的第一分量的第一输出端以及用于输出所述信号的谐振部分的第二分量的第二输出端,其中,所述第二输出端连接至所述光学环形器(120)的所述第三端口。
申请人:上海贝尔股份有限公司
地址:201206 上海市浦东新区浦东金桥宁桥路388号
国籍:CN
代理机构:北京市金杜律师事务所
代理人:郑立柱
更多信息请下载全文后查看。
TWDM-PON中用户行为感知的动态资源分配策略
TWDM-PON中用户行为感知的动态资源分配策略熊余;唐剑波;张鸿;吕翊【期刊名称】《电子学报》【年(卷),期】2016(044)002【摘要】TWDM-PON是下一代光接入网的主流方案,具有带宽高、距离长、用户多等特点。
针对用户行为差异性增大的问题,为有效降低网络时延及提升资源分配的公平性,提出一种用户行为感知的动态资源分配策略。
根据用户行为带来的业务动态变化状况,动态调整ONU的轮询机制以满足用户服务水平变化要求,并划分子周期交替发送不同等级的业务,设计高效的数据块加载方法来实现负载均衡的多波长传输。
仿真结果表明,与传统策略相比,所提策略在保证资源利用率高达95%的同时,既使业务平均时延改善50%以上,也使资源分配具有更好的公平性。
%As a mainstream solution for next generation optical access network,the TWDM-PON has the characteris-tics of high bandwidth,long distance,numerous access users etc.In order to effectively reduce the network delay and pro-mote the fairness of resource allocation,an user-behavior aware dynamic resource allocation strategy is proposed for adapting to the increasing differences of user-behaviors in TWDM-PON.According to the dynamic traffic status brought by user-be-haviors,the ONU polling mechanism is adjusted in real-time to satisfy the requirements of ONU service level.And the intro-duction of traffic sub-cycle can make the different grade service alternately send.Finally,for achieving multi-wavelength transmission of load balance,an efficient datablock loading mechanism is designed.The simulation results show that the pro-posed strategy can reduce packet delay more than 50%and keep better fairness during resource allocation,while the utiliza-tion rate of network resource can reach 95%.【总页数】7页(P398-404)【作者】熊余;唐剑波;张鸿;吕翊【作者单位】重庆邮电大学光纤通信技术重点实验室,重庆400065;重庆邮电大学光纤通信技术重点实验室,重庆400065;重庆邮电大学光纤通信技术重点实验室,重庆400065;重庆邮电大学光纤通信技术重点实验室,重庆400065【正文语种】中文【中图分类】TN929.1【相关文献】1.混合复用无源光网络中带有灰色预测的高效动态资源分配策略 [J], 王汝言;蒋婧;熊余;唐剑波2.高速铁路下行MIMO-OFDM系统中的动态资源分配策略 [J], 赵宜升;李曦;李屹;纪红3.云计算环境下基于用户行为特征的资源分配策略 [J], 周景才;张沪寅;查文亮;陈毅波4.图书馆用户不当行为事件对其他用户感知服务质量的影响研究 [J], 任静5.共享平台用户感知公平对其价值共创参与行为的影响——以共享短租平台用户为例 [J], 赵玉婷因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Time-and Wavelength-Division Multiplexed Passive Optical Network(TWDM-PON)for Next-GenerationPON Stage2(NG-PON2)Yuanqiu Luo,Senior Member,IEEE,Xiaoping Zhou,Frank Effenberger,Senior Member,IEEE,Xuejin Yan,Senior Member,IEEE,Guikai Peng,Yinbo Qian,and Yiran MaAbstract—The next-generation passive optical network stage 2(NG-PON2)effort was initiated by the full service access net-work(FSAN)in2011to investigate on upcoming technologies enabling a bandwidth increase beyond10Gb/s in the optical access network.The FSAN meeting in April2012selected the time-and wavelength-division multiplexed passive optical net-work(TWDM-PON)as a primary solution to NG-PON2.In this paper,we summarize the TWDM-PON research in FSAN by re-viewing the basics of TWDM-PON and presenting the world’sfirst full-system40Gb/s TWDM-PON prototype.After introducing the TWDM-PON architecture,we explore TWDM-PON wavelength plan options to meet the NG-PON2requirements.TWDM-PON key technologies and their respective level of development are further discussed to investigate its feasibility and availability.The first full-system40Gb/s TWDM-PON prototype is demonstrated to provide40Gb/s downstream and10Gb/s upstream band-width.This full prototype system offers38dB power budget and supports20km distance with a1:512split ratio.It coexists with commercially deployed Gigabit PON(G-PON)and10Gigabit PON(XG-PON)systems.The operator-vendor joint test results testify that TWDM-PON is achievable by the reuse and integration of commercial devices and components.Index Terms—Next-generation passive optical network stage2 (NG-PON2),time-and wavelength-division multiplexed passive optical network(TWDM-PON),tunable receiver,tunable trans-mitter.I.I NTRODUCTIONT HE next-generation passive optical network stage2(NG-PON2)project was initiated by the full-service access