仪表放大器的设计

合集下载

TI运算放大器仪表放大器电路设计说明书

TI运算放大器仪表放大器电路设计说明书

1ZHCA850–December 2018三级运算放大器仪表放大器电路Analog Engineer's Circuit:AmplifiersZHCA850–December 2018三级运算放大器仪表放大器电路设计目标输入V idiff (V i2-V i1)共模电压输出电源V i diff Min V i diff Max V cm V oMin V oMax V cc V ee V ref -0.5V+0.5V±7V–5V+5V+15V–15V0V设计说明此设计使用3个运算放大器构建分立式仪表放大器。

电路将差动信号转换为单端输出信号。

仪表放大器能否以线性模式运行取决于其构建块(即运算放大器)能否以线性模式运行。

当输入和输出信号分别处于器件的输入共模和输出摆幅范围内时,运算放大器以线性模式运行。

这些范围取决于用于为运算放大器供电的电源电压。

设计说明1.使用精密电阻器实现高直流CMRR 性能2.R 10设置电路的增益。

3.向输出级添加隔离电阻器以驱动大电容负载。

4.高电阻值电阻器可能会减小电路的相位裕度并在电路中产生额外的噪声。

5.能否以线性模式运行取决于所使用的分立式运算放大器的输入共模和输出摆幅范围。

线性输出摆幅范围在运算放大器数据表中A OL 测试条件下指定。

2ZHCA850–December 2018三级运算放大器仪表放大器电路设计步骤1.此电路的传递函数:2.选择反馈环路电阻器R 5和R 6:3.选择R 1、R 2、R 3和R 4。

要将Vref 增益设置为1V/V 并避免降低仪表放大器的CMRR ,R 4/R 3和R 2/R 1的比值必须相等。

4.计算R 10以实现所需的增益:(1)5.要检查共模电压范围,请从参考文献[5]中下载并安装程序。

通过为内部放大器具有所选放大器(在本例中为TLV172)所定义的共模范围、输出摆幅和电源电压范围的三级运算放大器INA 添加代码,对安装目录中的INA_Data.txt 文件进行编辑。

仪用放大器设计

仪用放大器设计

仪用放大器使用注意事项。

仪表放大器的结构仪表放大器一般是由三个放大器和经过激光调阻修正的电阻网络构成,如图1所示。

在传统的三片运放方式的基础上做一些改进,内部阻值的校准保证用户只需要外接一个电阻即可实现由1到上万倍的增益精确设定,减少了由于增益相关误差带来的数据采集误差,同时这种结构保证其具有高输入阻抗和低输出阻抗,且每一路输入都有输入保护电路以避免损坏器件。

由于采用激光调阻,使其具有低失调电压、高共模抑制比和低温漂。

图1 仪表放大器的结构原理框图图1所示为BB(Burr Brown)公司的INA114、INA118等仪表放大器的结构原理框图及引脚。

在实际应用时,正负电源引脚处应接滤波电容C,以消除电源带来的干扰。

5脚为输出参考端,一般接地。

实际应用中即使5脚对地之间存在很小的电阻值,也将对器件的共模抑制比产生很大的影响,如5欧姆的阻值将导致共模抑制比衰减到80dB。

应用中应考虑的问题1 输入偏置电流回路一般来说,选择差分信号测量的工作方式时,后面的信号放大电路一般直接采用仪表放大器构成。

仪表放大器的输入阻抗非常高,大约达到1010Ω数量级,相应对于差分输入的每个输入端都需要输入偏置电流通道,以提供共模电流反馈回路,例如仪表放大器IN118输入偏置电流大约为±5nA。

由于仪表放大器的输入阻抗非常高,使得输入的偏置电流随输入电压的变化非常小,对差分信号放大不会产生太大影响。

输入偏置电流是仪表放大器(IA)输入三极管所必须的电流,电路设计时必须保证偏置电流有接地的回路,如果电路中没有输入偏置电流通道,传感器的输入将处于浮电位状态,而浮电位值很可能超过放大器所能够允许的共模电压范围(其值与放大器的供电电压相关),使输入放大器饱和而失去放大功能。

