圆锥曲线方程知识点总结(大全)

合集下载

圆锥曲线与方程知识点总结

圆锥曲线与方程知识点总结

圆锥曲线与方程知识点总结圆锥曲线是平面上的一类曲线,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。

其中A、B、C、D、E、F、G、H、I、J是常数,且A、B、C不全为0。

圆锥曲线包括椭圆、双曲线和抛物线等。

1. 椭圆:椭圆是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。

若B^2 - 4AC < 0,则为椭圆。

椭圆是一个封闭的曲线,其特点是到两个焦点的距离和固定。

椭圆在几何中有重要的应用,如椭圆的焦点在天文学中用于描述行星和卫星的轨道。

2. 双曲线:双曲线是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。

若B^2 - 4AC > 0,则为双曲线。

双曲线有两个分支,其特点是到两个焦点的距离差固定。

双曲线在几何中也有广泛的应用,如描述光线在反射和折射中的路径。

3. 抛物线:抛物线是圆锥曲线中的一种类型,由以下方程定义:Ax^2 +By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0。

若B^2 - 4AC = 0,则为抛物线。

抛物线是一个开口向上或向下的曲线,与焦点的距离等于到准线的距离。

抛物线在物理学、工程学和建筑学等领域中有重要的应用,如描述抛物面的形状。

4. 圆锥曲线的性质:(i) 对称性:圆锥曲线可以关于x轴、y轴、z轴和原点对称。

(ii) 焦点:圆锥曲线有1个或2个焦点,焦点是与曲线特定性质相关的重要点。

(iii) 准线:圆锥曲线有1条或2条准线,准线是与曲线特定性质相关的重要线。

(iv) 渐近线:双曲线有两条渐近线,抛物线有一条渐近线。

高考数学知识点圆锥曲线二级结论

高考数学知识点圆锥曲线二级结论

圆锥曲线的二级结论一.有关椭圆的经典结论结论1.(1)、与椭圆22221x y a b 共焦点的椭圆的方程可设为 222221,0x y b a b.(2)、与椭圆22221x y a b 有相同的离心率的椭圆可设为2222x y a b , 2222,0x y b a.结论2.椭圆的两焦点分别为12,F F ,P 是椭圆上任意一点,则有以下结论成立:(1)、第一定义:122PF PF a ;(2)、焦半径的最大值与最小值:1a c PF a c ;(3)、2212b PF PF a ;(4)、焦半径公式10||PF a ex ,20||PF a ex (1(,0)F c ,2(,0)F c 00(,)M x y ).结论4.设P 点是椭圆上异于长轴端点的任一点,12,F F 为其焦点,记12F PF ,则(1)、2122||||1cos b PF PF;(2)、焦点三角形的面积:122||=tan2PF F P S c y b;(4)、当P 点位于短轴顶点处时, 最大,此时12PF F S 也最大;(5)、.21cos 2e (6)、点M 是21F PF 内心,PM 交21F F 于点N ,则caMN PM ||||.结论5.有关22b a的经典结论(1)、AB 是椭圆22221x y a b 的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a .(2)、椭圆的方程为22221x y a b(a >b >0),12,A A 为椭圆的长轴顶点,P 点是椭圆上异于长轴顶点的任一点,则有1222PA PA b K K a(3)、椭圆的方程为22221x y a b(a >b >0),12,B B 为椭圆的短轴顶点,P 点是椭圆上异于短轴顶点的任一点,则有1222PB PB b K K a(4)、椭圆的方程为22221x y a b(a >b >0),过原点的直线交椭圆于,A B 两点,P 点是椭圆上异于,A B两点的任一点,则有22PA PBb K K a结论6.若000(,)P x y 在椭圆22221x y a b 上,则(1)、以000(,)P x y 为切点的切线斜率为2020b x k a y ;(2)、过0P 的椭圆的切线方程是00221x x y ya b.结论7.若000(,)P x y 在椭圆22221x y a b外,则过000(,)P x y 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b.结论8.椭圆的两个顶点为1(,0)A a ,2(,0)A a ,与y 轴平行的直线交椭圆于P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是22221x y a b.结论9.过椭圆上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则直线BC 有定向且2020BCb x k a y (常数).结论10.若P 为椭圆上异于长轴端点的任一点,F 1,F 2是焦点,12PF F ,21PF F ,则sin sin sin c e a.结论11.P 为椭圆上任一点,F 1,F 2为二焦点,A 为椭圆内一定点,则2112||||||2||a AF PA PF a AF ,当且仅当2,,A F P 三点共线时,等号成立.结论12.O 为坐标原点,P 、Q 为椭圆上两动点,且OP OQ .(1)、22221111||||OP OQ a b;(2)、22||+|OQ|OP 的最大值为22224a b a b ;(3)、OPQ S 的最小值是2222a b a b .结论15.过焦点且垂直于长轴的弦叫通经,其长度为ab 22结论16.从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线必经过椭圆的另一个焦点.结论17.过椭圆22221(0)x y a b a b左焦点的焦点弦为AB ,则)(221x x e a AB ;过右焦点的弦)(221x x e a AB .结论18.椭圆内接矩形最大面积:2ab .结论19.若椭圆方程为22221(0)x y a b a b,半焦距为c ,焦点 12,0,,0F c F c ,设(1)、过1F 的直线l 的倾斜角为 ,交椭圆于A、B 两点,则有①2211,cos cos b b AF BF a c a c;②2cos ab AB a c2222(2)、若椭圆方程为22221(0)x y a b a b,半焦距为c ,焦点 12,0,,0F c F c ,设过F 2的直线l 的倾斜角为 ,交椭圆于A、B 两点,则有:①22,cos cos b b AF BF a c a c22+-;②22cos ab AB a c222结论:椭圆过焦点弦长公式: 222cos 2sin ab x a c AB ab y a c222222焦点在轴上焦点在轴上结论20.若AB 是过焦点F 的弦,设,AF m BF n ,则2112amnb二.有关双曲线的经典结论结论21.(1)、与22221x y a b 共轭的双曲线方程为22221x y a b,①它们有公共的渐近线;②四个焦点都在以原点为圆心,C 为半径的圆上;③2212111e e 。