net-work(FSAN)[1]community in2011.It investigates on optical fiber network technologies enabling a bandwidth increase be-yond10Gb/s in the access network.Operators’NG-PON2re-quirements include a set of access performance descriptions.Manuscript received May23,2012;revised August17,2012;accepted Au-gust20,2012.Date of publication August28,2012;date of current version January09,2013.Y.Luo and F.Effenberger are with the Access R&D Department,Fu-turewei(Huawei)Technologies,Bridgewater,NJ08807USA(e-mail: yuanqiu.luo@;frank.effenberger@).X.Zhou,G.Peng,and Y.Qian are with the Access R&D Department,Huawei Technologies,Shenzhen518129,China(e-mail:xiaopingzhou@; pengguikai@;qianyinbo@).X.Yan is with the Access R&D Department,Futurewei(Huawei)Technolo-gies,Santa Clara,CA95050USA(e-mail:xuejin.yan@).Y.Ma is with the Beijing Research Institute,China Telecom Corporation, Beijing100035,China(e-mail:mayr@).Color versions of one or more of thefigures in this paper are available online at .Digital Object Identifier10.1109/JLT.2012.2215841Major requirements are at least40Gb/s aggregate rate in down-stream or upstream,40km reach,1:64split ratio,40km differ-ential reach,and at least1Gb/s access rate per optical network unit(ONU).Many passive optical network(PON)technologies have been proposed to provide broadband optical access beyond 10Gb/s.There are the40Gigabit time-division multiplexed PON(XLG-PON)proposal[2]which increases the single car-rier serial downstream bit rate of a10Gigabit PON(XG-PON) [3]to40Gb/s,the time-and wavelength-division multi-plexed PON(TWDM-PON)proposal which stacks multiple XG-PONs using WDM[4],a group of WDM-PON proposals which provide a dedicated wavelength channel at the rate of 1Gb/s to each ONU with different WDM transmit or receive technologies[5],[6],a set of orthogonal frequency-division multiplexed(OFDM)-based PON proposals which employ quadrature amplitude modulation and fast Fourier transform to generate digital OFDM signals for transmission[7],[8]. Among all of the aforementioned proposals,TWDM-PON has attracted the majority support from global vendors and was selected by the FSAN community in the April2012meeting as a primary solution to NG-PON2.TWDM-PON increases the ag-gregate PON rate by stacking XG-PONs via multiple pairs of wavelengths.An XG-PON system offers the access rates of10 Gb/s in downstream and2.5Gb/s in upstream.A TWDM-PON system with four pairs of wavelengths is able to provide40Gb/s and10Gb/s in downstream and upstream,respectively.Each TWDM-PON ONU can provide peak rates up to10Gb/s down-stream and2.5Gb/s upstream.This meets the rate requirements of NG-PON2.In this paper,we review the TWDM-PON solution by walking through it as follows.Section II introduces the TWDM-PON architecture.Section III discusses wavelength plans and possible loss budgets.Section IV investigates key technologies enabling tunable ONUs in TWDM-PON.We demonstrate the world’sfirst full-system40Gb/s TWDM-PON prototype in Section V.Section VI concludes this paper by highlighting future research directions.II.TWDM-PON A RCHITECTUREA.Baseline ArchitectureThe basic TWDM-PON architecture is shown in Fig.1. Four XG-PONs are stacked by using four pairs of wavelengths (e.g.,wavelength pairs of,and0733-8724/$31.00©2012IEEEFig.1.TWDM-PON system diagram.in Fig.1).For simple network deployment and in-ventory management purposes,the ONUs are equipped with tunable transmitters and receivers.The tunable transmitter is tunable to any of the four upstream wavelengths.The receiver is tunable to any of the four downstream wavelengths.In order to achieve power budget higher than that of XG-PON,optical amplifiers(OAs)are used at the optical line terminal(OLT)side to boost the downstream signals as well as to preamplify the upstream signals.The optical