八年级数学全等三角形复习(高效)-PPT课件
合集下载
人教部初二八年级数学上册 复习三角形全等的判定 名师教学PPT课件

千里之行 始于足下
谢谢!
个条件
,使得△ABE≌△ACD.
思路
隐含条件∠A为公共角
已
找夹边(ASA)
知
两
角
找对边(AAS)
一题多解唤醒学生思维力
原题:如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.求证:BF=DE.
● 【变式1】如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.求 证:BD平分EF.
● 【变式2】如图,AB=CD, BF⊥AC,DE⊥AC,AE=CF.想想:BD 平分EF吗?
你还能编写出变式4,,变式5吗?如果能,请编写并解答。
典例分析:
例1、如图所示,已知AC=AD,请你添加一个条
件
,使得△ABC≌△ABD.
思路
隐含条件AB=AB
找另一边 (SSS) 已 知 两 边 找夹角 (SAS)
变式1:如图,已知∠C=∠D,请你添加一个
条件
,使得△ABC≌△ABD.
思路
隐含条件AB=AB
三角形全等的判定
复习课
复习导纲
问题:
如图,已知AB=AD,CB=CD,△ABC 和△ABD全等吗?为什么?(课 本第43页 第1题)
变式1:如图,已知AB=AD,请你添加一个条件 变式2:如图,已知∠B=∠D,请你添加一个条件
,使得△ABC≌△ADC。 ,使得△ABC≌△ADC.
变式3:已知∠CAB=∠CAD,请你添加一个条件 ,使得△ABC≌△ADC
小试牛刀
1.如图,已知AB=AD,AC=AE,∠1=∠2, 求证:BE=DC
A
12
CE
B
D
请同学们 注意书写 格式哦!
小试牛刀
人教版八年级上册数学《全等三角形》说课研讨复习教学课件

( − 4,2).
知识要点
1.全等形:能够完全重合的两个图形叫做全等形.
2.能够完全重合的两个三角形叫做全等三角形.
3.平移、翻折、旋转前后的图形全等.
4.把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,
重合的边叫做对应边,重合的角叫做对应角。
5全等用符号“≌”表示,读作“全等于”.记两个三角形全等时,
Байду номын сангаас
纸板放在一起能够完全重合吗?从同一张底片冲洗出来的
两张尺寸相同的照片上的图形,放在一起也能够完全重合
吗?
【结论】可以看到,形状、大小相同的图形放在一起能够完全重合.
能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫
做全等三角形.
知识梳理
平移、翻折、旋转前后的图形,什么变化了?什么没有变化?它们
移、翻折、旋转前后的图形全等。
知识梳理
例题 1:请观察图中的6组图案,其中是全等形的是 1、4、5、6 .
【结论】(1)(5)是由其中一个图形旋转一定角度得到
另一个图形的,(4)是将其中一个图形翻折后得到另一个
图形的,(6)是将其中一个图形旋转180°再平移得到的,
(2)形状相同,但大小不等,(3)形状不同.故答案为:
∵∠BAF = 60°,∴∠FAD = 90° − 60° = 30°
∵△ AEF由 △ AED翻折而成
1
1
∴∠DAE = ∠FAD = × 30° = 15°
2
2
【解析】本题是关于利用全等三角形的性质解决全等变换问题的题目,图
形翻折不变性的性质是解答此题的关键.先根据四边形ABCD是长形得出
∠BAD = 90°,再由∠BAF = 60°求出∠FAD的度数,由图形翻折变换的性
知识要点
1.全等形:能够完全重合的两个图形叫做全等形.
2.能够完全重合的两个三角形叫做全等三角形.
3.平移、翻折、旋转前后的图形全等.
4.把两个全等的三角形重合在一起,重合的顶点叫做对应顶点,
重合的边叫做对应边,重合的角叫做对应角。
5全等用符号“≌”表示,读作“全等于”.记两个三角形全等时,
Байду номын сангаас
纸板放在一起能够完全重合吗?从同一张底片冲洗出来的
两张尺寸相同的照片上的图形,放在一起也能够完全重合
吗?