高中数学圆锥曲线方程知识总结

高中数学圆锥曲线方程知识总结

高中数学圆锥曲线方程知识总结一、椭圆方程及其性质. 1. 椭圆的第一定义:椭圆的第二定义:PFe d=,PF 点P 到定点F 的距离,d 为点P 到直线l的距离其中F 为椭圆焦点,l 为椭圆准线①椭圆的标准方程:的参数方程为()(现在了解,后面选修4-4要详细讲).②通径:垂直于对称轴且过焦点的弦叫做通径,椭圆通径长为③设椭圆:12222=+by ax 上弦AB的中点为M (x 0,y 0),则斜率k AB =2020b x a y -,对椭圆:为端点的线段以无轨迹方程为椭圆21212121212121,2,2,2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+ 12222=+by ax ⎩⎨⎧==θθsin cos b y a x 20πθ ab 2212222=+b x a y , 则k AB=2020a xb y -.弦长AB= ⑸若P 是椭圆:上的点.为焦点,若,则的面积为(可用余弦定理与推导). 若是双曲线,则面积为2tan b θ.二、双曲线方程及其性质. 1. 双曲线的第一定义:双曲线的第二定义:PFe d=,PF 点P 到定点F 的距离,d 为点P 到直线l 的距离其中F 为双曲线的焦点,l 为双曲线的准线 2.双曲线的简单几何性质:12222=+by ax 21,F F θ=∠21PF F 21F PF ∆2tan 2θb a PF PF 221=+的一个端点的一条射线以无轨迹方程为双曲线21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-注:①双曲线标准方程:.参数方程:或 . (现在了解,后面选修4-4要详细讲)②通径:垂直于对称轴且过焦点的弦叫做通径,椭圆通径长为③焦半径:对于双曲线方程(分别为双曲线的左、右焦点或上、下焦点)双曲线不带符号)构成满足)0,(1),0,(12222b a bx ay b a by a x =-=-⎩⎨⎧==θθtan sec b y a x ⎩⎨⎧==θθsec tan a y b x ab 2212222=-by ax 21,F F aex MF a ex MF -=+=0201a MF MF221=-aex F M a ex F M +-='--='0201④设双曲线22221x y a b -=:上弦AB 的中点为M (x 0,y 0),则斜率k AB =2020b x a y ,对双曲线:22221y x a b -=, 则k AB =2020a xb y .弦长AB= ⑤常设与22221x y a b -=渐近线相同的双曲线方程为2222x y a bλ-=;常设渐近线方程为0mx ny ±=的双曲线方程为2222m x n y-=例如:若双曲线一条渐近线为且过⑥从双曲线一个焦点到另一条渐近线的距离等于b ⑦直线与双曲线的位置关系:三、抛物线方程及其性质.抛物线的定义:PF d =,PF 为点P 到定点F 的距离,d 为点P 到直线l 的距离其中F 为抛物线的焦点,l 为抛物线的准线 设,抛物线的标准方程、类型及其几何性质: x y 21=)21,3(-p 0 p注:①抛物线通径为2p ,这是过焦点的所有弦中最短的.②(或)的参数方程为(或)(为参数).(现在了解,后面选修4-4要详细讲)4.抛物线的焦半径、焦点弦.(抛物线中常用结论和方法)如图所示,抛物线方程为y 2=2px (p >0).(1)焦半径设A 点在准线上的射影为A 1,设A (x 1,y 1),准线方程为x =-p2,由抛物线定义|AF |=|AA 1|=x 1+p2. 抛物线上任意一条弦的弦长为(2)关于抛物线焦点弦的几个结论设AB 为过抛物线y 2=2px (p >0)焦点的弦,A (x 1,y 1)、B (x 2,y 2),AB中点为00(,)M x y ,直线AB 的倾斜角为θ,则①x 1x 2=p 24,y 1y 2=-p 2,12x x ≠时,有1222p x x p k +=+②|AB |=2p sin 2θ=x 1+x 2+p =12222()pp x x k+≠,0AB p k y =,22sin AOB p S θ∆=px y 22=py x 22=⎩⎨⎧==pty pt x 222⎩⎨⎧==222pty ptx t③以AB 为直径的圆与准线相切;④焦点F 对A 、B 在准线上射影的张角为90°; ⑤1|FA |+1|FB |=2p .