distribu-tion network(ODN)remains passive since OA and WDM Mux/DeMux are placed at the OLT side.Options to the baseline architecture include more pairs of wavelengths and different rates for stacking.For example, TWDM-PON could support eight pairs of wavelengths.This type of system is valuable in the market where multiple op-erators share one physical network infrastructure.Another example is to provide Gigabit PON(G-PON)[9]rates in each pair of wavelengths.This would relax the TWDM-PON optics requirements.B.Key ApplicationsAs compared to the next-generation passive optical network stage1(NG-PON1)system(e.g.,XG-PON),TWDM-PON de-livers higher rates in both downstream and upstream.The mul-tiple wavelength feature of TWDM-PON could be applied for other applications.Thefirst one to consider is for pay-as-you-grow provisioning. The TWDM-PON system could be deployed starting with a single wavelength pair.It could be upgraded by adding new wavelength pairs to increase the system capacity.In this way, the operators can address the bandwidth growth demand by in-vesting for what is needed and to expanding on-demand.Another application of TWDM-PON is for local loop un-bundling(LLU).A TWDM-PON with multiple OLT arrange-ment is shown in Fig.2for LLU.Each operator would have their own OLT,each of which would contain some set of wavelength channels.A wavelength-selective device would be used to mul-tiplex the OLT ports onto a singlefiber.The wavelength-selec-tive device could be as simple as afilter-based demultiplexer, or it could be an arrayed waveguide router type of device.This scheme unbundles the shared infrastructure for multiple opera-tors.It also offers the possibility of every operator’s OLT being the same(containing all the wavelengths),and a single operator could add OLT resources as they want.III.W A VELENGTH P LAN AND L OSS B UDGET Coexistence with previous generations of PONs in the legacy ODN relies upon the TWDM-PON wavelength plan.There are several options for the TWDM-PON wavelengths.Thefirst option is to reuse the XG-PON wavelength bands. It defines afiner grid inside of the previously defined bands as was described in the NG-PON1study.This wavelength plan leverages the development work that has gone into XG-PON optics.It is compatible with G-PON[9]and the1555nm radio frequency(RF)video overlay channel,but blocks standardized XG-PON.Its loss budget is similar to that of XG-PON.A typical loss budget value is about33dB.Fig.3shows an example of this wavelength plan.The second option is to redefine the C-band enhancement band to contain both the upstream and downstream wave-lengths.This has attractive optical characteristics of using erbium-dopedfiber amplifiers(EDFAs)for signal amplifica-tion,and of lower transmissionfiber loss.Such a system has a higher power budget and a longer reach.Fig.4shows an example of this wavelength plan.It is compatible with G-PONLUO et al.:TWDM-PON FOR NG-PON2589Fig.2.TWDM-PON with multiple OLTs forLLU.Fig.3.XG-PON wavelengthreuse.Fig.4.C -band wavelengthplan.Fig.5.C -minus/L -minus band wavelength plan.and XG-PON.The RF video overlay channel is blocked.With EDFAs,this wavelength plan could achieve a loss budget of about 38dB.Another option is a mixture of the above two plans.The downstream channels are designed in the L -minus band.The upstream channels are located in the C -minus band.This plan is shown in Fig.5.It maintains the G-PON and RF video chan-nels.The upstream transmission is similar to the wavelength plan of Fig.4.This wavelength plan is compatible with G-PON and the RF video overlay channel,but blocks XG-PON.C -band590JOURNAL OF LIGHTWAVE TECHNOLOGY,VOL.31,NO.4,FEBRUARY15,2013components could work with an EDFA preamplifier to provide a higher power budget.In the downstream,an L-band amplifier