【结论】可以看到,形状、大小相同的图形放在一起能够完全重合.
能够完全重合的两个图形叫做全等形.能够完全重合的两个三角形叫
做全等三角形.
知识梳理
平移、翻折、旋转前后的图形,什么变化了?什么没有变化?它们
移、翻折、旋转前后的图形全等。
知识梳理
例题 1:请观察图中的6组图案,其中是全等形的是 1、4、5、6 .
【结论】(1)(5)是由其中一个图形旋转一定角度得到
另一个图形的,(4)是将其中一个图形翻折后得到另一个
图形的,(6)是将其中一个图形旋转180°再平移得到的,
(2)形状相同,但大小不等,(3)形状不同.故答案为:
∵∠BAF = 60°,∴∠FAD = 90° − 60° = 30°
∵△ AEF由 △ AED翻折而成
1
1
∴∠DAE = ∠FAD = × 30° = 15°
2
2
【解析】本题是关于利用全等三角形的性质解决全等变换问题的题目,图
形翻折不变性的性质是解答此题的关键.先根据四边形ABCD是长形得出
∠BAD = 90°,再由∠BAF = 60°求出∠FAD的度数,由图形翻折变换的性
全等三角形单元复习(一线三等角模型)课件 (共18张PPT)2023-2024学年人教版八年级上学期

CF⊥AP于点F.
(1)求证:CF=BE+EF;
(2)连接BF,BE=3,CF=9,
求∆BFE的面积.
感谢聆听
S∆BMC:S∆ABO.
D
图2
C
课堂小结
分层作业
必做题:1、如图,在△ABC中,∠B=∠C,点D、E、
F分别在AB、BC、AC边上,BE=CF,且∠B=∠DEF,
求证:DB=EC.
选做题:2.如图,在∆ABC中,AB=AC,∠BAC=90°,
P在BC靠近B处,连接AP,线段BE⊥AP于点E,线段
当AB=BC时,求证:∆ABD≌∆BCE .
A
C
D
B
E
第3关
第2关
第1关
第二关
变式1.如图,D、A、E三点都在直线m上,若
∠1=∠2=∠3,且BA=CA,求证:DE=BD+CE.
第二关
变式2.如图,在∆ABC中,∠B=∠C,BE=CF,
且∠AEF=∠B,求证:AC=EC.
第3关
第2关
第1关
第三关
全等三角形 AAS定理
一线三等角模型
学习目标
1.经历观察、分析、归纳的学习过程,归纳整理出
“一线三等角”图形的基本特征;
2.能在不同背景中提取基本模型,并运用其解决问题;
3.在学习过程中感受几何直观图形对几何学习的
重要性.
创设情境,探究1.如图,AD⊥DE,CE⊥ED,∠ABC=90°,
探究2.如图,CA⊥BP,DB⊥BP,
∠DPC=90°,且CP=DP,AC=4,
BD=3,求AB的长.
明晰概念,归纳模型
应用模型,解决问题
(1)求证:CF=BE+EF;
(2)连接BF,BE=3,CF=9,
求∆BFE的面积.
感谢聆听
S∆BMC:S∆ABO.
D
图2
C
课堂小结
分层作业
必做题:1、如图,在△ABC中,∠B=∠C,点D、E、
F分别在AB、BC、AC边上,BE=CF,且∠B=∠DEF,
求证:DB=EC.
选做题:2.如图,在∆ABC中,AB=AC,∠BAC=90°,
P在BC靠近B处,连接AP,线段BE⊥AP于点E,线段
当AB=BC时,求证:∆ABD≌∆BCE .
A
C
D
B
E
第3关
第2关
第1关
第二关
变式1.如图,D、A、E三点都在直线m上,若
∠1=∠2=∠3,且BA=CA,求证:DE=BD+CE.
第二关
变式2.如图,在∆ABC中,∠B=∠C,BE=CF,
且∠AEF=∠B,求证:AC=EC.