四、圆锥曲线的统一定义..4. 圆锥曲线的统一定义:平面内到定点F 和定直线的距离之比为常数的点的轨迹.当时,轨迹为椭圆;当时,轨迹为抛物线;当时,轨迹为双曲线;当时,轨迹为圆(,当时).5. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.注:椭圆、双曲线、抛物线的标准方程与几何性质l e 10 e 1=e 1 e 0=e ac e =b a c ==,0导数的基础知识一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x yx x+∆-∆=∆∆;③取极限得导数:00'()limx y f x x∆→∆=∆ (下面内容必记) 二、导数的运算:(1)基本初等函数的导数公式及常用导数运算公式: ①'0()C C =为常数;②1()'nn x nx-=;11()'()'n n n x nx x---==-;1()'m mn n m x x n -==③(sin )'cos x x =; ④(cos )'sin x x =- ⑤()'x x e e = ⑥()'ln (0,1)x x a a a a a =>≠且; ⑦1(ln )'x x=; ⑧1(log )'(0,1)ln a x a a x a=>≠且 法则1:[()()]''()'()f x g x f x g x ±=±;(口诀:和差的导数等于导数的和差). 法则2:[()()]''()()()'()f x g x f x g x f x g x ⋅=⋅+⋅(口诀:左导右不导+左不导右导) 法则3:2()'()()()'()[]'(()0)()[()]f x f x g x f x g x g x g x g x ⋅-⋅=≠ (口诀:(上导下不导-上不导下导) ÷下平方) (2)复合函数(())y f g x =的导数求法:(理科必须掌握)①换元,令()u g x =,则()y f u =②分别求导再相乘[][]'()'()'y g x f u =⋅③回代()u g x =题型一、导数定义的理解题型二:导数运算1、已知()22sin f x x x π=+-,则()'0f =2、若()sin x f x e x =,则()'f x =3.)(x f =ax 3+3x 2+2 ,4)1(=-'f ,则a =( )319.316.313.310.D C B A 三.导数的物理意义1.求瞬时速度:物体在时刻0t 时的瞬时速度0V 就是物体运动规律()S f t =在0t t = 时的导数()0f t ',即有()00V f t '=。

(完整word版)圆锥曲线知识点总结,推荐文档

(完整word版)圆锥曲线知识点总结,推荐文档

圆锥曲线的方程与性质1.椭圆(1)椭圆概念的焦点,两焦点的距离2c 叫椭圆的焦距。

若 M为椭圆上任意一点,则有|MF 1 I |MF 2 I 2a 。

0的条件,要分清焦点的位置,只要看 X 2和y 2的分表示焦点在y 轴上的椭圆。

(2)椭圆的性质方程也不变,则曲线关于原点对称。

所以,椭圆关于X 轴、y 轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心 叫椭圆的中心;X 0,得y b ,则B 1(0, b ), B 2(0,b )是椭圆与y 轴的两个交点。

同理令 y 0得X a ,即A ( a,0),A 2(a,0)是椭圆与X 轴的两个交点。

所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

平面内与两个定点 F 1、F 2的距离的和等于常数2a (大于IF 1F 2I )的点的轨迹叫做椭圆。

这两个定点叫做椭圆上)。

椭圆的标准方程为:22Xy22a b0)(焦点在 x 轴上)2y a 2XP 1 ( a b 0 )(焦点在y 轴b 2注:①以上方程中 a,b 的大小 a b 0,其中b 2母的大小。