is needed to improve the power budget.A loss budget of about 38dB could be achieved.IV.K EY T ECHNOLOGIESMost of the TWDM-PON components are commercially available in access networks today.As compared to previous generations of PONs(e.g.,G-PON,XG-PON),the only sig-nificantly new components in TWDM-PON are the tunable receivers and tunable transmitters at the ONU.Technology options to implement the required wavelength tuning functions at the ONU are summarized as follows.ONU Tunable Receiver:The TWDM-PON ONU receiver should tune its wavelength to any of the TWDM-PON down-stream wavelengths by following the OLT commands.This function can be implemented by using candidate technolo-gies such as thermally tuned Fabry–Perot(FP)filter[10], angle-tuned FPfilter,injection-tuned silicon ring resonator [11],liquid crystal tunablefilter[12],and thermally tunable FP detector[13].ONU Tunable Transmitter:The ONU transmitter can tune its wavelength to any of the upstream wavelengths.The implemen-tation technologies are distributed feedback(DFB)laser with temperature control(TC)[14],DFB laser with partial TC[15], multisection distributed Bragg reflector laser(electrical con-trol)without cooling[16],external cavity laser(ECL)with me-chanical control without cooling[17],ECL with thermo/electro/ piezo/magneto-optic control without cooling[18],[19].Note that tunable receivers and tunable transmitters have been a research topic of optical transport networks for more than a decade.There is a great deal of development practice in this area.The TWDM-PON application takes advantage of the optical transport network component effort in a couple of ways.First,the TWDM-PON tunable transceivers reuse the mature tunable optical transport network components.If one technology does not perform to expectation,there are always other options to provide the required functions.This reduces the risk of component availability.Second,TWDM-PON pro-vides significant relief on the specifications of tunable optical transport network components.Because the TWDM-PON wavelength tuning performance could be relaxed from that of the optical transport network and TWDM-PON channel rates are widely used in the optical transport network,critical tuning requirements,such as wavelength tuning range,tuning speed,channel spacing,can be dramatically relieved.Such performance relaxation offers significant yield improvements during the mass production and cost reductions for tunable transceivers.V.40G B/S TWDM-PON P ROTOTYPEA.Prototype SystemIn this section,we demonstrate thefirst full-system40Gb/s TWDM-PON prototype.This prototype employs the C-band wavelength plan shown in Fig.4to achieve coexistence with the previous generations of PONs.The four downstream wavelengths are spaced200GHz apart.The output power for each downstream wavelength is about10dBm after the EDFA booster.The four upstream wavelengths are100GHz apart. The TWDM-PON OLT is designed to be integrated into a Huawei OLT chassis.The ONUs are equipped with tunable transmitters and tunable receivers.The ONU tunable transmitter is based on thermally tuned DFB laser with more than400GHz wavelength tuning range.The ONU tunable receiver is based on thinfilm tunable filter in front of a10Gb/s APD ROSA.Its wavelength tuning range is more than800GHz.An ONU is able to tune to any channel upon software command from the PON control logic. The medium access control(MAC)layer functionali-ties are based on XG-PON transmission convergence layer specifications in ITU-T Recommendation G.987.3[20].The TWDM-PON MAC is implemented in a commercial FPGA. Modules such as dynamic bandwidth allocation,forward error correction(FEC),scrambling,XG-PON encapsulation mode (XGEM)are integrated to demonstrate a full-system operation. As compared to previous