(实验中好像是c)针对实际的应用情况,输入偏置电流回路设置可以采用三种基本形式,分别如图2所示。

其中(a)为差分信号源阻抗较高(人体内阻算大还是小?接电极时是否需要导电膏之类的东西,这是人体电阻大约是多少?)时常用的形式,其中的两个接地电阻相等,以保证较高的共模抑制比和减小偏置电流对失调的影响;(b)为信号源阻抗较低时采用的形式(如热电偶);(c)为对称结构常用的形式。

仪表放大器课程设计要求

仪表放大器课程设计要求

仪表放大器课程设计要求一、教学目标本课程的教学目标是使学生掌握仪表放大器的基本原理、结构和应用,提高学生的理论水平和实际操作能力。

具体目标如下:1.知识目标:(1)了解仪表放大器的基本原理和组成;(2)掌握仪表放大器的分类及其特点;(3)熟悉仪表放大器在实际工程中的应用。

2.技能目标:(1)能够分析仪表放大器的工作原理;(2)具备选用和调试仪表放大器的能力;(3)会使用仪表放大器进行实际测量。

3.情感态度价值观目标:(1)培养学生对仪表放大器的兴趣,提高学习积极性;(2)培养学生团结协作、勇于探索的精神;(3)使学生认识到仪表放大器在工程中的重要性,提高学生的责任感。

二、教学内容根据课程目标,教学内容主要包括以下三个方面:1.仪表放大器的基本原理:介绍仪表放大器的工作原理、性能指标等;2.仪表放大器的分类及应用:讲解不同类型的仪表放大器及其在工程中的应用;3.仪表放大器的选用与调试:介绍仪表放大器的选用原则、调试方法等。

三、教学方法为了实现课程目标,我们将采用以下教学方法:1.讲授法:讲解仪表放大器的基本原理、分类及应用;2.讨论法:学生针对实际案例进行讨论,提高学生的分析能力;3.案例分析法:分析具体工程案例,使学生了解仪表放大器的实际应用;4.实验法:安排实验室实践环节,培养学生的动手能力。

四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的理论知识;2.参考书:提供丰富的参考资料,帮助学生拓展知识面;3.多媒体资料:制作精美的PPT,提高课堂教学效果;4.实验设备:保障实验室实践环节的顺利进行,让学生亲身体验仪表放大器的工作原理和应用。

五、教学评估为了全面、客观地评估学生的学习成果,我们将采用以下评估方式:1.平时表现:通过课堂参与、提问、回答问题等环节,评估学生的学习态度和积极性;2.作业:布置适量的作业,评估学生的理解和掌握程度;3.考试:设置期中、期末考试,检验学生对课程知识的掌握情况;4.实验报告:评估学生在实验环节的操作能力和分析问题的能力;5.小组项目:评估学生在团队协作中的表现,包括沟通能力、协作精神等。

采用校正相位的仪表放大器设计

采用校正相位的仪表放大器设计
结构 , 能够 提高 共模 抑 制性 能 ( MR) 它 C 。由于它 使 用分 立 放大 器 , 因此 您可 以根 据具 体应 用 的要 求 , 针 对最 低 功耗 、 成本 、 噪声 和 电源 电压 进 行定 制 。 以前 ,
提 供最 佳 的交 流和 直流 共模 抑制 。构 建分 立仪 表放 大器 的一 大挑 战是 实现 与单 芯 片仪表 放 大器相 当的 共 模抑 制性 能 。
表 2具有精确 匹配 电阻 的交流共模抑制 G R M
共模 电压 (C ) VM
0 O VA . 01 C
2 0 VA . 0l C
双运放仪表放大器
12 V 2
24 m 4 V
三运放仪表放 大器
9 8UV
19 V 9
新型三运放仪表放大器
857 V .5 Ⅱ
嘞 。