例如椭圆2y nn )当m n 时表示焦点在X 轴上的椭圆;当 m n 时1两个方程中都有aX 2①范围:由标准方程a1知|X| a ,|y| b ,说明椭圆位于直线 X a ,b 所围成的矩形里; ②对称性:在曲线方程里, 若以 y 代替y 方程不变,所以若点(X, y )在曲线上时,(X, y )也在曲线上, 所以曲线关于X 轴对称,同理,以X 代替X 方程不变,则曲线关于 y 轴对称。

若同时以X 代替X , y 代替y③ 顶点:确定曲线在坐标系中的位置,常需要求出曲线与X 轴、y 轴的交点坐标。

在椭圆的标准方程中,令焦距。

(2)双曲线的性质同时,线段 AA 、B 1B 2分别叫做椭圆的长轴和短轴,它们的长分别为 2a 和2b , a 和b 分别叫做椭圆的长半轴长和短半轴长。

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(完整精华版)

圆锥曲线知识点全归纳(精华版)圆锥曲线包括椭圆,双曲线,抛物线。

其统一定义:到定点的距离与到定直线的距离的比e 是常数的点的轨迹叫做圆锥曲线。

当0<e<1时为椭圆:当e=1时为抛物线;当e>1时为双曲线。

一、圆锥曲线的方程和性质:1)椭圆文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个小于1的正常数e。

定点是椭圆的焦点,定直线是椭圆的准线,常数e是椭圆的离心率。

标准方程:1.中心在原点,焦点在x轴上的椭圆标准方程:(x^2/a^2)+(y^2/b^2)=1其中a>b>0,c>0,c^2=a^2-b^2.2.中心在原点,焦点在y轴上的椭圆标准方程:(x^2/b^2)+(y^2/a^2)=1其中a>b>0,c>0,c^2=a^2-b^2.参数方程:X=acosθY=bsinθ(θ为参数,设横坐标为acosθ,是由于圆锥曲线的考虑,椭圆伸缩变换后可为圆此时c=0,圆的acosθ=r)2)双曲线文字语言定义:平面内一个动点到一个定点与一条定直线的距离之比是一个大于1的常数e。

定点是双曲线的焦点,定直线是双曲线的准线,常数e是双曲线的离心率。

标准方程:1.中心在原点,焦点在x轴上的双曲线标准方程:(x^2/a^2)-(y^2/b^2)=1其中a>0,b>0,c^2=a^2+b^2.2.中心在原点,焦点在y轴上的双曲线标准方程:(y^2/a^2)-(x^2/b^2)=1.其中a>0,b>0,c^2=a^2+b^2.参数方程:x=asecθy=btanθ(θ为参数 )3)抛物线标准方程:1.顶点在原点,焦点在x轴上开口向右的抛物线标准方程:y^2=2px 其中 p>02.顶点在原点,焦点在x轴上开口向左的抛物线标准方程:y^2=-2px 其中 p>03.顶点在原点,焦点在y轴上开口向上的抛物线标准方程:x^2=2py 其中 p>04.顶点在原点,焦点在y轴上开口向下的抛物线标准方程:x^2=-2py 其中 p>0参数方程x=2pt^2 y=2pt (t为参数) t=1/tanθ(tanθ为曲线上点与坐标原点确定直线的斜率)特别地,t 可等于0直角坐标y=ax^2+bx+c (开口方向为y轴, a<>0 ) x=ay^2+by+c (开口方向为x轴, a<>0 )圆锥曲线(二次非圆曲线)的统一极坐标方程为ρ=ep/(1-e×cosθ)其中e表示离心率,p为焦点到准线的距离。

圆锥曲线知识点总结(经典版)

圆锥曲线知识点总结(经典版)

圆锥曲线知识点总结(经典版)剔除下面文章的格式错误,删除明显有问题的段落,然后再小幅度的改写每段话。

圆锥曲线的方程与性质1.椭圆1)椭圆概念椭圆是平面内与两个定点F1、F2的距离的和等于常数2a (大于|F1F2|)的点的轨迹。

这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。

若M为椭圆上任意一点,则有|MF1|+|MF2|=2a。

椭圆的标准方程为:x^2/a^2 + y^2/b^2 = 1(a>b>0)(焦点在x轴上)或x^2/b^2 + y^2/a^2 = 1(a>b>0)(焦点在y轴上)。

2)椭圆的性质①范围:由标准方程x^2/a^2 + y^2/b^2 = 1知|x|≤a,|y|≤b,说明椭圆位于直线x=±a,y=±b所围成的矩形里;②对称性:椭圆关于x轴、y轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x轴、y轴的交点坐标。