research[21],a major contribu-tion of this work is the reuse and integration of commercial de-vices for a40Gb/s broadband access system which meets the NG-PON2requirements.Key components,such as EDFAs,tun-able transmitters,tunablefilters,and coexistencefilers,are from the market.The TWDM-PON MAC implementation reuses the XG-PON MAC development effort in the industry.Therefore, the prototype system demonstrates the TWDM-PON maturity and availability.Fig.6shows the prototype system diagram.Huawei G-PON and XG-PON OLT cards are placed into the same chassis of the TWDM-PON OLT card.The ODN contains two stages of splitters.A1:8splitter is followed by a1:64splitter to provide a total split ratio of1:512.The feederfiber length is20km.A snapshot of the prototype system in the test lab is shown in Fig.7.Note that depending on the legacy ODN deployment,the first splitter can be1:16(or1:32)and the second one can be1:32 (or1:16).Also note that the split ratio and reach distance can be adjusted to meet the legacy ODN deployment.For example, 1:512split with20km can be safely converted into1:128split with40km or1:64split with60km.A G-PON ONU and an XG-PON ONU are connected to thefirst stage of splitter(i.e., the1:8splitter).This is to evaluate the performance of G-PON, XG-PON,and TWDM-PON coexistence.B.Operator-Vendor Joint Test ResultsThe40Gb/s TWDM-PON prototype was jointly tested by China Telecom and Huawei in September2011.Three sets of tests were conducted to evaluate the TWDM-PON performance. Thefirst test set is for the downstream performance eval-uation.Fig.8shows the receiver sensitivity for one of the four downstream wavelengths when each signal is modulated using PRBS at the rate of10Gb/s.When the bit error rate(BER)is,the measured receiver sensitivity is about dBm.With10dBm output power of each downstream wavelength after EDFA,the downstream power budget can reach40dB.Downstream signal spectra after transmission are shown in Fig.9.LUO et al.:TWDM-PON FOR NG-PON2591Fig.6.40Gb/s TWDM PON prototype system and its coexistence with G-PON andXG-PON.Fig.7.Prototype systemsnapshot.Fig.8.Rx sensitivity of 1557.36nm downstream signal.The second set of tests evaluates the upstream performance.Fig.10shows the upstream power budget when tuningtwoFig.9.Downstream signal spectra after 20km &1:512.Fig.10.Upstream power budget with 20km fiber.ONU lasers to different wavelengths with 20km fiber transmis-sion.The initial wavelengths of the two lasers are 1535.82and 1538.19nm.They are tuned to other wavelengths by changing the temperature of the TEC and bias currents.592JOURNAL OF LIGHTWAVE TECHNOLOGY,VOL.31,NO.4,FEBRUARY15,2013In the upstream power budget tests,the input signal is modu-lated using PRBS at the rate of2.5Gb/s.The FEC func-tion was disabled in this group of tests.When the BER is, the sensitivity is about dBm.With2dBm output power of the ONU,the upstream power budget can reach38dB,with a deviation of around1.5dB.It is expected when the FEC func-tion is enabled the power budget for all of the four upstream wavelengths can be about40dB when the BER is. The third set of tests is to evaluate the coexistence perfor-mance with legacy PONs in the same ODN.The coexistence test setup is shown in Fig.6.Three streaming IP video users are connected to the G-PON ONU,XG-PON ONU,and one of the four TWDM PON ONUs,respectively.There was no packet loss observed during the lab test for all the downstream and up-stream wavelengths in the three PONs.In addition to the above measurement,voice and data services have been tested in the prototype.There was no interference between services over TWDM-PON and over other two PONs. This shows that40Gb/s TWDM-PON successful coexists with both G-PON and XG-PON while reusing the same ODN.We also changed the ODN configuration