第3关
第2关
第1关
第三关
全等三角形 AAS定理
一线三等角模型
学习目标
1.经历观察、分析、归纳的学习过程,归纳整理出
“一线三等角”图形的基本特征;
2.能在不同背景中提取基本模型,并运用其解决问题;
3.在学习过程中感受几何直观图形对几何学习的
重要性.
创设情境,探究1.如图,AD⊥DE,CE⊥ED,∠ABC=90°,
探究2.如图,CA⊥BP,DB⊥BP,
∠DPC=90°,且CP=DP,AC=4,
BD=3,求AB的长.
明晰概念,归纳模型
应用模型,解决问题
人教版初中八年级上册数学-期末复习 第12章全等三角形 课件(共48张PPT)

的依据是_H__L_.
第3题
4.如图,AO=BO,下列条件不能判定△AOD≌△BOC 的是( B )
A.OC=OD C. ∠A=∠B
第4题 B.AD=BC D.∠C=∠D
【考点 3】角平分线的性质和判定 5.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,AB=6,CD
=2,则点 D 到 AB 的距离是_2_,△ABD 的面积是_6_.
用 HL 证 Rt△ABC≌Rt△DEC. 得 ∠A=∠D, 从而 AB∥DE.
10.如图,在△ABC 和△DEF 中,下面有四个条件,请你在其中 选 3 个作为题设,余下的 1 个作为结论,写一个真命题,并加 以证明. ① AB=DE;②AC=DF;③∠ABC=∠DEF;④BE =CF.
题设:①③④;结论:② 证明提示:BC=BE+EC=CF+EC=EF. 用 SAS 证明△ABC≌△DEF,从而 AC=DF.
证明:(1)如图,连接 AF, ∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE, ∵∠ACB=∠AEF=90°,AF=AF, ∴Rt△ACF≌Rt△AEF, ∴CF=EF.∴BF+EF=BF+CF=BC, ∴BF+EF=DE;
(2)如图,DE=BF-EF,理由是: 连接 AF,∵Rt△ABC≌Rt△ADE, ∴AC=AE,BC=DE, ∵∠E=∠ACF=90°,AF=AF, ∴Rt△ACF≌Rt△AEF,∴CF=EF, ∴DE=BC=BF-FC=BF-EF,即 DE=BF-EF.
24.已知 Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°. (1)将这两个三角形按图①方式摆放,使点 E 落在 AB 上,DE 的延长线交 BC 于点 F.求证:BE+EF=DE; (2)改变△ADE 的位置,使 DE 交 BC 的延长线于点 F(如图②), 写出此时 BF、EF 与 DE 之间的等量关系,并说明理由.
第3题
4.如图,AO=BO,下列条件不能判定△AOD≌△BOC 的是( B )
A.OC=OD C. ∠A=∠B
第4题 B.AD=BC D.∠C=∠D
【考点 3】角平分线的性质和判定 5.如图,在△ABC 中,∠C=90°,AD 平分∠BAC,AB=6,CD
=2,则点 D 到 AB 的距离是_2_,△ABD 的面积是_6_.
用 HL 证 Rt△ABC≌Rt△DEC. 得 ∠A=∠D, 从而 AB∥DE.
10.如图,在△ABC 和△DEF 中,下面有四个条件,请你在其中 选 3 个作为题设,余下的 1 个作为结论,写一个真命题,并加 以证明. ① AB=DE;②AC=DF;③∠ABC=∠DEF;④BE =CF.
题设:①③④;结论:② 证明提示:BC=BE+EC=CF+EC=EF. 用 SAS 证明△ABC≌△DEF,从而 AC=DF.
证明:(1)如图,连接 AF, ∵Rt△ABC≌Rt△ADE,∴AC=AE,BC=DE, ∵∠ACB=∠AEF=90°,AF=AF, ∴Rt△ACF≌Rt△AEF, ∴CF=EF.∴BF+EF=BF+CF=BC, ∴BF+EF=DE;
(2)如图,DE=BF-EF,理由是: 连接 AF,∵Rt△ABC≌Rt△ADE, ∴AC=AE,BC=DE, ∵∠E=∠ACF=90°,AF=AF, ∴Rt△ACF≌Rt△AEF,∴CF=EF, ∴DE=BC=BF-FC=BF-EF,即 DE=BF-EF.