在椭圆的标准方程中,令x=0,得y=±b,则B1(0,-b),B2(0,b)是椭圆与y轴的两个交点。

同理令y=0得x=±a,即A1(-a,0),A2(a,0)是椭圆与x轴的两个交点。

所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。

同时,线段A1A2、B1B2分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。

椭圆的离心率e=c/a,其中c是焦距。

④离心率:椭圆的焦距与长轴的比e=c/a。

椭圆的离心率是一个重要的概念,它表示椭圆的扁平程度。

由于椭圆的长轴a大于短轴c,所以离心率e小于1.当离心率e接近1时,短轴c就越接近于长轴a,椭圆变得越扁。

相反,当离心率e接近于0时,短轴c就越接近于0,椭圆变得越接近于圆。

当长轴a等于短轴b时,离心率e等于0,椭圆的两个焦点重合,变成了一个圆,其方程为x+y=a。

(完整版)圆锥曲线知识点总结(经典版)

圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点1F 、2F 的距离的和等于常数2a (大于21||F F )的点的轨迹叫做椭圆。

这两个定点叫做椭圆的焦点,两焦点的距离2c 叫椭圆的焦距。

若M 为椭圆上任意一点,则有21||||2MF MF a +=。

椭圆的标准方程为:22221x y a b +=(0a b >>)(焦点在x 轴上)或12222=+bx a y (0a b >>)(焦点在y 轴上)。

注:①以上方程中,a b 的大小0a b >>,其中222b ac =-;②在22221x y a b +=和22221y x a b +=两个方程中都有0a b >>的条件,要分清焦点的位置,只要看2x 和2y 的分母的大小。

例如椭圆221x y m n+=(0m >,0n >,m n ≠)当m n >时表示焦点在x 轴上的椭圆;当m n <时表示焦点在y 轴上的椭圆。

(2)椭圆的性质①范围:由标准方程22221x y a b+=知||x a ≤,||y b ≤,说明椭圆位于直线x a =±,y b =±所围成的矩形里;②对称性:在曲线方程里,若以y -代替y 方程不变,所以若点(,)x y 在曲线上时,点(,)x y -也在曲线上,所以曲线关于x 轴对称,同理,以x -代替x 方程不变,则曲线关于y 轴对称。