into1:128split with40km and1:64split with60km to evaluate the prototype system performance.Similar results to the ODN of1:512split with20km have been achieved in the joint tests.VI.C ONCLUSIONIn this paper,we have investigated the basics of TWDM-PON and reviewed its critical features to meet the NG-PON2require-ments.TWDM-PON leverages the research and development effort in PON industry by stacking four XG-PONs to reach an aggregate access rate of40Gb/s.As the primary solution to NG-PON2,TWDM-PON balances the network upgrade re-quirements and the cost model consideration in the access net-work market.After introducing the baseline architecture,we ex-plore TWDM-PON valuable applications for pay-as-you-grow operation and LLU.Major wavelength plans have been dis-cussed and their loss budgets have been evaluated.Key enabling technologies of tunable ONUs have been investigated.Our re-search shows there are multiple candidate technologies;if one technology does not perform to expectation,there are always other options to implement the required functions.For thefirst time,we demonstrate a full-system TWDM-PON prototype.This prototype integrates commercial components to provide40Gb/s in downstream and10Gb/s in upstream. Tunable lasers and tunablefilters are employed in the color-less ONUs.40dB power budget in the downstream and38dB power budget in the upstream have been achieved.The proto-type system supports a total split ratio of1:512and a distance of20km.The joint lab test demonstrates the successful coexis-tence of G-PON,XG-PON,and TWDM-PON without service degradation.Our future research on TWDM-PON would be steered in three directions.First,we would further explore the TWDM-PON wavelength plan options.In this direction, relevant factors such asfiber loss and chromatic dispersion would be thoroughly investigated,and a single wavelength plan should be selected for the purpose of standardization and mass volume production.The second research direction is the TWDM-PON loss budget investigation.This includes the study of OLT and ONU transmitter launch power,the OLT and ONU receiver sensitivity,optical path penalty,and signal loss in connectors,coexistencefilers,splitters,and WDM Mux and DeMux.The third direction would focus on the low cost tunable ONUs research.Among the enabling technologies of tunable transmitters and tunable receivers,solutions with low cost should to be further explored with high priorities.R EFERENCES[1][Online].Available:/[2]E.Harstead,D.V.Veen,and P.Vetter,“Technologies for NGPON2:Why I think40G TDM PON(XLG-PON)is the clear winner,”in Proc.Opt.Fiber Commun.Conf./Nat.Fiber Opt.Eng.Conf.Workshop,Mar.2012[Online].Available:http://www.ofcn-foec/osa.ofc/media/default/2012/presentations/6-harsted_Technolo-gies-for-NGPON2-XLG-PON-V2X.pdf[3]10-Gigabit-Capable Passive Optical Networks(XG-PON):GeneralRequirements,ITU-T Recommendation G.987.1,Jan.2010.[4]Y.Ma,Y.Qian,G.Peng,X.Zhou,X.Wang,J.Yu,Y.Luo,X.Yan,andF.Effenberger,“Demonstration of a40Gb/s time and wavelength divi-sion multiplexed passive optical network prototype system,”presentedat the presented at the Opt.Fiber Commun.Conf./Nat.Fiber Opt.Eng.Conf.,Mar.2012,Post Deadline Paper.[5]H.K.Lee,H.S.Cho,J.Y.Kim,and C.H.Lee,“A WDM-PON withan80Gb/s capacity based on wavelength-locked Fabry-Perot laserdiode,”Opt.Exp.,vol.18,no.17,pp.18077–18085,Aug.2010.[6]K.Grobe and J.P.Elbers,“PON in adolescence:from TDMA toWDM-PON,”IEEE Commun.Mag.,vol.46,no.1,pp.26–34,Jan.2008.[7]X.Hu,L.Zhang,P.Cao,K.Wang,and Y.Su,“Energy-efficient WDM-OFDM-PON employing shared OFDM modulation modules in opticalline terminal,”Opt.Exp.,vol.20,no.7,pp.8071–8077,Mar.2012.[8]W.Wei,C.Wang,and T.Wang,“Optical orthogonal frequency divisionmultiple access networking for the future internet,”IEEE/OSA J.Opt.w.,vol.1,no.2,pp.236–246,Jul.2009.