24.已知 Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°. (1)将这两个三角形按图①方式摆放,使点 E 落在 AB 上,DE 的延长线交 BC 于点 F.求证:BE+EF=DE; (2)改变△ADE 的位置,使 DE 交 BC 的延长线于点 F(如图②), 写出此时 BF、EF 与 DE 之间的等量关系,并说明理由.
12.1 全等三角形 课件 人教版八年级数学上册(22张PPT)

新课讲授
探究:请同学们把课前准备好的三角尺按在纸片上, 划下图形,照图形裁下来的纸片和三角尺的形状、 大小完全一样吗?把三角尺和裁得的纸片放在一起 能够完全重合吗?
归纳总结
全等形的定义: 能够完全重合的两个图形称为全等形. 全等形的性质: 形状相同,大小相等.
练一练 下面哪些图形是全等形?
看大小、形状 是否完全相同
课堂小结
定义
能够完全重合的两个三角形叫做全等三角形
全
对应边相等
等 三
基本性质
对应角相等
角
长对长,短对短,中对中
形
对应边 公共边一般是对应边
对应元素 确定方法
对应角
大角对大角,小角对小角 公共角一般是对应角 对顶角一般是对应角
作业布置
1.完成课本P33页1-4题; 2.复习整理本节课知识框架,预习全等三角 形的判定并尝试整理思维导图; 3.探究性作业:利用全等形设计美丽的图案, 比比看谁的设计最好。
“全等”用符号“≌”表示,读作“全等于”.
A
D
B
C
E
F
△ABC≌△DEF
注意:记两个三角形全等时,通常把表示对应顶点
的字母写在对应的位置上.
全等三角形的性质
A
D
B
C
E
F
∵△ABC≌△DEF,
∴ AB = DE,AC = DF,BC = EF (全等三角形的对应边 相等),
∠A =∠D,∠B =∠E,∠C =∠F(全等三角形对应角相等).
牛刀小试
如图,△ABC 与△ADC 全等,请用数学符号表示出
这两个三角形全等,并写出相等的边和角. D 解:△ABC≌△ADC.
A
人教版八年级上册第十二章 12.1全等三角形 课件(共18张PPT)

今日任务—— 课堂作业:课本P31-32习题1、2 家庭作业:3、4
寻找对应边对应角的规律
(1)有公共边的,公共边是对应边; (2)有公共角的,公共角是对应角; (3)有对顶角的,对顶角是对应角; (4)最大边与最大边(最小边与最小边) 为
对应边;最大角与最大角(最小角与最小角)为对 应角;
(5)对应角所对的边为对应边;对应边所对 的角为对应角;
(6)根据书写规范,按照对应顶点找对应边 或对应角.
△ABC≌△BAD的对应边和
角∴
AB∠-BAACE= ∠=AEBFD-EA AF∠=ABEB=C_=_6_-2∠_=_B4AD
对应角
角 ∠C= ∠D
等式的性质1
谈谈你这节课的收获
全等三角形
(1)能够完全重合的两个三角形叫做全等三角形; (2)全等三角形的性质:对应边相等、对应角相等; (3)全等三角形用符号“≌”表示,且一般对应顶点写在对应位置上.
人教版八年级数学上册
12.1全等三角形
教学目标
知识与能力
1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等.
观察 (1)
(2)
(3)
每组的两个图形有什么特点? 重合
思 考 能够完全重合的两个图形叫做 全等形
2021年8月12日星期四
F
如图:∵△ABC≌△DEF ∴AB=DE,BC=EF,AC=DF ( 全等三角形的对应边相等 )
∠A=∠D,∠B=∠E,∠C=∠F ( 全等三角形的对应角相等 )
A
D
随堂练习:
B
CE
F
第二题图
1、若△ ABC≌ △ DEF,则∠B= ∠E , ∠BAC= ∠EDF ,
人教版数学八年级上册第十二章 全等三角形复习课件-课件
求证: ∠ABC=∠DCB.