若同时以x -代替x ,y -代替y 方程也不变,则曲线关于原点对称。

所以,椭圆关于x 轴、y 轴和原点对称。

这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x 轴、y 轴的交点坐标。

在椭圆的标准方程中,令0x =,得y b =±,则1(0,)B b -,2(0,)B b 是椭圆与y 轴的两个交点。

同理令0y =得x a =±,即1(,0)A a -,2(,0)A a 是椭圆与x 轴的两个交点。

(完整版)《圆锥曲线》主要知识点

圆锥曲线与方程知识要点一、椭圆方程. 1、椭圆的定义:平面内与两个定点尸卜F 2,点P 满足IP 用+1尸/2∣=2α>2∣,则点P 的轨迹是 平面内与两个定点尸八F 2,点尸满足IP 居|+|Pq=2z=∣FE ∣,则点尸的轨迹是 平面内与两个定点尸I 、F 2,点P 满足IPFJ+1PKI=2〃<忻八|,则点P 的轨迹是 2X 2V 2若户是椭圆:-τ+J=I 上的点为焦点,若NF1P 户产氏则AT//2的面积为ab3、点与椭圆、直线与椭圆的位置关系9 2⑴点Pa0,比)与椭圆E+g=1(α>b>0)的位置关系:①点尸在椭圆上O;②点P 在椭圆内部=;③点P 在椭圆外部Q.(2)直线尸履+〃?与椭圆,+方=1(α>Z>O)的位置关系判断方法:消y 得一个一元二次方程是: _____________________________________________________v(3)弦长公式:设直线方程为),=履+加(%0),椭圆方程为/+方=1(α>b>0)或方+∕=1(α>b>0),直线与椭圆的两个交点为A(X1,yι),3(X2,)力则∣A8∣=N(为一7)2+(小一”)2,Λ∖AB∖=7(X1X2)2+(如一g)2=<1+F∙d(X1-X2)2=y∣I+*7(X1+切)4_¥1囚,或HB1=d(i>1⅛2)+(上_1)2=[]+、•'(%_")2=^1+.XJ(>1+>2)2_领/其中,即+“2,汨M 或“+”,V”的值,可通过由直线方程与椭圆方程联立消去y或X后得到关于X或y的一元二次方程得到.2 2(4)直线/:y=Ax+m与椭圆:二+与=1(α>/?>0)的两个交点为Aa1,y),8(如力),a'b~弦A8的中点M(X0,州),则2=(用X0,州表示)二、双曲线方程.1、双曲线的定义:平面内与两个定点尸I、F2,点尸满足归/JTPgh2々<囚尸21则点尸的轨迹是平面内与两个定点尸卜尸2,点尸满足仍PJTPW=2α>巴川,则点P的轨迹是平面内与两个定点尸1、尸2,点P满足归尸]|-|尸/』=2〃=|尸尸小则点P的轨迹是21等轴双曲线:双曲线“2_,2=±『称为等轴双曲线,其渐近线方程为,离心率《=2 2(2)共渐近线的双曲线系方程:二-1?=”之0°)的渐近线方程为_________________a~Zr如果双曲线的渐近线为±±2=0时,它的双曲线方程可设为 ____________________ .ab(3)从双曲线一个焦点到一条渐近线的距离等于.3、直线与双曲线的位置关系r2V2(1)一般地,设直线/:y=kxΛ-m……①双曲线C:^-p=1(α>O,bX))……②把①代入②得关于X的一元二次方程为.①当〃一"仆=O时,直线/与双曲线的渐近线,直线与双曲线C.②当/一/炉和时,/>0=直线与双曲线有公共点,此时称直线与双曲线:/=0=直线与双曲线有公共点,此时称直线与双曲线:/<0=直线与双曲线公共点,此时称直线与双曲线.注意:直线和双曲线只有一个公共点时,直线不一定与双曲线相切,当直线与双曲线的渐近线平行时,直线与双曲线相交,只有一个交点.AB的中点M(xo>h),则A=(用必,yo表示)三、抛物线方程.1、抛物线的定义平面内与一个定点尸和一条定直线/(不经过点F)的点的轨迹叫做抛物线.点尸叫做抛物线的,直线/叫做抛物线的.思考1:平面内与一个定点F和一条定直线/(/经过点F),点的轨迹是2、抛物线的性质:3、抛物线的焦点弦的性质1.如图,A8是抛物线y2=2pMp>0)过焦点尸的一条弦,设Aa∣,》)、8(及,工),AB的中点MX°,并),相应的准线为/.(1)以AB为直径的圆必与准线/的位置关系是:(2)HB1=(焦点弦长用中点M的坐标表示);(3)若直线AB的倾斜角为α,则∣A8∣=(焦点弦长用倾斜角为α表示);如当α=90。

(完整版)圆锥曲线知识点归纳总结

完整版)圆锥曲线知识点归纳总结1.圆锥曲线的定义和构造圆锥曲线是在平面上由一个固定点(焦点)和一个固定直线(准线)决定的点集。

三种经典的圆锥曲线分别为椭圆、抛物线和双曲线。

构造圆锥曲线需要确定焦点和准线的位置以及确定参数值。

2.椭圆的特性椭圆是圆锥曲线中最常见的一种形式,由两个焦点和一个大于等于焦距的参数决定。

椭圆的离心率小于1,且离心率等于焦点到准线的距离除以准线长度。

椭圆的焦缩比为焦点到椭圆上某一点的距离与该点到准线的距离的比值。

重要公式:椭圆的标准方程为(x^2/a^2) + (y^2/b^2) = 1;焦缩比为e = c/a,其中c^2 = a^2 – b^2.3.抛物线的特性抛物线是圆锥曲线中的一种形式,由一个焦点和一个参数决定。

抛物线的离心率为1,焦缩比为1.抛物线的轴是准线,顶点是焦点和准线的交点。

重要公式:抛物线的标准方程为(x^2/4a) = y。

4.双曲线的特性双曲线是圆锥曲线中的一种形式,由两个焦点和一个焦距决定。

双曲线的离心率大于1,离心率等于焦点到准线的距离除以准线长度。

双曲线的焦缩比为c^2 = a^2 + b^2.重要公式:双曲线的标准方程为(x^2/a^2) – (y^2/b^2) = 1.5.圆锥曲线的应用圆锥曲线在数学和物理学中都有广泛的应用。

椭圆的应用包括轨道运动、天体力学以及密码学等领域。

抛物线的应用包括抛物面反射器、人工卫星的轨道设计等。

双曲线的应用包括电磁波的传播、双曲线钟的标定等。

6.圆锥曲线的性质圆锥曲线有许多共同的性质,如对称性、切线性质和焦点性质等。

对称性:椭圆和双曲线关于x轴和y轴都有对称性,抛物线关于y轴有对称性。

切线性质:圆锥曲线上任意一点的切线与焦点到该点的连线垂直。

焦点性质:圆锥曲线上的任意一点到焦点的距离与焦缩比成正比。

此文档总结了圆锥曲线的定义、特性、应用和性质等重要知识点,并提供了相关公式和图示。

熟悉了这些知识后,我们可以更加深入地理解和应用圆锥曲线的概念。

圆锥曲线方程知识点总结

圆锥曲线方程知识点总结一、圆锥曲线的基本方程椭圆的标准方程如下:$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1. (a > b > 0)$$其中椭圆的长轴为$2a$,短轴为$2b$,焦距为$\sqrt{a^2 - b^2}$,离心率为$c/a$。