[9]Gigabit-Capable Passive Optical Networks(GPON):General Char-acteristics,ITU-T Recommendation G.984.1,Mar.2008.[10]M.Zhu,S.Xiao,Z.Zhou,W.Guo,L.Yi,H.Chen,J.Shi,and W.Hu,“Upstream multi-wavelength shared PON with wavelength-tunableself-seeding Fabry-Perot laser diode,”in Proc.Opt.Fiber Commun.Conf./Nat.Fiber Opt.Eng.Conf.,Mar.2011,pp.1–3.[11]D.Liang,M.Fiorentino,S.Srinivasan,J.E.Bowers,and R.G.Beau-soleil,“Low threshold electrically-pumped hybrid silicon microringlasers,”IEEE J.Sel.Topics Quantum Electron.,vol.17,no.6,pp.1528–1533,Nov./Dec.2011.[12]A.Kato,K.Nakatsuhara,and T.Nakagami,“Tunable opticalfilterwith cascaded waveguide Fabry-Pérot resonators featuring liquidcrystal cladding,”Photon.Technol.Lett.,vol.24,no.4,pp.282–284,Feb.2012.[13]R.Murano,W.F.Sharfin,and M.J.L.Cahill,“Tunable2.5Gb/s re-ceiver for wavelength-agile DWDM-PON,”presented at the presentedat the Opt.Fiber Commun.Conf./Nat.Fiber Opt.Eng.Conf.,2008,Post Deadline Paper.[14]G.W.Yoffe,S.Y.Zou,S.A.Rishton,R.W.Olson,M.A.Emanuel,and B.Pezeshki,“Widely-tunable30mW laser source with sub-500kHz linewidth using DFB array,”in Proc.IEEE Lasers Electro-OpticsSoc.,Nov.2008,pp.892–893.[15]D.Ton,G.W.Yoffe,J.F.Heanue,M.A.Emanuel,S.Y.Zou,J.Ku-bicky,B.Pezeshki,and E.C.Vail,“2.5-Gb/s modulated widely tunablelaser using an electroabsorption modulated DFB array and MEMS se-lection,”IEEE Photon.Technol.Lett.,vol.16,no.6,pp.1573–1575,Jun.2004.[16]Y.Liu,A.R.Davies,J.D.Ingham,R.V.Penty,and I.H.White,“Un-cooled DBR laser directly modulated at3.125Gb/s as athermal trans-mitter for low-cost WDM systems,”IEEE Photon.Technol.Lett.,vol.17,no.10,pp.2026–2028,Oct.2005.[17]P.Ossieur,C.Antony,A.Naughton,A.M.Clarke,H.G.Krimmel,X.Yin,X.Z.Qiu,C.Ford,A.Borghesani,D.Moodie,A.Poustie,R.Wyatt,B.Harmon,I.Lealman,G.Maxwell,D.Rogers,D.W.Smith,S.Smolorz,H.Rohde,D.Nesset,R.P.Davey,and P.D.Townsend,“Demonstration of a32512Split,100km Reach,23210Gb/shybrid DWDM-TDMA PON using tunable external cavity lasers in theONUs,”J.Lightw.Technol.,vol.29,no.24,pp.3705–3718,Dec.2011.LUO et al.:TWDM-PON FOR NG-PON2593[18]F.Wei,Y.Sun,D.Chen,G.Xin,Q.Ye,H.Cai,and R.Qu,“Tunableexternal cavity diode laser with a PLZT electrooptic ceramic deflector,”IEEE Photon.Technol.Lett.,vol.23,no.5,pp.296–298,Mar.2011.[19]J.Zheng,C.Ge,C.J.Wagner,L.Meng,B.T.Cunningham,and J.G.Eden,“Optically tunable ring external-cavity laser,”in Proc.IEEEPhoton.Conf.,Oct.2011,pp.644–645.[20]10-Gigabit-Capable Passive Optical Networks(XG-PON):Trans-mission Convergence(TC)Specifications,ITU-T RecommendationG.987.3,Oct.2010.[21]P.P.Iannone,K.C.Reichmann,C.Brinton,J.Nakagawa,T.Cusick,E.M.Kimber,C.Doerr,L.L.Buhl,M.Cappuzzo,E.Y.Chen,L.Gomez,J.Johnson,A.M.Kanan,J.Lentz,Y.F.Chang,B.´Plsdóttir,T.Tokle,and L.Spiekman,“Bi-directionally amplified extended reach40Gb/s CWDMTDM PON with burst-mode upstream transmission,”presented at the presented at the Opt.Fiber Commun.Conf./Nat.FiberOpt.Eng.Conf.,Mar.2011,Post Deadline Paper.Yuanqiu Luo(S’02–M’06–SM’11)received the Bachelor’s degree in electronics and information systems and the Master’s degree in electrical engineering from Shandong University,Jinan,China,and the Ph.D.degree in electrical engineering from the New Jersey Institute of Technology,Newark. She is currently a Staff Engineer in the Advanced Technology Department of Futurewei(Huawei)Technologies,Bridgewater,NJ.Before joining Huawei, she was with NEC Laboratories America,Princeton,NJ.She authors more than 40publications.She has been heavily involved in the pioneering R&D effort of optical access networks,such as thefirst XG-PON1trial,time synchronization over PON,and thefirst40G-PON prototype system.She is a coeditor of ITU-T Recommendations G.987.3,G.multi,G.ngpon2.2,and a Clause Editor of IEEE Standard802.1AS.Her research interests are in the