A
D
B
C
【证明】 取AD,BC的中点N,M,
连接BN,CN,MN,则有AN=DN,BM=CM.
A ND
在△ABN和△DCN中,
AN=DN,
∠A= ∠D, AB=CD,
B
C
M
∴ △ABN ≌ △DCN(SAS).∴ ∠ABN = ∠ DCN, NB=NC.
在△NBM和△NCM中,
•
【证明】 ∵CE⊥AD, ∴ ∠AGE=∠AGC=90 °.
在△AGE和△AGC中,
∠AGE=∠AGC, AG=AG, ∠EAG=∠CAG, ∴ △AGE ≌ △AGC(ASA), ∴ GE =GC. 在△DGE和△DGC中,
D
C
EG=CG, ∠ EGD= ∠ CGD=90 °,
DG=DG. ∴ △DGE ≌ △DGC(SAS). ∴ ∠DEG = ∠ DCG.
【证明】 ∵AO平分∠BAC,CD⊥AB于点D,
A
BE⊥AC于点E, ∴OD=OE, ∠ODB=
∠OEC=90 °. 在△BOD和△COE中, ∠ODB= ∠OEC=90 °,
D
E
O
OD=OE, ∠DOB= ∠EOC,
B
C
∴ △BOD ≌ △COE(ASA),∴OB=OC.
专题二 证明角相等
【例2】如图,在△ABC中,AD平分∠BAC,CE⊥AD于点G,交
判 定 一般三角形 SSS,SAS,ASA,AAS
直角三角形 除上述判定方法之外,还
有“HL”
角平分线的性质定理
角平分线的判定定理
专题复习
专题一 证明线段相等
【例1】如图,点D、E分别在线段AB、AC上,已知AD=AE, ∠B= ∠C,H为线段BE、CD的交点,求证:BH=CH.
全等三角形单元复习: 一线三等角模型课件(16张PPT)2024-2025学年人教版八年级上学期
= , + = .
(1)试说明: = ;
(2)当∠ = 40°时,求∠的度数;
(3)请你猜想:当∠为多少度时,∠ + ∠ = 120°,并说明理由.
(2)∵∠ = 40°
1
2
∴∠ = ∠ = (180° − 40°) = 70°
∴ ∠ + ∠ = 110°
又∵△ ≌△
∴∠ = ∠
∴∠ + ∠ = 110°
∴∠ = 70°.
2. 如图,在 △ 中,∠ = ∠,点、、分别在、、上,且
= , + = .
(1)试说明: = ;
(2)当∠ = 40°时,求∠的度数;
∴∠ + ∠ = 90°
∵∠ + ∠ + ∠ = 180°
∴∠ = 90°.
2. 如图,在 △ 中,∠ = ∠,点、、分别在、、上,且
= , + = .
(1)试说明: = ;
(2)当∠ = 40°时,求∠的度数;
∴∠ = ∠ = 90°
在 △ 和 △ 中,
=
ቊ
=
∴ △ ≌ △ (HL)
∴ = , =
∴ = + = + .
(2)∵ △ ≌ △
∴∠ = ∠
∵∠ + ∠ = 90°
∴ = + .
模型2:“一线三等角”(两个三角形在直线同侧)
利用“一线三等角”可以证明三角形全等,反过来,由三角形全等可以反推,这也
是常考点,具体模型如下:
拓展模型:若、、三点在一条直线上,∠ = ∠ = , △ ≌△ ,则有
∠ = .
证明:∵△ ACP ≌△ BPD
(1)试说明: = ;
(2)当∠ = 40°时,求∠的度数;
(3)请你猜想:当∠为多少度时,∠ + ∠ = 120°,并说明理由.
(2)∵∠ = 40°
1
2
∴∠ = ∠ = (180° − 40°) = 70°
∴ ∠ + ∠ = 110°
又∵△ ≌△
∴∠ = ∠
∴∠ + ∠ = 110°
∴∠ = 70°.