双曲线的标准方程如下:$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1. (a > 0, b > 0)$$其中双曲线的两个分支的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$。

抛物线的标准方程如下:$$x^2 = 4ay. (a > 0)$$其中抛物线的焦点为$(0, a)$,顶点为$(0, 0)$。

二、圆锥曲线的参数方程圆锥曲线还可以用参数方程表示。

以椭圆为例,其参数方程为:$$\begin{cases}x = a \cos \theta, \\y = b \sin \theta. \\\end{cases}$$其中$\theta$的取值范围为$[0, 2\pi]$。

双曲线和抛物线的参数方程也可以类似地表示。

三、圆锥曲线的极坐标方程圆锥曲线还可以用极坐标方程表示。

以椭圆为例,其极坐标方程为:$$r = \frac{ab}{\sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}.$$其中$r$为极径,$\theta$为极角。

双曲线和抛物线的极坐标方程也可以类似地表示。

四、圆锥曲线的性质1. 圆锥曲线关于坐标轴的对称性:- 椭圆关于$x$轴和$y$轴都对称;- 双曲线关于$x$轴和$y$轴都对称;- 抛物线关于$y$轴对称。

2. 圆锥曲线的焦点、直径、离心率等:- 椭圆的焦点到中心的距离为$c = \sqrt{a^2 - b^2}$,离心率为$e = c/a$;- 双曲线的焦点到中心的距离为$c = \sqrt{a^2 + b^2}$,离心率为$e = c/a$;- 抛物线的焦点到中心的距离为$c = a$,离心率为$e = 1$。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§8.圆锥曲线方程 知识要点
一、椭圆方程.
1. 椭圆方程的第一定义:为端点的线段
以无轨迹方程为椭圆21212121212121,2,
2,
2F F F F a PF PF F F a PF PF F F a PF PF ==+=+=+
⑴①椭圆的标准方程:i. 中心在原点,焦点在x 轴上:)0(1222
2
b a b y a x
=+
. ii. 中心在原点,焦点在y 轴上:)0(12
22
2 b a b
x a
y
=+
.
②一般方程:)0,0(122 B A By Ax =+.
③椭圆的标准方程:12
22
2=+
b y a x 的参数方程为⎩⎨
⎧==θ
θsin cos b y a x (一象限θ应是属于20π
θ ). ⑵①顶点:),0)(0,(b a ±±或)0,)(,0(b a ±±.
②轴:对称轴:x 轴,y 轴;长轴长a 2,短轴长b 2. ③焦点:)0,)(0,(c c -或),0)(,0(c c -. ④焦距:2221,2b a c c F F -==. ⑤准线:c a x 2±=或c
a y 2
±=.
⑥离心率:)10( e a
c
e =. ⑦焦点半径:
i. 设),(00y x P 为椭圆)0(12222 b a b y a x =+上的一点,21,F F 为左、右焦点,则 ii.设),(00y x P 为椭圆
)0(12
22
2 b a a y b x =+
上的一点,21,F F 为上、下焦点,则 由椭圆第二定义可知:)0()(),0()(0002
2002
01 x a ex x c
a e pF x ex a c
a x e pF -=-=+=+=归结起来为“左加右减”.
注意:椭圆参数方程的推导:得→)sin ,cos (θθb a N 方程的轨迹为椭圆. ⑧通径:垂直于x 轴且过焦点的弦叫做通经.坐标:),(222
2a b c a b d -=和),(2a
b c
⑶共离心率的椭圆系的方程:椭圆
)0(12
22
2 b a b y a x =+的离心率是)(22b a c a
c
e -==
,方程t t b y a x (2
22
2=+是大于0的参数,)0 b a 的离心率也是a
c
e =
我们称此方程为共离心率的椭圆系方程. ⑸若P 是椭圆:
12
22
2=+b y a x 上的点.21,F F 为焦点,若θ=∠21PF F ,则21F PF ∆的面积为2
tan