areas of broadband access networks,network modeling,and integrated optical and wireless networks. Dr.Luo was honored with an IEEE Standards Award in2011.Xiaoping Zhou received the Ph.D.degree in semiconductor devices and system from the University of Tokyo,Tokyo,Japan,in2007.He then received Postdoctoral Research Fellowship from the University of California,where his research interests were optical devices and subsystem for optical communication,including semiconductor lasers,semiconductor optical amplifiers,electro-absorption modulators,monolithically integrated all optical wavelength conversion and switching,optical arbitrary waveform generator,op-tical code-division multiple access,and all optical routers.He has published more than20articles in journals and international conference proceedings.In 2010,he joined Huawei Technologies,Shenzhen,China,focusing on the re-search on next-generation optical access network,including wavelength divi-sion multiplexing(WDM)passive optical network(PON)and TDM/WDM hy-brid PON.Frank Effenberger took a position with Bellcore(now Telcordia),after com-pleting his Doctoral work in1995,where he analyzed all types of access network technologies,focusing on those that employed passive optical networks.He witnessed the early development of the FSAN initiative and the devel-opment of the APON standard.In2000,he moved to Quantum Bridge Com-munications(now a part of Motorola),where he managed system engineering in their PON division.His work supported the development and standardiza-tion of advanced optical access systems based on B-PON and G-PON technolo-gies.In2006,he became the Director of FTTx in the Advanced Technology Department of Futurewei Technologies,Bridgewater,NJ.He remains heavily involved in standards work,and has been the leading contributor and Editor of the major PON standards in the ITU.In2008,he became the Chairman of ITU-T Q2/15—the group that creates standards for optical access systems.He and his team work on forward-lookingfiber and copper access technologies,including the802.3av10G EPON and ITU XG-PON topics.Notably,his team supported the world’sfirst trials of XG-PON and40G-PON.In2011,he was named as a Fellow of Huawei,Bridgewater and,in2012,was promoted to VP of access research.Xuejin Yan received the Bachelor’s degree in physics from the Dalian Institute of Technology,Dalian,China,and the Ph.D.degree from the Institute of Semi-conductors,Chinese Academy of Sciences,Beijing,China.From1998to2000,he was with the Institute of Semiconductors as a Research Associate Professor.Then,he worked as a Postdoctoral Research Scientist at the University of California,Santa Barbara.He also worked in industry for four years.In2008,he joined Futurewei(Huawei)Technologies,Santa Clara,CA, as a Senior Staff Engineer.His research interests are in the areas offiber-to-the-home,semiconductor optoelectronics,and opticalfiber communications. Guikai Peng received the Bachelor’s degree in computer science and tech-nology from Xiangtan University,Hunan,China,in2000.He is currently a Senior Engineer in the Advanced Technology Department of Huawei Technologies,Shenzhen,China.He has been heavily involved in the pioneering R&D effort of optical access networks,such as thefirst XG-PON1 and thefirst40G-PON prototype system.His research interests are in the areas of broadband access networks and integrated optical and wireless networks. Yiran Ma received the Ph.D.degree from the National ICT of Australia,Uni-versity of Melbourne,Melbourne,Vic.,Australia.In2010,he joined the Beijing Research Institute,China Telecom Corpora-tion,Beijing,China.His current research interests include next-generation pas-sive optical network systems,long-haul high-capacity transmission systems, and smart pipe architecture and technology.。