2. 如图,在 △ 中,∠ = ∠,点、、分别在、、上,且
= , + = .
(1)试说明: = ;
(2)当∠ = 40°时,求∠的度数;
∴∠ + ∠ = 90°
∵∠ + ∠ + ∠ = 180°
∴∠ = 90°.
2. 如图,在 △ 中,∠ = ∠,点、、分别在、、上,且
= , + = .
(1)试说明: = ;
(2)当∠ = 40°时,求∠的度数;
∴∠ = ∠ = 90°
在 △ 和 △ 中,
=
ቊ
=
∴ △ ≌ △ (HL)
∴ = , =
∴ = + = + .
(2)∵ △ ≌ △
∴∠ = ∠
∵∠ + ∠ = 90°
∴ = + .
模型2:“一线三等角”(两个三角形在直线同侧)
利用“一线三等角”可以证明三角形全等,反过来,由三角形全等可以反推,这也
是常考点,具体模型如下:
拓展模型:若、、三点在一条直线上,∠ = ∠ = , △ ≌△ ,则有
∠ = .
证明:∵△ ACP ≌△ BPD
华东师大版八年级数学上册第13章《全等三角形》全章课件(共285张PPT)
练习:将下列命题改写成“如果…那么…”
的形式,然后指出这个命题的题设和结论。
(1)同角的补角相等。 (2)两直线平行,同位角相等。 (3)在同一平面内,同垂直于第三条
直线的两直线平行。
分析命题“不相等的两个角不可能是对顶角” 条件: 两个角不相等
结论: 这两个角不可能是对顶角
改写成“如果……,那么……”的形式: 如果两个角不相等, 那么这两个角不可能是对顶角。
观察 2、下列各图中的两个三角形是全等形吗? 思考
A
D
B A
C
E
M C
F S
O
O
B
D
N
T
经过平移、旋转、翻折等位移变换
得到的三角形与原三角形全等。
1、能够完全重合的两个三角形,叫做
全等三角形。
A
D
B
CE
F
2、把两个全等的三角形重叠到一起时, 重合的顶点叫做对应顶点,重合的边叫做 对应边,重合的角叫做对应角。
强调:
观察、猜想、度量、实验得 出的结论未必都正确;
一个命题的真假,常常需要 进行有理有据的推理才能作出正 确的判断,这个推理过程叫做命 题的证明.把经过证明的真命题 叫做定理.
巩固:
下列语句中哪些是命题?请判断其中命题 的真假,并说明理由。
(1)每单位面积所受到的压力叫做压强. (2)两个奇数的和是偶数. (3)两个无理数的乘积一定是无理数. (4)偶数一定是合数吗? (5)连结AB. (6)不相等的两个角不可能是对顶角.
3、全等三角形的表示法:
A
D
B
CE
F
表示图中的△ABC和△DEF全等:
记作△ABC≌△DEF, 读作△ABC全等于△DEF.
《全等三角形》_PPT课件
【获奖课件ppt】《全等三角形》_ppt 课件1- 课件分 析下载
△ ABC ≌ △ DEF
【获奖课件ppt】《全等三角形》_ppt 课件1- 课件分 析下载
找出下列全等三角形的对应边和对应角
【获奖课件ppt】《全等三角形》_ppt 课件1- 课件分 析下载
△ ABC ≌ △DCB
【获奖课件ppt】《全等三角形》_ppt 课件1- 课件分 析下载
∠D= ∠B, ∠C= ∠AED,
则∠DAE=
;
∠DAB=
。
D B
A
E
C
【获奖课件ppt】《全等三角形》_ppt 课件1- 课件分 析下载
【获奖课件ppt】《全等三角形》_ppt 课件1- 课件分 析下载
3、如图△ ABD ≌ △CDB,若AB=4, AD=5,BD=6,则BC= ,CD= 。
【获奖课件ppt】《全等三角形》_ppt 课件1- 课件分 析下载
学习目标
1、知道全等三角形的概念,并能说出它 们的对应元素。 2、会按对应元素表示两个三角形全等。 3、记住全等三角形对应边相等、对应 角相等的性质。
【获奖课件ppt】《全等三角形》_ppt 课件1- 课件分 析下载
【获奖课件ppt】《全等三角形》_ppt 课件1- 课件分 析下载
1、观察上图中的全等三角形应表示为:△ ABC ≌ △ DEF 。 2、根椐全等三角形的定义试想它们的对应边、对应角有什 么关系?