b (用
余弦定理与a PF PF 221=+可得). 若是双曲线,则面积为2
cot 2θ
⋅b .
⇒-=+=0201,ex a PF ex a PF ⇒
-=+=0201,ey a PF ey a PF
、二、双曲线方程.
1. 双曲线的第一定义:的一个端点的一条射线
以无轨迹
方程为双曲线
21212121212121,222F F F F a PF PF F F a PF PF F F a PF PF ==-=-=-
⑴①双曲线标准方程:
)0,(1),
0,(12
22
22
22
2 b a b x a y b a b y a x =-
=-
.
一般方程:)0(122 AC Cy Ax =+.
⑵①i. 焦点在x 轴上:
顶点:)0,(),0,(a a - 焦点:)0,(),0,(c c - 准线方程c a x 2±= 渐近线方程:0=±b y
a x 或02222=-b
y a x
ii. 焦点在y 轴上: 顶点:),0(),,0(a a -. 焦点:),0(),,0(c c -. 准线方程:c a y 2
±
=. 渐近线方程:0=±b x a y 或02222=-b
x a y ,参数方程:⎩⎨⎧==θθtan sec b y a x 或⎩
⎨⎧==θθ
sec tan a y b x .
②轴y x ,为对称轴,实轴长为2a , 虚轴长为2b ,焦距2c. ③离心率a
c
e =
. ④准线距c a 22(两准线的距离);通径a
b 2
2.
⑤参数关系a
c
e b a c =
+=,222. ⑥焦点半径公式:对于双曲线方程
1
2
22
2=-b y a x
(21,F F 分别为双曲线的左、右焦点或分别为双曲线的上下焦点)
“长加短减”原则:(与椭圆焦半径不同,椭圆焦半径要带符号计算,而双曲线不带符号) a
ex MF a ex MF -=+=0201 构成满足a MF MF 221=-
M a
ex F M '--='01a
ey F M a ey F M a
ey MF
a ey MF -'-='+'
-='+=-=020102
01
⑶等轴双曲线:双曲线222a y x ±=-称为等轴双曲线,其渐近线方程为x y ±=,离心率2=e . ⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲
线.λ=-22
22b y a x 与λ-=-2222b y a x 互为共轭双曲线,它们具有共同的渐近线:02222=-b y a x .
⑸共渐近线的双曲线系方程:
)0(2
22
2≠=-
λλb
y a
x 的渐近线方程为
02
22
2=-
b
y a
x 如果双曲线的渐近线为
0=±b y
a x 时,它的双曲线方程可设为)0(2222≠=-λλb
y a x . 例如:若双曲线一条渐近线为x y 2
1
=
且过)21,3(-p
解:令双曲线的方程为:)0(42
2≠=-λλy x ,代入)2
1,3(-得
2822=-y x ⑹直线与双曲线的位置关系:
区域①:无切线,2条与渐近线平行的直线,合计2条;
区域②:即定点在双曲线上,1条切线,2区域③:2条切线,2条与渐近线平行的直线,合计4条;
区域④:即定点在渐近线上且非原点,1条切线,1条与渐近线平行的直线,合计2条; 区域⑤:即过原点,无切线,无与渐近线平行的直线.
小结:1.过定点作直线与双曲线有且仅有一个交点,可以作出的直线数目可能有0、2、3、4条.
2.若直线与双曲线一支有交点,交点为二个时,求确定直线的斜率可用代入”
“∆法与渐近线求交和两根之和与两根之积同号. ⑺若P 在双曲线
12
22
2=-b y a x ,则常用结论
1:从双曲线一个焦点到另一条渐近线的距离等于b.
2:P 到焦点的距离为m = n ,则P 到两准线的距离比为m ︰n. 简证:
e
PF e PF d d 2
1
21= =
n m
.
三、抛物线方程.
3. 设0 p ,抛物线的标准方程、类型及其几何性质:
注:①x c by ay =++2
顶点)244(2a
b
a b ac --.
②)0(22≠=p px y 则焦点半径2
P x PF +=;)0(22≠=p py x 则焦点半径为2
P y PF +=.
③通径为2p ,这是过焦点的所有弦中最短的.
④px y 22
=(或py x 22
=)的参数方程为⎩⎨⎧==pt y pt x 222(或⎩
⎨⎧==2
22pt y pt
x )(t 为参数).
四、圆锥曲线的统一定义..
4. 圆锥曲线的统一定义:平面内到定点F 和定直线l 的距离之比为常数e 的点的轨迹.
当10 e 时,轨迹为椭圆;当1=e 时,轨迹为抛物线;当1 e 时,轨迹为双曲线;当0=e 时,轨迹
为圆(a c
e =,当b a c ==,0时).
5. 圆锥曲线方程具有对称性. 例如:椭圆的标准方程对原点的一条直线与双曲线的交点是关于原点对称的.因为具有对称性,所以欲证AB=CD, 即证AD 与BC 的中点重合即可.。

相关文档
最新文档