然而 , 两种 电路的交流 C R则不 同, M 如表 1 所 示 。当在输入端施加并扫描一个较大的交流共模电 压时 , 就会观察到性能差异 。下面是使用 A I D 公司
A 80 D 6 3运 算 放 大 器 的 电 路 测 试 结 果 。 电 源 电压 为 ±25V, 模 电压 为 00 1 . 共 .0 增益 为 10 mV, 0 。误差 测 量在 5 0H 输入 信 号下 进行 , 图 5 所示 。 0 z 如 a 然 后将 作 条 件更 改 为 共模 电压 20 1V和增 [ . 0

高共模抑制性能,该差动放大器要求匹配的电阻和
具 有高 C MR的 A 运算 放 大器 。当 电阻匹 配精 度 为 01 .%时 , 流 时 可 以实 现 的最 高 C 直 MR为 5 B。该 4d
C R会 随着 率而进一步降低 , M 具体取决 于所选的

必须收藏的仪表放大器设计及经典应用方案汇总

必须收藏的仪表放大器设计及经典应用方案汇总

必须收藏的仪表放大器设计及经典应用方案汇总
仪表放大器是一种精密差分电压放大器,它源于运算放大器,且优于运算放大器。

仪表放大器把关键元件集成在放大器内部,其独特的结构使它具有高共模抑制比、高输入阻抗、低噪声、低线性误差、低失调漂移增益设置灵活和使用方便等特点,使其在数据采集、传感器信号放大、高速信号调节、医疗仪器和高档音响设备等方面倍受青睐。

本文为大家介绍仪表放大器的设计及经典应用方案。

差分输入/输出低功耗仪表放大器
全差分仪表放大器具有其他单端输出放大器所没有的优势,它具有很强的共模噪声源抗干扰性,可减少二次谐波失真并提高信噪比,还可提供一种与现代差分输入ADC 连接的简单方式。

基于零漂移仪表放大器的传感器电路优化方案
系统设计师喜欢将模拟链路设计得尽可能短,希望以此来提高信号抗外部噪声的能力。

过长的模拟链要求在后续电路中使用特定的信号处理电路。

使用仪表放大器(IA)连接传感器和ADC,在靠近信号源的地方将小信号放大可以改善一些应用的总信噪比,特别是当传感器不靠近ADC 时。

用于数据采集的超高性能差分输出可编程增益仪表放大器
有一种方法可以构建一个强大的模拟前端,以便在单一信号路径中实现衰减和放大,并且提供差分输出来驱动高性能模数转换器,将一个可编程增益仪表放大器,与一个全差分漏斗(衰减)放大器等级联。

该解决方案简单灵活,具有高速特性,并提供出色的精度和温度稳定性。

仪表放大器电路设计
本文从仪表放大器电路的结构、原理出发,设计出四种仪表放大器电路。

仪表放大器设计和制作

仪表放大器设计和制作

仪表放大器设计和制作本仪表放大器是由三个OA27P 集成运算放大器组成,OA27P 的特点是低噪声、高速、低输入失调电压和卓越的共模抑制比。

仪表放大器电路连接成比例运算电路形式,其中前两个运放组成第一级,二者都接成同相输入形式,因此具有很高的输入电阻。

由于电路的结构对称,它们的漂移和失调都有互相抵消的作用。

后一个运放组成差分放大器,将差分输入转换为单端输出。

经计算,本设计中仪表放大器的电压放大倍数Au=R5/R3(1+2R1/R2)=100,结果将在仿真中验证。

仪表放大器的结构特点:使仪表放大器成为一种高输入电阻,高共模抑制比,具有较低的失调电压,失调电流、噪声及飘移的放大器。

在使用时,在图1 中R4、R5、R6、R7 四个电阻要精密且匹配,否则将给放大倍数带来误差,而且将降低电路的共模抑制比。

一、仪表放大器电路图本设计采用Prote199se 电路仿真软件,绘制电原理图后可自动生成印制线路板图.还可进行电路仿真。

绘制电原理图时特别要注意选择各种元件的封装形式.这也是后序能否成功自动布线的关键之一。

本设计中各元件的封装形式如下:电阻(AXIAL0.3)、电解电容(RB.2/.4)、瓷介电容(RAD0.1)、集成电路(DIP-8)、三端稳压块(TO-220)。