对应角是: ∠BCE和 ∠CBF、 ∠BEC和∠CFB、 ∠CBE和 ∠BCF。对应边是:CB和BC、 CE和BF、CF和BE。
【获奖课件ppt】《全等三角形》_ppt 课件1- 课件分 析下载
【获奖课件ppt】《全等三角形》_ppt 课件1- 课件分 析下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
B
13
知识总结: 包括直角三角形
一般三角形 全等的条件:
1.定义(重合)法;
2.SSS;
解题中 3.SAS;
常用的4
种方法 4.ASA;
不包括其它形 状的三角形
5.AAS.
直角三角形 全等特有的条件:HL.
2021
14
方法总结---证明两个三角形全等的基本思路
1、已知两边
找第三边 (SSS)
找夹角 (SAS) 找是否有直角 (HL)
2021
12
牛刀小试
已知:如图,在△ABC和△ABD中,AC⊥BC, AD⊥BD,垂足分别为C,D,AD=BC,
求证: BD=AC.
证明:∵ AC⊥BC, AD⊥BD
D
∴∠C=∠D=90°
在Rt△ABC和Rt△BAD中A B BA NhomakorabeaB
C
AD
A
∴ Rt△ABC≌Rt△BAD (HL)
∴BD=AC
2021
找这边的另一个邻角(ASA)
已知一边和它的邻角 找这个角的另一个边(SAS)
2、已知一边一角
找这边的对角 (AAS)
已知一边和它的对角 找一角(AAS)
3、已知两角
找两角的夹边(ASA)
已知角是直角,找一边 (HL)
找夹边外的任意边(AAS)
2021
15
一、挖掘“隐含条件”判全等
AD
1.如图(1),AB=CD,AC=BD,则
A′
B′
2021
6
牛刀小试
如图,AC=BD,∠CAB=∠DBA,你能 判断BC=AD吗?说明理由。
C 证明: 在△ABC与△BAD中
AC=BD
A
∠CAB=∠DBA
AB=BA
∴△ABC≌△DEF(SAS)
2021
D B
7
知识回顾---ASA
1、两角和它们的夹边对应相等的两个三角形全等---ASA
2、数学语言表达:
D
E
AC=AB(已知)
O
∠C=∠B(已知)
B
C
∴△ADC≌△AEB(ASA)
∴AD=AE(全等三角形的对应边相等)
又∵AB=AC(已知)
∴AB-AD=AC-AE即BD=CE(等式性质)
2021
9
知识回顾---AAS
1、两个角和其中一个角的对边对应相等的两个三角形
全等---AAS
A
2、数学语言表达
在△ABC和△DEF中
2、数学语言表达:
A
在△ABC与△DEF中
AB=DE
B
C
AC=DF
D
BC=EF
E
∴△ABC≌△DEF(SSS)
2021
F
4
牛刀小试
如图,AB=AC,AE=AD,BD=CE,
求证:△AEB ≌ △ ADC。
A
证明:∵BD=CE
∴ BD-ED=CE-ED, 即BE=CD。
B ED C
在AEB和ADC中,
∴AC=AD 边相等)
(全等三角形对应
2021
D
C
11
知识回顾---HL
1、斜边和一条直角边对应相等的两个直角三角形 全等---HL
B
2、数学语言表达:
∵∠C=∠C′=90°
A
C
∴在Rt△ABC和Rt△ ABC中
B′
AB=AB BC= BC
A′
C′
∴Rt△ABC≌R△ tA′ B′ C′ (HL)
AB=AC
AE=AD
BE=CD
∴ △AEB ≌ △ A2D02C1 (sss)
5
知识回顾---SAS
1、两边和它们的夹角对应相等的两个三角形全等---SAS
2、数学语言表达: C
证明:在△ABC与△A B ′C 中′ ′
AB=A′ B ′
∠A=∠A ′ AC=A′ C ′
A
B
C′
∴△ABC≌△ABC(SAS)
A
在△ABC和△DEF中
∠A=∠D (已知 ) AB=DE(已知 ) ∠B=∠E(已知 )
B
C
D
∴ △ABC≌△DEF(ASA)
E
F
2021
8
牛刀小试
如图,已知点D在AB上,点E在AC上,BE和CD相
交于点O,AB = AC,∠B = ∠C.
A
求证:BD = CE
证明 :在△ADC和△AEB中 ∠A=∠A(公共角)
件 ∠B=∠C
;
D C;
友情提示:添加条件的题目.首先要 找到已具备的条件,这些条件有些是 题目已知条件 ,有些是图中隐含条件.
2021
1177
三、熟练转化“间接条件”
判全等
A
D
5如图,AE=CF,∠AFD=∠CEB,DF=BE, △AFD与△ CEB全等吗?为什么?
6.如图(5)∠CAE=∠BAD,∠B=∠D,
∠A=∠D (已知) ∠B=∠E(已知 )
B
C
D
BC=EF(已知 )
∴ △ABC≌△DEF(AAS)
E
F
2021
10
牛刀小试
已知,如图,∠1=∠2,∠C=∠D
求证:AC=AD
证明:在△ABD和△ABC中
∠1=∠2 (已知)
1
∠D=∠C(已知)
A2
B
AB=AB(公共边)
∴△ABD≌△ABC (AAS)
2
知识回顾---全等三角形
寻找对应元素的规律:
1、有公共边的,公共边是对应边; 2、有公共角的,公共角是对应角; 3、有对顶角的,对顶角是对应角; 4、两个全等三角形最大的边是对应边,最小的边是对 应边; 5、两个全等三角形最大的角是对应角,最小的角是对 应角;
2021
3
知识回顾---SSS
1、三边对应相等的两个三角形全等.---SSS
AC=AE,△ABC与△ADE全等吗?
E
FE
B
C
B
D
为什么?
C
A
7.“三月三,放风筝”如图(6)是小东同学自己
做的风筝,他根据AB=AD,BC=DC,不用度量,
就知道∠ABC=∠ADC。请用所学的知识给予
说明。
2021
1188
5.如图(4)AE=CF,∠AFD=∠CEB,DF=BE, △AFD与△ CEB全等吗?为什么?
△ABC≌△DCB吗?说说理由
B 图(1) C
2.如图(2),点D在AB上,点E在AC上, B
D
CD与BE相交于点O,且AD=AE,AB=AC.若
O
A
∠B=20°,CD=5cm,则 ∠C= 20°,BE= 5.说cm说理由.
E C 图(2)
3.如图(3),AC与BD相交于O,若
A
D
OB=OD,∠A=∠C,若AB=3cm3c,m 则
CD=
. 说说理由.
B
学习提示:公共边,公共角,
O 图(3)C
对顶角这些都是隐含2的021 边,角相等的条件!1166
二.添条件判全等
B
4、如图,已知AD平分∠BAC,A
要使△ABD≌△ACD,
• 根据“SAS”需要添加条件 AB=AC
• 根据“ASA”需要添加条
件 ∠BDA=∠CDA
;
• 根据“AAS”需要添加条
第11章 全等三角形(复习)
2021
1
知识回顾---全等三角形
1、定义--- 能够完全重合的两个三角形叫做全等三角形。 2、性质--- 全等三角形的对应边、对应角相等。 3、一个图形经过平移、翻折、旋转后,位置发生了变化,
但是它的形状和大小并没有改变。即:平移、翻折、 旋转前后的两个图形全等。
2021