仪表放大器的电路图如图1。

图中R8 是原理图电气检查时附加的,实际制作时不用安装。

二、电原理图绘制与印制板图设计1、进入Prote199se SCH 界面,绘制电原理图;经电气检查(ToolERC),无误后即可生成网络表(DesignGreat Netlist)。

2、进入Prote199se PCB 界面,绘制印制板图。

先确定外围尺寸:长50mm、宽25mm。

且要求外框接地又不能封闭如图2。

接着载入网络表(DesignLoad Nets),把所有的元件合理地布到印制板图上。

进行自动布线参数的设置(OptionsRules)。

最基本的有三点:线宽、线距和层数。

基于TI器件的模拟电路设计-仪表放大器电路设计

基于TI器件的模拟电路设计-仪表放大器电路设计

⑤ 所有信号及电源回路最后必须有一个直接或间接的公共点。
3.5 仪表放大器输入偏置电流的接地回路
3.5.2 采用“浮动”源或交流耦合仪表放大器的输入偏置电流 的接地回路
3.5 仪表放大器输入偏置电流的接地回路
3.5.2 采用“浮动”源或交流耦合仪表放大器的输入偏置电流 的接地回路
3.5 仪表放大器输入偏置电流的接地回路
3.5 仪表放大器输入偏置电流的接地回路
3.5.1 直接耦合仪表放大器的输入偏置电流接地回路
③ 增益确定电阻 RG 一般设于远程地点,以便进行增益切换。但杂散电容和线 缆电感可能扰乱器件的频率补偿。某些情况下,有必要在仪表放大器 RG 引 脚处安装一个串行 RC,以便增加补偿零,用于校正由杂散电感和电容导致 的 LC 共振。该引脚补偿可以提高稳定性,但其代价是,会在频率响应曲线 的高端处形成峰值。不幸的是,该补偿(若需要)取决于具体应用,并且多 通过实验来确定。
3.5.2 采用“浮动”源或交流耦合仪表放大器的输入偏置电流 的接地回路
3.5 仪表放大器输入偏置电流的接地回路
3.5.2 采用“浮动”源或交流耦合仪表放大器的输入偏置电流 的接地回路
仪表放大器输入偏置电流的接地回路
3.5.3 AC耦合输入仪表放大器的阻容元件值选择
输入端的电容器C和电阻R构 成一个RC高通滤波器,截止 频率为:
35仪表放大器输入偏置电流的接地回路352采用浮动源或交流耦合仪表放大器的输入偏置电流的接地回路35仪表放大器输入偏置电流的接地回路352采用浮动源或交流耦合仪表放大器的输入偏置电流的接地回路35仪表放大器输入偏置电流的接地回路352采用浮动源或交流耦合仪表放大器的输入偏置电流的接地回路35仪表放大器输入偏置电流的接地回路352采用浮动源或交流耦合仪表放大器的输入偏置电流的接地回路35仪表放大器输入偏置电流的接地回路353ac耦合输入仪表放大器的阻容元件值选择输入端的电容器c和电阻r构成一个rc高通滤波器截止频率为

血压计中仪表放大器的工作原理及制作

血压计中仪表放大器的工作原理及制作

血压计中仪表放大器的工作原理及制作仪表放大器是精密差动电压放大器,其源于运算放大器,但优于运算放大器,具有低噪声、高输入阻抗、低线性误差、高共模抑制比、低失调漂移增益设置灵活和使用方便等特点,使其在传感器信号放大、数据采集、精密电子仪器设备、医疗仪器等方面广泛被采用。

采用分立元件构成的仪表放大器作为血压计中压力传感器前置放大电路,设计一低成本、低功耗、高增益、高信噪比的集成单元模块放大电路。

1 血压计原理人体血压指的是动脉血管中脉动的血流对血管壁产生的侧向垂直于血管壁的压力,主动脉血管中垂直于管壁的压力峰值为收缩压,谷值为舒张压。

血压、心率是反映心血管系统状态的重要生理参数。

血压计是通过充气袖套阻断上臂动脉血流来实现的,在袖套充气的过程中,在气袖压力上将重叠与心搏同步的压力波动,当气袖压力远高于收缩压时,脉搏波消失,随着袖套压力下降,脉搏波开始出现,当袖套压力从高于收缩压降到收缩压以下时,脉搏波会突然增大,直到平均压力达到最大值,然后又随袖套压力下降而衰减。

血压测量就是根据脉搏波振幅与气袖压力之间关系来估算血压的,与脉搏波最大值对应的是平均值,收缩压和舒张压分别由对应脉搏波最大振幅的比例来确定。

图1 血压测量系统框图血压测量原理如图1所示,压力传感器要求体积小,重量轻,采用固态压阻式压力传感器,其功能是将血压转换成电阻的变化量;前置放大器要求高增益、高信噪比,系统采用仪表放大器;仪表放大器放大的信号经模/数转换后,由单片机处理输出,LCD显示测量结果。

2 仪表放大器2.1 设计原则系统中压力传感器检测到的信号为20~200 Hz,幅度为毫量伏级甚至微伏量级,夹杂大量干扰成份,因此要求前置放大器不仅具有高增益,还要有一定的抗干扰能力。

同时仪表放大器电路能够分辨的输入信号越小越好,动态范围越宽越好。

因此前置放大器设计时注意:。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录
一、绪言 (7)
二、电路设计 (8)
设计要求 (8)
设计方案 (8)
1、电路原理 (8)
2、主要器件选择 (9)
3、电路仿真 (10)
三、电路焊接 (13)
四、电路调试 (14)
1、仪表放大电路的调试 (14)
2、误差分析 (15)
五、心得体会 (18)
六、参考文献 (19)
绪言
智能仪表仪器通过传感器输入的信号;一般都具有“小”信号的特征:信号幅度很小毫伏甚至微伏量级;且常常伴随有较大的噪声..对于这样的信号;电路处理的第一步通常是采用仪表放大器先将小信号放大..放大的最主要目的不是增益;而是提高电路的信噪比;同时仪表放大器电路能够分辨的输入信号越小越好;动态范围越宽越好..仪表放大器电路性能的优劣直接影响到智能仪表仪器能够检测的输入信号范围..本文从仪表放大器电路的结构、原理出发;设计出仪表放大器电路实现方案;通过分析;为以后进行电子电路实验提供一定的参考..
在同组成员张帅威、张智越的共同努力下;大家集思广益;深入探讨了实验过程中可能出现的各种问题;然后分工负责个部分的工作;我和张帅威负责前期的电路设计和器件的采购;后期的焊接由张智越完成;最后的调试由我们三个人共同完成..本报告在做实验以及其他同学提出的富有建设性意见的基础上由我编写;报告中难免会有不足或疏漏之处;还望大家指正为谢
第一章电路设计
一、设计要求
1、电路放大倍数>3000倍
2、输入电阻>3000kΩ
3、输出电阻<300Ω
二、设计方案
1、电路原理
仪表放大器电路的典型结构如图1所示..它主要由两级差分放大器电路构成..其中;运放A1;A2为同相差分输入方式;同相输入可以
大幅度提高电路的输入阻抗;减小电路对微弱输入信号的衰减;差分输入可以使电路只对差模信号放大;而对共模输入信号只起跟随作用;使得送到后级的差模信号与共模信号的幅值之比即共模抑制比CMRR 得到提高..这样在以运放A3为核心部件组成的差分放大电路中;在CMRR要求不变情况下;可明显降低对电阻R3和R4;RF和R5的精度匹配要求;从而使仪表放大器电路比简单的差分放大电路具有更好的共模抑制能力..在R1=R2;R3=R4;Rf=R5的条件下;图1电路的增益为:G=1+2R1/RgRf/R3..由公式可见;电路增益的调节可以通过改变Rg 阻值实现..
2、主要器件选择
1运放OP07
OP07芯片是一种低噪声;非斩波稳零的双极性双电源供电运算放大器集成电路..由于OP07具有非常低的输入失调电压对OP07A最大为25μV;所以OP07在很多应用场合不需要额外的调零措施..OP07同时具有输入偏置电流低OP07A为±2nA和开环增益高对于OP07A为300V/mV的特点;这种低失调、高开环增益的特性使得OP07特别适用于高增益的测量设备和放大传感器的微弱信号等面..
(2)OP07特点:
A.超低偏移:150μV最大..
B.低输入偏置电流: 1.8nA ..
C.低失调电压漂移:0.5μV/℃; 超稳定..
D.时间:2μV/month..
E.最大高电源电压范围:±3V至±22V..
3OP07芯片引脚功能说明:
1和8为偏置平衡调零端
;2为反向输入端;3为正向输
入端4接地;5空脚 6为输出;
图2 OP07管脚图
7接电源“+”;如图2..
3、电路仿真
1电路图的绘制
根据所查资料用multisim11.0画出如图3所示电路图..
图3
2参数确定
A. 所设计的电路满足电路放大倍数>3000倍;如图4
图4
Av=220.793/0.1*1.414>3000 即满足设计要求1..
B.所设计的电路满足输入电阻>3兆欧
原理:由二分之一分压法在输入端串联一个3兆欧的电阻;如图5
图5
由实验结果可知3兆欧的电阻分压为1.995uv;即原先电路输入电阻分的电压比较多;所以满足要求2..
C.所设计的电路满足输出电阻<300欧;如图6
图6
3元器件的采购
根据上述的仿真结果;所设计的电路满足以上要求;最终确定的元器件见下表
项目型号数量备注
电阻10千欧 4
第二章电路焊接
1、电路板布局
1元器件的布局
原则:元器件之间的间距不能太小;另外使元器件的布局尽量美观..另外;应该考虑实际的走线情况..
2走线
原则:A.导线最好不要裸漏;以免发生短路..
B.导线走线在安全的前提下;应尽量保证美观..
C.注意OP07的管脚、电解电容的正负极的问题..
2、电路焊接
原则:焊接的过程中;在原先布局的基础上;应能够保证焊接牢固;
按照所设计的电路图焊接电路板..特别要注意的地方是不用电络铁的时候不要长时间使其通电;否则会降低电络铁的寿命;此外;也要掌握焊接的技巧..
最终得到的电路板如图7、图8所示
图7 图8
第三章电路的调试
1、仪表放大电路的调试
图9
根据调试所得的结果;放大倍数和仿真的结果即理论值之间存在一定的误差;此外输入电阻和输出电阻的测量就现有的仪器来看;还存在无法解决的问题;比如函数发生器不能够提供很微小的信号;再测量很微小的量实验室的仪器的精度不够高..所以导致实际的误差有点大;最后测出的结果只能作为参考..
为了解决这一问题;特借用了其他实验室的设备;测得的结果如下:
仪用放大器的放大倍数:实际的函数发生器输入信号有0.1mv;用交流毫伏表测得输入信号的有效值为0.038mv;如图9的输出波形基本无失真的情况;由交流毫伏表测得输出信号的有效值为115mv..则放大倍数为3026倍;与理论值3146有较小的偏差;基本满足要求..
输入电阻以及输出电阻的测量:采用之前的二分之一分压法;所测得的结果基本与要求一致;输入电阻远大于3000千欧;输出电阻也比300欧小得多..
2、误差分析
1仪器误差
在实验室的仪器年代久远;又没有很好的维护;导致有些仪器的内部产生变化;当我们在不同的时间测量同样的量时;也会有不同的变化;比如实验室里的毫伏表;示波器;函数发生器;实验箱都存在一定的误差;给我们测量带来了很大的干扰;函数发生器输出的最小信号是0.9mv;不满足微小信号的条件;还有毫伏表测量的时候数值不稳定;函数发生器内部也存在很大的内阻;此外;示波器的维护也不够;很多示波器的精确度不够高;并且没有好的参照标准..总之;仪器带给我们调试工作的挑战异常艰巨..
2电路误差
A、共模抑制
一个理想的仪表放大器将放大其反相和同相输入端之间的差分电压;而不受同时加在两个输入端的任何直流电压的影响..因而;出现在两个输入端的任何直流电压将被仪表放大器所抑制..这种直流或共模
成分存在于许多应用之中..事实上;消除这种共模成分正是仪表放大器在实际应用中的主要作用..
B、交流和直流共模抑制
直流共模抑制欠佳会在输出端造成直流失调..如果说这个误差还可
通过校准解决;那么交流信号共模抑制不良则是个非常棘手的问题..例如;如果输入电路被交流电中50Hz或60Hz信号所干扰;那么会在输出端出现交流失调电压..这种电压的存在将导致系统分辨率下降..只有在最高信号频率远低于50Hz或60Hz的应用中;才可通过滤波解决此问题..
C、噪声
失调电压和偏置电流最终会在输出端导致失调误差;而噪声源则会降低电路的分辨率..多数放大器中都存在两种噪声源;即电压噪声和电流噪声..正如失调电压和偏置电流一样;这些噪声源对分辨率的影响程度也因应用而异..
D、增益误差
集成仪表放大器的增益误差由两部分组成;即内部增益误差以及因外部增益设置电阻的公差导致的误差..尽管使用高精度外部增益电阻
可防止总增益精度下降;但将成本浪费在精度远远高于仪表放大器精度的外部电阻上并无多大意义..同时;使用标准值电阻时;一般很难
精确获得所需增益..
第四章心得体会
通过全组人的努力;我们从最初的茫然到现在的略知一二;这其中离不开小组成员的不离不弃;仿真、采购、焊接、调试、焊接、调
试……;由于一系列因素的干扰;使得我们的进程异常的缓慢;个中原因包括我们的失误、焊接的不仔细、实验室器材的老化……;最终还是在我们的坚持和老师的帮助下;我们的设计结果也只是差强人意..
在做本次的课程设计中;我们也试着总结了以下几点:1注意关键元器件的选取;比如对于我们的电路;要注意使运放A1;A2的特性尽可能一致;选用电阻时;应该使用低温度系数的电阻;以获得尽可能低的漂移;对R3;R4;R5和R6的选择应尽可能匹配..2要注意在电路中增加各种抗干扰措施;比如在电源的引入端增加电源退耦电容;在信号输入端增加RC低通滤波或在运放A1;A2的反馈回路增加高频消噪电容..3在焊接之前;我们应该确定好整个电路板的布局以及走线;不要等焊到半途再来考虑..4我们应该高度注意运放的管脚问题、门限电压的大小、电解电容的正负方向的问题..
总之;本次实验的收获还是挺多的;我们学会了怎样正确的去调试电路;怎样去分析问题;怎样的去解决忽然而至的问题;我相信这将是以后我实践的一笔巨大的财富..
第五章参考文献
1、《仪表放大器电路设计》崔利平
2、百度百科OP07的中文资料
3、《电子线路设计·实验·测试第三版》谢自美
4、《仪表放大器应用中的误差与误差预算分析》Eamon Nash。

相关文档
最新文档